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A B S T R A C T

Categories provide a fundamental source of information used to structure our perception of the world. For
example, when people reproduce the remembered location of a dot in a circle, they implicitly impose vertical
and horizontal axes onto the circle, and responses are biased towards the center of each of the resulting
quadrants. Such results reveal the existence of spatial prototypes, which function as Bayesian priors and which are
integrated with actual memory traces. Spatial prototypes have been extensively investigated and described in
previous studies, but it remains unclear what type of information is used to create spatial categories. We de-
veloped a new approach that allowed to ‘image’ patterns of spatial bias in detail, and map the internal re-
presentational structure of objects and space. Previous studies, using circular shapes suggested that boundaries
are established based on a viewer-based frame of reference, therefore using cues extrinsic to the object. Given
that a circle has radial symmetry, the axes imposed cannot come from the shape itself. Here we investigated if
the same applies for shapes with clearly-defined symmetry axes and thus intrinsic frames of reference. Using
rotated shapes (squares and rectangles), where extrinsic and intrinsic cues are dissociated, we observed flexible
usage of multiple reference frames. Furthermore, in certain contexts, participants relied mostly on cues intrinsic
to the shape itself. These results show that humans divide visual space as a function of multiple reference frames,
in a flexible, and context dependent manner.

1. Introduction

Categories provide fundamental information to structure our per-
ception of the world (Harnad, 1987). In the case of space, research has
demonstrated systematic biases in the reproduction of remembered
spatial locations, suggesting that memory for actual stimuli is in-
tegrated with central categorical information about where stimuli are
expected to be (i.e., spatial prototypes; Cheng, Shettleworth,
Huttenlocher, & Rieser, 2007; Huttenlocher, Hedges, & Duncan, 1991;
Newcombe & Huttenlocher, 2000). In this way, categories function as
“perceptual magnets”, pulling in nearby stimuli (Kuhl, 1991). For ex-
ample, when reproducing the remembered location of a dot in a circle,
observers' responses are biased towards the centroids of four imaginary
quadrants (Huttenlocher, Hedges, Corrigan, & Crawford, 2004;

Huttenlocher et al., 1991; see also Taylor, 1961). Though the use of
spatial prototypes introduces bias towards the mean value, or proto-
type, of the category, it can nevertheless reduce overall error when
memory is imprecise (e.g., “the dot was in the top left quadrant”; Duffy,
Huttenlocher, & Elizabeth Crawford, 2006; Huttenlocher et al., 2004).
Studying the pattern of bias for stimuli at varying locations across a
shape is a potentially powerful tool to map the internal structure un-
derlying spatial representation of objects, i.e., how spaces are broken up
into categories, or organized in memory. To achieve a more detailed
description of this structure than provided by previous work, we de-
veloped a novel method of ‘imaging’ this representation.

In the example of the circle above, there is no reason to think that
stimuli are actually more likely to appear in the center of each quad-
rant, yet responses are nonetheless biased towards those locations. This
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suggests that circles are spontaneously organized into quadrants, by
imposing vertical and horizontal axes. Attraction towards categorical
prototypes has been shown for a variety of tasks and stimuli, such as
urban landmarks (Sampaio & Cardwell, 2012), object location within a
room (Sargent, Dopkins, & Philbeck, 2011), or toys hidden in sandboxes
(Huttenlocher, Newcombe, & Sandberg, 1994; Newcombe,
Huttenlocher, & Learmonth, 1999). However, the actual distribution of
prototypes for a given object, as well as its categorical structure, has
been often overlooked, for instance by assuming a particular number of
fixed prototypes (e.g., Wedell, Fitting, & Allen, 2007) or considering
only one type of response bias (e.g., Huttenlocher et al., 1994). This is
the case for instance of studies where participants are asked to retrieve
from memory the location of a dot or an object within a rectangle, but
only bias in the right-left direction is modelled (Huttenlocher et al.,
1994; Spencer, Simmering, & Schutte, 2006), which may underestimate
the number of prototypes involved.

In the present study, we developed a new method of characterizing
the pattern of spatial prototypes in a data-driven way, by assessing the
pattern of directional biases across an entire shape. Specifically, our
method quantifies the extent to which each location in a given shape
attracts or repels location memory, without making a priori assump-
tions regarding the categorization of space or number of prototypes.
This method allows to image the internal representational structure of
objects with a level of detail never previously reported, including the
imposition of partition axes (e.g., the vertical and horizonal axes in the
circle).

The way shapes are divided and hence categorized will vary de-
pending on the frame of reference used by the observer. Egocentric
reference systems, for instance, are those in which locations are speci-
fied with respect to the observer, such as the retina, the head, or the
body, whereas allocentric (or environmental) ones are independent
from the observer, such as gravity or landmarks within a room (Fitting,
Wedell, & Allen, 2005). Intrinsic reference frames, on the other hand,
are object-based, and defined through the object's intrinsic axes and
boundaries (McNamara, 2003; Mou, Fan, McNamara, & Owen, 2008;
Mou, Xiao, & McNamara, 2008; Wang, Sun, Johnson, & Yuan, 2005).
Given that the vertical and horizontal axes in our experiments can be
defined with regard to both egocentric and allocentric systems, we have
opted to define these axes as extrinsic vertical and horizontal when they
are aligned or perpendicular to gravity, respectively, in direct opposi-
tion to the object intrinsic axes (which might or might not be aligned
with the extrinsic ones).

The widespread use by participants of the extrinsic vertical when
segmenting shapes into categories has led several authors to argue that
a universal division of space, imposing vertical (and often horizontal)
boundaries, forms the basis for spatial categorization (Engebretson &
Huttenlocher, 1996; Huttenlocher et al., 2004; Wedell et al., 2007). The
underlying idea is that vertical and horizontal orientations are most
exactly represented by the visual system (Huttenlocher et al., 2004) as
stimuli aligned with the vertical and horizontal axes are perceived more
accurately (Appelle, 1972) and faster (Palmer & Hemenway, 1978) than
intermediate orientations, a phenomenon known as oblique effect.
Hence, categorization under cardinal axes, i.e., the segregation of lo-
cations pertaining to one or another category, should be more precise
(Engebretson & Huttenlocher, 1996; Huttenlocher et al., 2004). How-
ever, this might be particularly the case for structures like the circle,
where the axes imposed can only come from ego- or allocentric re-
ference frames, given the circle's radial symmetry. It is nonetheless
possible, that for shapes with clearly-defined symmetry axes, intrinsic
reference frames might play a bigger role than previously thought. In-
deed, a large body of evidence from complementary areas of research in
spatial cognition suggests that people organize spatial relationships,
e.g., between several items in a frame, based on a flexible combination
of allocentric, egocentric, and intrinsic reference frames (Tamborello,
Sun, & Wang, 2012). Indeed, there is a long-standing literature in object
recognition, building on Marr's initial ideas, which have shown that

objects are represented in memory in an intrinsic (object-based) re-
ference system, in which object parts and features within objects are
specified relative to the intrinsic axes of the object (Marr, 1982; Marr &
Nishihara, 1978) or other object parts (Lowe, 1987). Moreover, while it
has been shown that the addition of allocentric reference cues at the
boundary of a circle (e.g., marks added on the perimeter of a circle)
does not change the typical way extrinsic vertical and horizontal axes
are imposed, it does so, when the cues are considered to be intrinsic to
the shape, e.g., when cues and circle rotate together on a trial basis
(Fitting, Wedell, & Allen, 2007).

The role that intrinsic reference frames plays in the categorization of
shapes for memory of spatial location is unknown. Indeed, only a few
studies have considered the category structure of shapes other than
circles (e.g., Langlois, Suchow, & Griffiths, 2017; Schmidt, 2004; Wedell
et al., 2007), with inconclusive results about the weight given to each
frame of reference. Wedell et al. (2007), for instance, tested several
shapes, finding a pattern of biases consistent with the use of an extrinsic
frame of reference, with four prototypes reflecting, as in the circle, four
spatial quadrants generated by imposing vertical and horizontal
boundaries. However, as none of the figures were rotated, the results
are also consistent with an intrinsic reference system (i.e., based on axes
of symmetry). Indeed, using the same shapes, but with a different ap-
proach (i.e., through serial reproduction, where localization errors are
transmitted from person to person) and with substantially better re-
solution, Langlois et al. (2017) found that the pattern of biases varied
depending on the number of corners of each shape, consistent with the
use of an intrinsic reference system. Nonetheless, the actual role of the
extrinsic reference frame was not tested. Indeed, both intrinsic and
extrinsic reference frames might play a role in the pattern of error lo-
calization from memory. In this regard, Schmidt (2004) tested config-
urations of three dots (forming invisible triangles) and calculated the
degree of symmetry in the pattern of error localization across two
halves of the triangle for each of the different symmetry axes. He found
that the degree of symmetry was determined by the intrinsic reference
system of the landmark configuration as well as by the extrinsic vertical
axis. Thus, while symmetry was best near the cardinal axes of the
landmark system irrespective of their orientation (denoting the use of
an intrinsic reference frame), symmetry of non-cardinal axes was en-
hanced when aligned with the extrinsic vertical. While this study re-
veals the common use of several reference frames, it does not provide
insight into the actual categorical structure of memory biases.

In this paper, we had two main aims. First, we aimed to develop a
method for ‘imaging’ the detailed internal structure underlying spatial
representation of objects, by mapping the pattern of mislocalisations
across the shape. The proposed method is able to quantitatively index a
location or a region's salience (attracting or repelling) in a person's
overall spatial representation of an object, and test their reliability
statistically across subjects, and against a null hypothesis. Moreover,
contrary to previous methods, it allows imaging of categorical bound-
aries, which can help disambiguate the contribution of extrinsic and
intrinsic reference frames. Second, we aimed to determine the reference
frames in which spatial categories operate, and in particular to assess
the general view that space is mostly divided by imposing vertical and
horizontal boundaries (e.g., Engebretson & Huttenlocher, 1996). To
dissociate the influence exerted by each reference system, we mapped
the internal representational structure of a shape in two orientations,
i.e., a non-rotated square and a square rotated 45°. This allowed the
shapes to maintain the same intrinsic axes of symmetry, while varying
the alignment with the extrinsic vertical and horizontal.

2. Experiment 1: imaging spatial categories, a new approach

We developed a novel way to characterize the pattern of spatial
prototypes used to reproduce from memory the location of dots within a
shape. In Experiment 1 we validated the method by testing localization
biases from memory of dots inside a rectangular shape. By assessing the

E. Azañón, et al. Cognition 198 (2020) 104199

2



pattern of directional biases across the entire shape, we aimed to assess,
in a data-driven way, which regions tend to attract remembered loca-
tion (i.e., spatial prototypes), and which tend to repel memory (i.e.,
spatial anti-prototypes). In particular, we developed a statistical method
that produces for each given location within a shape a cosine similarity
index (CSI) that quantifies the extent to which that location either at-
tracts or repels location memory, and allow to evaluate statistically
these biases. Thus, by colour-plotting CSI values across locations, we
can image the internal category structure of a shape. The calculation of
the CSI is depicted in Fig. 1b.

2.1. Methods

2.1.1. Participants
Twenty volunteers participated in Experiment 1 (M=29.60 years

old, SD=6.30, 11 females). Participants were naïve as to the purpose
of the experiment and received monetary compensation or course
credit. Participants provided informed consent, and the procedures
were approved by the local committee and were in line with the prin-
ciples of the Declaration of Helsinki.

2.1.2. Materials and procedure
Stimuli were presented on a 24-inch computer screen with a light

grey background (1920× 1200 pixels resolution, 60 GHz refresh rate),
placed about 60 cm in front of the participant. The stimuli consisted of
white dots (0.26° degrees of visual angle [°] in diameter, 10 pixels)
presented inside a dark grey rectangle (24.5°× 12.4°, 960×480
pixels). The location of the rectangle varied randomly across the com-
puter screen, and the dot could appear in one of 395 different locations

inside the rectangle. The distribution of dot locations inside the rec-
tangle was identical across participants and the 395 dots were pre-
sented one by one in random order. Five extra dots were presented at
the beginning of the experiment as practice trials and were not ana-
lysed. The distribution of dot locations was selected pseudo-randomly,
at the beginning of the experiment, aiming at creating a visually uni-
form distribution of locations with no overlap across the dots. The
minimum distance across dots was set to 15 pixels (from their centres),
and no dot could appear within 8 pixels from the edges. We presented
the task in Matlab running in full screen using Psychtoolbox (Kleiner,
Brainard, & Pelli, 2007).

On each trial, a black fixation cross appeared at a random location
of the screen, and was replaced after a second by a rectangular shape
(see Fig. 1a). After a delay of 1 s, a white little dot appeared within the
shape for 1 s (i.e., encoding interval). Then, the shape and the dot
disappeared for 1 s (i.e., retention interval) and an identical shape re-
appeared without the dot in a new random location on the screen (re-
trieval period). At this point, participants were requested to localize,
without time restriction, the relative position of the white dot on the
new rectangle, using the mouse cursor (crossed-shaped). The mouse
cursor appeared together with the last shape in a random location
within the screen. The Experiment lasted about 1 h, and participants
rested every 50 trials.

2.1.3. Analyses
Error vectors and Predicted vectors. We developed a statistical

method that produces for each given location within a shape a CSI
(cosine similarity index) which quantifies the extent to which that lo-
cation either attracts or repels location memory. CSIs rely on the

Fig. 1. Experimental logic to image the ca-
tegorical structure of a shape. (a)
Procedure. Participants saw a grey shape
(here, a rectangle) for 1 s in which a white
dot appeared for another second. The shape
disappeared and after a delay of 1 s, it re-
appeared at a different location.
Participants used the mouse cursor to in-
dicate the location within the shape where
the dot had appeared. In Experiments 2 and
5, the first panel of 1a was blank. The dis-
tribution of dot locations was selected once
pseudo-randomly with no overlap across
the dots, and presented to each participant
in random order. The shape of the figure,
size and number of trials changed across
experiments. All dots in the figure are
magnified for illustrative purposes. (b)
Mean cosine similarity index (CSI). Left
panel. Error vectors of one hypothetical
participant (note that in reality there were
395 dot locations in Experiment 1, rather
than 14 as in the example). The black dots
correspond to the target dot locations, and
the tip of the arrows to the location re-
produced from memory by the participant.
Middle panel. Predicted error vector (in
green) for one target location (blue dot) if

the location depicted by the green dot (randomly selected) was influencing entirely the location from memory of that particular target location. To quantitatively
index this influence, we calculate the cosine of the angle formed between the predicted and error vector, as a measure of directional similarity. If both errors follow
the same direction, the cosine of the angle will be 1, 0 if they are orthogonal and −1 if they follow opposite directions. Right panel. Given that we had 395 target
locations (14 in this example), we can calculate the extent of attraction of that location (green dot) across the neighbouring target dots (hereafter, cosine similarity
index, CSI). To do so, we calculated all the cosines of the angles formed between predicted and observed error vectors and then weighted each cosine (14 in the
example) using a Gaussian window. This procedure gives more weight to those target dots that are closer to the predicted location (green dot). (c) Similarity map. To
create the similarity map, we repeated the procedure explained in the right panel of Fig. 2b, iteratively for each pixel inside the shape. We then plotted each similarity
index obtained for each pixel in the rectangle. Thus, each CSI (ranging from −1 to 1) indicates the amount of attraction (indices> 0) or repulsion (indices< 0) at
each location. On the right side it is depicted schematically, the Gaussian window used to weight each cosine value. In the formula, x and y denotes pixel cartesian
coordinates and bt the weight given to each cosine with angle αt. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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similarity between the direction of two types of error vectors: error and
predicted error vectors. Error vectors (black lines in Fig. 1b) are com-
puted as the difference in pixels between the central location of the
target dots (black dots in Fig. 1b, n = 395) and the dot locations re-
ported from memory by the subject (arrow tips in Fig. 1b). Note that for
each participant we have at most 395 error vectors. This is formally
described by the following formula:

= −Error Vector Response Targetxy xy xy (1)

An error vector with a length equal to zero indicates that the par-
ticipant correctly reported the position of the dot. An error vector with
a length greater than zero indicates that the dot was mislocalized and
the greater the length, the greater the error. Importantly, the arrow also
provided the direction of the error. Predicted error vectors (green lines
in Fig. 1b), on the other hand, are computed as the difference between
the location of a given pixel (green dot in Fig. 1b) and the location of
each target dot. Thus, each pixel in the rectangle (960×480) is once
treated as a predicted attractor or prototype. The predicted error vector
corresponds to the predicted direction of the error vector if the bias was
directly towards that particular pixel. Note that for each given pixel and
participant, we can calculate 395 predicted vectors. This is formally
described by the following formula:

= −Predicted Vector Pixel argetTxy xy xy (2)

Cosine similarity index calculation and depiction of similarity
maps. For each participant, we calculated iteratively one CSI value for
each pixel in the rectangle (for a total of 960×480 pixels). However,
the method could be applied with either a lower or a higher spatial
resolution (i.e., using more or fewer pixels; see Fig. 1 for a description
of the procedure). We used all participant's 395 responses, regardless of
the magnitude of the error, excluding only those responses that were
made outside the shape (0.25%). On each iteration (from tested pixel
xy= [1,1] to xy= [960, 480]), we first computed the direction of the
predicted vectors from the 395 target dots to the tested pixel (Eq. 2).
Second, for each target dot we calculated the cosines of the angles
formed between the observed and predicted error vectors. A cosine of 1
indicates that the direction of the error vector was that of the predicted
vector and −1 indicates the opposite direction. Third, we weighted
each cosine using a Gaussian window, giving more weight to target dots
closer to the given pixel (see below for further details). Fourth, we
obtained a CSI for the tested pixel by computing the weighted mean
across the ~395 cosine values. Formally, we used the following formula
to compute the CSI at each pixel:

=
∑

∑

=

=

CSI
b α

b

cos( )
xy

t
N

t t

t
N

t

1

1 (3)

CSIp indicates the CSI at the tested pixel defined by xy coordinates.
The sum considers the contribution of all N targets. bt indicates the
weight given to the cosine with angle αt, which is the angle between the
observed error response and the vector that links the target to the pixel
p.

We repeated the above steps for each pixel in the figure and de-
picted each CSI on a colour map (i.e., similarity maps). Each CSI
(ranging from −1 to 1) quantifies the amount of attraction or repulsion
exerted by the location of that pixel on nearby responses. If neigh-
bouring pixels of certain locations show higher (or lower) cosine values
than other locations, then those regions have a special status as they
would “attract” (or “repeal”) the responses more than other locations,
and they can be considered as prototypes (or anti-prototypes); alter-
natively, if there are no locations showing cosine values in a systematic
way, this would be an indication that there are no prototypes in the
figure.

Gaussian Window. As noted above, we introduced a weighting
based on the vicinity of the current pixel, assuming that neighbouring
targets are more attracted than targets farther away from the current

pixel. If more than one prototype exists in a given shape, this procedure
facilitates their visualization. Indeed, by applying the same weight to all
targets one might risk cancelling out the emergence of different pro-
totypes. The Gaussian window (w) was defined as w(n)= e−n2/2σ2

,
where the standard deviation corresponds to σ= (L− 1)/(2α). L, as
the window length, was set to the maximum length of the shape (here,
the diagonal of the rectangle). α was set to 10.78 pixels and kept
constant across experiments. Note that and α of 10.78 pixels produces a
Gaussian window where the most informative range of weights (ran-
ging from 1 to 0.1) are given to distances that are shorter than 20% of
the maximum shape length (i.e., L).

Testing the reliability of similarity maps across participants. In
order to evaluate whether the mean similarity map showed CSIs that
were significantly different from zero, we ran a one-sample t-test for
each CSI across participants. Note that we had to run a large number of
statistical tests which increased the false alarm rate. To control for this
issue, we adopted a cluster-based permutation analysis with Monte
Carlo, which is a popular method to control for Type I error in the
neuroimaging community and it is used both in functional magnetic
imaging and magneto- (or electro-) encephalography studies (Maris &
Oostenveld, 2007; Nichols & Holmes, 2002). The maps that we obtained
from the cosine similarity analysis were comparable to the brain
functional images with the difference that our fundamental unit was a
two- rather than a three-dimensional pixel. The algorithm searched for
clusters of pixels (i.e., neighbouring pixels that show similar results)
and then evaluated if the observed clusters were significantly different
from zero. Specifically, neighbouring pixels were considered as a cluster
if their individual t values were higher than the critical value
(p < 0.001; Tcrit(19)= 3.58) and they shared at least one vertex. Then,
we computed the cluster statistic which was the sum of the individual
values of the pixels that were part of that cluster. To ensure that the
observed cluster values were not due to chance, we repeated the pro-
cedure 5000 times but flipping, at each iteration, the signs of the CSIs of
randomly selected subjects before computing the statistics for each
pixel. In this way, we built a null distribution that served as a criterion
to select significant clusters. Specifically, we counted the number of
times a permuted cluster statistic exceeded the observed cluster value.
We thus obtained the probability (p value) associated with the observed
clusters by dividing the number of times a permuted value was greater
than the observed value for the number of iterations. Only those ob-
served clusters which were exceeded by the permuted values< 5% of
the times (p < 0.05) were considered significant.

Model-based analyses to test the rectangle skeleton. Finally, as
it has been previously proposed that people might spontaneously divide
a rectangular shape using two inward triangles at the sides of the figure
and a horizontal line in the middle connecting the two vertices, i.e., the
so-called rectangle skeleton (Fig. 3b, first graph bar, Firestone & Scholl,
2014) we also conducted a model-based analysis on the data. We use
the term model-based analyses in contraposition to the term data-
driven analyses used for our main analyses. We evaluated specifically a
predicted model of shape structure, in particular the shape skeleton.
Thus, we assumed the existence of 4 fixed prototypes in the centroids of
the four presumed categories emerging when using the rectangle ske-
leton. In order to do so, we selected for each of the four presumed
prototypes the target dots whose distance to each prototype was
smallest. We used these dots and their error vectors to calculate the
averaged cosine similarity for each prototype. We used an identical
procedure as in the main analyses, but this time without weighting by
the distance of the target location to the prototype. This is because just
one to four prototypes (depending of the model) are tested rather than
over 400,000 (960×480) as in the main analyses. Therefore with a
wighting procedure based on target distance to prototype, only the
closest targets would have been taken into account. Here, instead, we
weighted each cosine by the length of its error vector (giving more
weight to those errors that were larger). The same procedure without
any weighting procedure produced a very similar patern of results. The
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four CSI were then averaged to obtain a single CSI per participant. The
averaged CSI across participants were then submitted to a one-sample t-
test against zero. For completeness, we repeated these analyses using as
prototypes the center of mass of each quadrant (imposing vertical and
horizontal boundaries, i.e., the centroids), the geometrical center of the
rectangle, and the center of each halve as if the rectangle would have
been divided into two by a vertical line through the middle. For these
analyses, we excluded from the analyses participants' responses that
were made outside the shape (0.25%) or were 3 SD above each parti-
cipants' response mean (1.48%).

2.2. Results

We used all participant's responses, regardless of the magnitude of
the error, and excluded only those responses that were made outside
the shape (0.25%). The same analyses, but excluding those responses
that were 3 SD above each participants' response mean (1.48%) and
responses that were larger than half the maximum size of the shape
(0.39%), produced virtually identical results. Fig. 2a (top row) shows
the mean error vectors for each stimulus location across participants.
The pattern of errors appears to converge to four regions of the rec-
tangle symmetrically situated around each quadrant, as if the rectangle
had been divided using an imaginary vertical and a horizontal line
crossing at the center. Interestingly, the arrows move away from the
center of the figure. This pattern of biases is better characterised in the
averaged similarity maps (Fig. 2b, top row; warm colours indicate re-
gions which attract nearby stimuli; cool colours indicate regions which
repel nearby stimuli). Four distinct positive red clusters are apparent
within the shape, broadly in the center of each of the quadrants re-
sulting from vertical and horizontal bisection of the rectangle, con-
sistent with previous research using circles (Huttenlocher et al., 2004,
1991). Interestingly, there was also a negative central cluster spanning
from the upper to the lower side of the figure and dividing the shape
into two halves, suggesting it serves as an anti-prototype, repelling
stimuli. This might reflect a combined radial bias in the outward di-
rection for targets near the center of the figure and a bias away from the
category borders (see Huttenlocher et al., 1991). Remarkably, a similar
pattern of biases is identified across single participants (Fig. 3a).

To evaluate which regions of attraction and repulsion were con-
sistent across participants, we ran one-sample t-tests against zero for
each location in the shape. Fig. 2c (top panel) shows the corresponding
t-statistics, displayed as a statistical parametric map, analogous to those
used in analysis of neuroimaging data (Friston, Ashburner, Kiebel,
Nichols, & Penny, 2007). Our analysis adapted cluster-based methods
from neuroimaging to model the spatial relations among statistical
tests. We depicted those locations (i.e., pixels) which survived cluster
correction for multiple comparisons using a permutation approach (see
Analyses section). These analyses revealed five clusters significantly

different from zero, and therefore consistent across participants: the
four prototypes typically found in circles (Huttenlocher et al., 2004;
Wedell et al., 2007) and a central anti-prototype spanning across the
vertical axis of the rectangle.

Finally, we tested the hypothesis that the medial-axis skeletal re-
presentation of the shape might play a role in the division of the shape
and further categorization. The shape skeleton offers a structurally
simplified description of a shape and it has been proposed that it might
be used for coding into memory (Kovács & Julesz, 1994; Marr, 1982).
Furthermore, Firestone and Scholl (2014), found that when people are
asked to point just once to any location inside a shape (including rec-
tangular shapes), their responses are more likely situated at locations
consistent with the shape skeleton, which, in a rectangle, it is formed by
one inward triangle on each side, and a horizontal line in the middle
connecting the two vertices of the triangles (Fig. 3b, first graph bar;
Firestone & Scholl, 2014). Based on these results, we could expect re-
sponses in the rectangle to be biased towards the center of mass of each
polygon obtained after an implicit division using the skeleton (see
Analyses section). Our results show that this was not the case. We
calculated the mean cosine similarity index for each subject, assuming
only these four prototypes, rather than each pixel, as in the data-driven
analyses reported so far. We found a negative similarity index of −0.24
across participants (SD=0.10, one sample t-test, t(19)=−10.67,
p≤0.001). This negative similarity index indicates that the four cen-
troids of the skeleton model repel, rather than attract, nearby responses.
Note that when performing the same analyses, but assuming the four
prototypes to be at the centroids of each quadrant, we obtained a large
positive similarity index across subjects of 0.46 (SD=0.09, one sample
t-test, t(19)= 22.66, p≤0.001). This pattern of results further corro-
borates the idea that people categorize space in four regular quadrants
and validates this model-based analysis. For completeness, we tested a
model in which there is only one attractor in the geometrical center of
the rectangle, assuming a single category (e.g., Sampaio & Cardwell,
2012), and a model in which two prototypes are considered, one at each
halve of the rectangle, as if participants would have imposed a vertical
boundary in the middle of the shape (e.g., Huttenlocher et al., 1994). As
expected, from our previous analyses, a single central prototype pro-
duced a negative similarity index across subjects of −0.36 (SD=0.24,
one sample t-test, t(19)=−6.77, p≤0.001), which reflects part of the
central anti-prototype depicted in Fig. 2b. Two prototypes produced a
positive similarity index of 0.25 (SD=0.14, one sample t-test, t
(19)= 8.12, p=0.001), but this was statistically smaller than the
index obtained using the four centroids as prototypes (paired t-test, t
(19)= 7.53, p≤0.001). Note that the results from model-based ana-
lyses are coarser than those obtained with our data-driven method
proposed above, as they rely on the usage of specific (i.e., predefined)
locations, which might or might not correspond to actual prototypes
(e.g., Holden, Newcombe, & Shipley, 2013). Also, the same pattern of

Fig. 2. Results of Experiments 1 (top row) and 2 (bottom row). (a) Mean actual error vectors across participants obtained for each response. Each vector is calculated
as the difference between the target dot location, represented by the origin of the arrow, and the participant's response, represented by the tip of the arrow. (b) Cosine
similarity indexes (CSIs) averaged across participants. Positive values indicate systematic response biases towards these locations. Negative values indicate systematic
biases away from these locations. (c) One-sample t-statistics against zero for each location across participants with cluster correction for multiple comparisons. (d)
Two-sample t-statistics between Experiments 1 and 2, depicting uncorrected (top panel) and cluster corrected t scores for multiple comparisons (bottom panel).

E. Azañón, et al. Cognition 198 (2020) 104199

5



results and statistics are obained if no weight is given by the error
length (CSI skeleton: −0.15, centroids: 0.33, geometrical center:
−0.26, two halves: 0.14).

3. Experiment 2: effects are not due to the use of a fixation cross

In Experiment 1, a fixation cross was presented on each trial to
signal the location of the center of the first rectangle. This cross center
might provide an explicit visualization (through an afterimage or from
memory) of the vertical and horizontal axes crossing the shape through
the middle, which might have induced or strengthen the division of the
shape into four quadrants. To test whether the use of the extrinsic
vertical and horizontal was mostly driven by the presence of a cross
preceding the first rectangle, we tested the same set of 395 dot locations
in a new sample of participants but without any fixation cross.

3.1. Methods

Twenty new volunteers participated in Experiment 2
(M=27.35 years old, SD=6.04, 11 females). The materials and pro-
cedures were identical to experiment 1, with the exception that the
fixation cross was now exchanged by a blank screen.

3.2. Results

We found virtually identical results (see Fig. 2, bottom panels).
Two-sample t-tests comparing CSI at each location in the rectangle
between the two experiments showed that no cluster differed sig-
nificantly (Fig. 2d). This suggests that the division of the rectangle into
vertical and horizontal axes in Experiment 1 was not due to priming
from the presence of a fixation cross formed of vertical and horizontal
lines.

4. Experiment 3: intrinsic cues define categorical anti-prototypes

In Experiments 1 and 2, we observed a central anti-prototype
spanning the vertical axis, which could either reflect an alignment with
the extrinsic vertical, or an alignment with the rectangle's shorter axis
of symmetry. If the former is true, rotating the shape should change the
location of the anti-prototype, which would now be parallel to the long
axis of the rectangle. If the latter is true, rotation should have no effect.
In Experiment 3, we tested both horizontally- and vertically-oriented
rectangles (Fig. 4).

Fig. 3. Cosine similarity maps across subjects in Experiment 1 and results from the model-based analyses. a) Each CSI map represent the data on one participant.
Positive values indicate systematic response biases towards these locations. Negative values indicate systematic biases away from these locations. b) Each bar
represents the mean CSI when assuming that specific locations serve as prototypes (blue dots). Each rectangle corresponds to a possible configuration of the
prototypes, i.e., using the shape skeleton, the four quadrants, a central prototype and two halves. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. Results of Experiment 3. (a) Mean error vectors across participants. (b) Mean cosine similarity indexes across participants. (c) One-sample t-test scores against
zero for each location across participants with cluster correction for multiple comparisons. (d) Paired t-test scores between horizontal vs vertical orientations,
depicting uncorrected (top panel) and cluster corrected t scores for multiple comparisons (bottom panel). The vertical rectangle was rotated 90° anticlockwise to
facilitate comparisons.
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4.1. Methods

Sixteen new volunteers participated in Experiment 3
(M=27.69 years old, SD=6.54, 8 females). The materials and pro-
cedures were similar to experiment 1, with the following exceptions.
First, two types of rectangles, i.e., vertical and horizontal, were pre-
sented in different conditions (ABBA design, 21.1°× 10.7°, 825×416
pixels). Second, 240 dot locations, rather than 395, were presented. The
distribution of dots was selected pseudo-randomly with a minimum
distance between dots set to 30 pixels. Dot locations were identical in
both orientations, with the horizontal rectangle rotated 90 ° clockwise.
Third, for the cluster-based permutation analysis, neighbouring pixels
were considered as a cluster if their individual t values were higher than
the critical value (p < 0.001; Tcrit(15)= 3.73), which differs from
Experiment 1 because the number of participants is different. Finally,
the experiment was about 15min longer.

4.2. Results

We found four significant positive clusters in both orientations, si-
milar in shape and location. The central negative cluster run across the
vertical axis in the horizontal rectangle, but along the horizontal axis in
the vertical version of it (Fig. 4b). That is, along the short axis in both
rectangles, indicating that the central anti-prototype is primarily based
on an intrinsic (object-centered) reference frame. Thus, the extrinsic
vertical is not the only reference frame in which spatial categories are
defined, as might be assumed from the classical results in the circle
(Huttenlocher et al., 1991). In the radially-symmetric circle, which
lacks unique intrinsic symmetry axes, participants rely on extrinsic
cues. When, however, intrinsic properties of the object are available,
these cues play a key role in spatial categorization.

Nonetheless, the two rectangles did differ in two small clusters
(Fig. 4d), one negative and one positive. The negative cluster simply
denoted larger t-values in one of the clusters of the vertical rectangle.
More interestingly, the positive cluster indicated the existence of a
small anti-prototype parallel to the long axis of the vertical rectangle
(aligned with the extrinsic vertical only in this rotation), which was
absent in the horizontal rectangle. This emerging positive cluster sug-
gests that the saliency of the vertical axis, which is aligned with gravity
(and the retina, and torso), might also, although to a smaller extent,
play a role in the way spatial anti-prototypes are defined.

5. Experiments 4: dissociating the influence of extrinsic and
intrinsic reference frames

The results of Experiment 3 show that categorical anti-prototypes
are influenced by intrinsic cues, such as symmetry axes within a shape.
They also suggest interactions between reference frames, by showing
that the anti-prototype at one symmetry axis is enhanced when aligned
with the extrinsic vertical. The effect exerted by each reference frame in
Experiment 3, however, is difficult to interpret, and limited to changes
in the strength of biases, as symmetry axes in the two rectangular or-
ientations are aligned to the extrinsic vertical and horizontal. In
Experiment 4, we explored the degree to which each reference frame
(i.e., extrinsic and intrinsic) plays a role in the actual structure of
prototypical biases. To do so, we presented a square and the same
square rotated 45 ° (i.e., a diamond). Unlike the rectangle, the square
has four axes of symmetry that differ in their alignment with the ex-
trinsic vertical and horizontal axes across the two orientations. In the
non-rotated square, the alignment corresponds to those axes that con-
nect the middle of opposite sides, and in the rotated version, to those
that connect opposite corners. Thus, if participants use a purely ex-
trinsic reference frame, and indistinctly impose vertical and horizontal
boundaries across orientations, we should observe four prototypes: one
at each quadrant in the non-rotated version, and one at each triangle in
the rotated version (given that the extrinsic subdivision corresponds to

a division through the corners in this orientation). If, in contrast, par-
ticipants use a purely intrinsic reference frame, we should observe
identical categorical structure across orientations. More specifically,
under this hypothesis, we should find a structure of biases explained by
a division through the sides in the two orientations (as this is what we
expect in the non-rotated square, based on Experiments 1–3). We also
included a circle to provide clear evidence in the same participants that
extrinsic reference frames are used when intrinsic cues are not available
(Huttenlocher et al., 1991).

5.1. Methods

Twenty new volunteers participated in Experiment 4
(M=28.67 years old, SD=7.24, 9 females). The materials and pro-
cedures were similar to experiment 1, with several exceptions. Three
conditions were presented in an ABCCBA design, a circle (18.0° in
diameter, 700 pixels), a square (15.9° in length, 620 pixels) and the
same square rotated 45 deg. Each figure contained 160 different pos-
sible dot locations (dots were separated by at least 30 pixels). The
Experiment lasted about 1 h 15min.

In this experiment we conducted further analyses on the CSI maps.
In particular, we correlated each participant's CSI maps in the square
and rotated-square with two theoretical models each (an aligned model
with the extrinsic reference frame and a misaligned model), using
Fisher's z-transformation (Fig. 6). For the non-rotated square, the
aligned model divided the space within the square using the vertical
and horizontal axes of symmetry, which corresponds to those axes that
connect the middle of opposite sides (for examples of the models see
Fig. 6a, top row). The misaligned model, on the contrary, divided the
space within the square using the two oblique axes of symmetry, which
corresponds to those axes that connect opposite corners. To create the
aligned model, we first created a 100×100 pixels matrix of zeros and
divided it in four quadrants (the crossing lines were three pixels large).
We then individuated the four centroids of each quadrant, and marked
them with values of 1 including also neighbouring pixels within an
eight-pixels radius. The central point of the image plus a radius of eight
pixels was marked with values of −1 to simulate the central anti-pro-
totype. Also, the crossing lines were marked as −1 to simulate the anti-
prototypes observed at the categorical borders. Finally, we used a 2D
Gaussian filter with a sigma of 16 pixels to smooth the matrix. The
model map was then reshaped to the size of the similarity maps. For the
misaligned model, we used the same procedure but the matrix was
divided by rotating the crossing lines 45 degrees clockwise (i.e., di-
viding the shape through the corners). The two models were then
compared to each participant's similarity maps using correlation coef-
ficient analyses. Each individual Pearson's correlation coefficient was
then transformed using Fisher z-transformation to produce a normal
distribution of correlations and compare them across models. The
averaged correlation coefficients between models and actual maps were
submitted to a repeated measure analysis of variance (ANOVA). For the
rotated square, we rotated the two models 45° and reversed the names
of the models: with the aligned model corresponding now to a division
through the corners and the misaligned model to a division through the
sides.

5.2. Results

The results are shown in the three top rows of Fig. 5. For the circle
and the non-rotated square, the pattern of biases was similar to the
rectangle in Experiments 1 to 3. Four positive clusters survived cor-
rection for multiple comparisons, suggesting participants imposed
vertical and horizontal boundaries dividing the shapes into quadrants
(Fig. 5c). For the rotated square, however, at least eight distinct at-
tractors were distinguishable, as if participants divided the shape using
all four symmetry boundaries (resulting in eight right-angled triangles,
Fig. 5b). All the clusters survived multiple comparison correction

E. Azañón, et al. Cognition 198 (2020) 104199

7



(Fig. 5c). The anti-prototype in the rotated version appeared as a round
shape in the middle and lacked any particular direction, in stark con-
trast to the non-rotated version, where a clear negative cluster ran
across the vertical axis (Fig. 5b-c). We compared the two orientations
using paired t-tests at each location, finding four negative clusters in the
proximity of the four angles of the standard square (at an uncorrected
p < 0.001), three surviving multiple comparison correction, indicating
that each of the four prototypes in the standard square was divided into
two in the rotated-square (Fig. 5d). A positive cluster located in the
upper part of the shape also survived correction, depicting part of the
vertical anti-prototype observed only in the non-rotated square. The
different number of prototypes observed in the two orientations sug-
gests that participants did not use either a purely extrinsic or a purely
intrinsic reference frame, but a combination of the two.

To clarify the role of each reference frame, we correlated each

participant's similarity maps with two theoretical models using Fisher's
z-transformation (Fig. 6a; correlation across the two models:
r=−0.29). Both models depict theoretical distributions of biases
corresponding either to the use of axes of symmetry aligned with the
extrinsic vertical and horizontal or to axes of symmetry misaligned with
those axes. In the non-rotated square, the aligned model corresponds to
a division through the sides and the misaligned model to a division
through the corners (Fig. 6a, top-left panel). This correspondence is
reversed in the rotated version (Fig. 6a, top-right panel).

A repeated measures analysis of variance (ANOVA), using averaged
correlation coefficients between models and actual maps, with the
factors Orientation (rotated, non-rotated) and Extrinsic Alignment
(aligned, misaligned) revealed a main effect of Alignment (F
(1,19)= 15.22, p < 0.001, η2p= 0.44) and a significant interaction (F
(1,19)= 28.06, p < 0.001, η2p= 0.60). As shown in Fig. 6a (top-left

Fig. 5. Results of Experiments 4 (top) and 5 (bottom). (a) Mean error vectors across participants in Experiments 4 (top) and 5 (bottom). (b) Averaged cosine similarity
indexes across participants. (c) One-sample t-test scores against zero for each location across participants with cluster correction for multiple comparisons. (d) Paired
(Experiment 4) and two-sample (Experiment 5) t-test scores between the two square orientations, depicting uncorrected (top panel) and cluster corrected t scores for
multiple comparisons (bottom panel). Rotated squares are rotated back 45° anticlockwise, to allow for comparison across orientations.
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panel), in the non-rotated square, the aligned model (blue bars;
r=0.76) explained biases better than the misaligned model (red bars;
r=−0.05; comparison between the two models: t(19)= 9.31,
p < 0.001, d=2.08). Indeed, the comparison with the aligned model
in all except for three participants produced Fisher's transformed cor-
relations larger than 0.5 (Fig. 6a, bottom-left panel). In contrast, the
distribution of biases in the rotated square was indistinctly explained by
the aligned (r=0.29) and misaligned models (r=0.42, comparison: t
(19)=−0.81, p= .43, d=−0.18, Fig. 6a, top-right panel). This null
effect is easily spotted in the linear distribution of correlations observed
across participants (Fig. 6a, bottom-right panel). It also explains the
eight prototypes that emerged in the averaged similarity map, as a re-
sult of averaging biases across participants (Fig. 5b, third row). The
results of Experiment 4 suggest that when intrinsic cues are available,
the vertical and horizontal division does not play such a fundamental
role in spatial categorization. While the pattern of biases in the square
was consistent with the use of an extrinsic reference frame, this was not
the case for the same shape rotated 45°, where participants showed
different spatial subdivisions, ranging from weak to strong reliance on
symmetry axes aligned with an extrinsic reference frame. In this way,
the division of space by imposing vertical and horizontal axes is more
nuanced than previously suggested (Engebretson & Huttenlocher, 1996;
Huttenlocher et al., 2004; Wedell et al., 2007).

6. Experiment 5: a flexible use of reference frames defines
categorical biases

Experiment 4 was embedded in a context where a division of space
aligned with the extrinsic axes was ubiquitous. This is so, as partici-
pants were exposed to three figures, two of which, the circle and the
non-rotated square, were unambiguously divided using vertical and
horizontal boundaries. Thus, it is possible that the unclear pattern of
biases is the result of interference from preceding encodings/retrievals
of locations and therefore subdivisions of space (Crawford & Duffy,

2010). Moreover, in Experiment 4, multiple allocentric cues were freely
available e.g., the monitor and the testing room. These cues cannot help
retrieving the location of the dot, as shapes moved around the screen,
but could nonetheless reinforce the imposition of vertical and hor-
izontal boundaries to categorize the shapes, for instance, by comparing
the shape to the edge of the monitor.

In Experiment 5 we removed this interference by presenting only
one shape, either a square or a rotated-square, in separate groups of
participants rather than separate blocks. Furthermore, we removed the
fixation cross, changed the cross-shaped mouse pointer to a hand-shape
cursor to avoid any potential priming of vertical and horizontal axes,
and removed environment-based frames by asking participants to look
at the screen through a black cylinder, blocking any other view than a
circular-shaped screen at the end. A different pattern of results across
the two experiments would suggest that the weight given to each re-
ference frame is context-dependent and can be flexibly deployed.

6.1. Methods

Forty new volunteers participated in Experiment 5 (non-rotated
square: n=20, 24.80 years old, SD=5.22, 14 females, rotated-square:
n= 20, 27.20 years old, SD=8.68, 12 females). The materials and
procedures were similar to experiment 4, with several exceptions. Two
groups of participants were tested, rather than one, and were presented
with a single shape each, rather than three. One group was presented
with a square and a second group with a rotated square (10.7° length,
413 pixels). 425 dot locations were presented one by one in random
order. The distribution of dot locations was identical across orienta-
tions, with the rotated square rotated 45 ° clockwise (dots were sepa-
rated by at least 16 pixels, and each dot measured 7 pixels). In
Experiment 5, participants were seated at one end of a cone, with the
monitor situated at the other end such that the screen edges were cir-
cular rather than rectangular, and the view of the experimental room
was blocked. We removed the fixation cross and changed the cross-

Fig. 6. Results of Experiments 4 (a) and 5 (b). The top panels depict the mean correlation coefficient (using Fisher's z transformation) between actual similarity maps
and two theoretical distribution of errors. One distribution is always aligned with the extrinsic vertical and horizontal (blue bars) and the other is always misaligned
(red bars). The bottom panels depict the linear distribution of correlations across subjects and across the two models (aligned and misaligned). Red panels and dots
correspond to Fisher-transformed correlations> 0.5 between actual maps and the misaligned model, and blue, between actual maps and the aligned model. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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shaped mouse pointer to a hand-shape cursor. The experiment lasted
about 1 and 1.5 h.

6.2. Results

The results are shown in the bottom two rows of Fig. 5. The pattern
of biases was very similar to those obtained in Experiment 4, with the
exception that the eight positive clusters in the rotated square were not
as clearly defined, as each pair of clusters was interconnected through a
few pixels. Seven of these semi-attached clusters survived multiple
comparison correction (Fig. 5c, last panel). The comparison across the
two orientations of the square revealed three negative clusters in the
proximity of the four angles of the shape (Fig. 5d, bottom panel), in-
dicating that at least three of the four prototypes found in the non-
rotated square were partially divided into two, when rotated. Two
positive clusters located in the central lower and left parts also survived
the correction. One of them denoting a trivial change in the strength of
bias found across orientations in one of the prototypes, and the other,
reflecting part of the vertical anti-prototype observed only in the non-
rotated square.

A mixed ANOVA using the averaged correlation coefficients
(Fisher's z transformation) between models (aligned and misaligned)
and actual maps, with Orientation and Alignment as between- and
within-subject factors, respectively, revealed a main effect of Alignment
(F(1,38)= 17.72, p < 0.001, η2p= 0.32) and a significant interaction
(F(1,38)= 123.92, p < .001, η2p= 0.76). As in Experiment 4, in the
non-rotated square, the aligned model (r=0.89) explained categorical
biases better than the misaligned model (r=−0.06; comparison be-
tween the two models: t(19)= 16.38, p < 0.001, d=3.66, Fig. 6b,
top-left panel). Indeed, the comparison between actual maps and
aligned model in all except for one participant (r=0.41), produced
biases highly correlated (r > 0.66, Fig. 6b, bottom-left panel). Im-
portantly, and contrary to Experiment 4, the misaligned model
(r=0.57) explained the distribution of biases in the rotated square
better than the aligned model (r=0.14, comparison: t(19)=−3.92,
p < 0.001, d=−0.88, Fig. 6b, top-right panel). Note that the aligned
model in the standard square (i.e., imposing vertical and horizontal
boundaries), and the misaligned model in the rotated version (i.e.,
imposing diagonal boundaries), corresponds to a division through the
same axes, i.e., the “side” axes of symmetry. This shift in the distribu-
tion of responses as compared to Experiment 4 is clearly visible in the
bottom panels of Fig. 6a and b, where individual correlations in the
non-rotated square shifted to a greater extent towards the aligned
model in Experiment 5 as compared to 4, and towards the misaligned
model in the rotated version. This change in the pattern of biases across
experiments is also observed in the average similarity matrix of the
rotated square, where the eight prototypes, clearly differentiated in
Experiment 4, tended to fuse in the present experiment.

The results of Experiment 5 support the idea that participants do not
rely on a purely extrinsic reference frame, but the weight given to each
reference frame can be modulated depending on the shape and context,
and possibly by stable individual differences. Finally, the results of
Experiment 5 show a preference for an intrinsic reference frame when
extrinsic cues are restricted. In Experiment 5, participants divided the
shape across orientations mostly through the same symmetry axes,
supporting a major role of the intrinsic reference frame over the ex-
trinsic one. Nonetheless, the fact that the effect of these axes was
stronger in the non-rotated than the rotated square (which is reflected
in a main effect of Alignment), suggest that the alignment with the
extrinsic vertical plays also a central role, an idea that was already
sightseen in Experiment 3.

The reason for why one type of intrinsic cue, in this case the sym-
metry axes dividing the shape through each side, is preferred over those
axes dividing the shape through each corner, is an open question. One
possible explanation is that there is a genuine preference for these axes
of symmetry in the most typical orientation (the non-rotated square),

driven by its alignment with the extrinsic vertical and the salience of
vertical lines (Furmanski & Engel, 2000; Wakita, 2012). Constant ex-
posure to, and categorical formation of prototypes in this particular
orientation, might prime the imposition of the same intrinsic axes in
other orientations.

7. Discussion

Our method provides a form of ‘imaging’ of the internal category
structure of mental representations of shape, and at the same time offers
an approach to test them statistically. We used this procedure to map
spatial categories in detail for a variety of simple geometric shapes, and
to probe the different frames of reference in which these spatial cate-
gories operate. Consistent with previous work, memories of dot loca-
tions in a rectangle, a square, and a circle were attracted to the cen-
troids of each quadrant. At first glance, the pattern of biases in the three
shapes is consistent with the view that a universal division of space,
imposing vertical and horizontal boundaries, forms the basis for spatial
categorization (Engebretson & Huttenlocher, 1996; Huttenlocher et al.,
2004; Wedell et al., 2007). However, our results with rotated shapes,
where extrinsic and intrinsic cues are dissociated, challenge this idea by
showing that, under certain contexts (e.g., with a diamond shape), some
participants rely mostly on cues intrinsic to the shape itself, under-
mining the idea that vertical and horizontal meridians are used by
default.

Our latter findings suggest a flexible, context-dependent, deploy-
ment of reference frames. When participants were exposed to the two
square orientations, plus a circle, in consecutive blocks, the overall
pattern of categorical biases for the rotated-square showed no pre-
ference for one reference frame over the other. However, when allo-
centric environmental cues (e.g., the edge of the monitor, or the pointer
cross) and the history of recent categorizations related to the presence
of other shapes were removed in Experiment 5, the pattern of catego-
rical biases was very similar across orientations, favouring the use of an
intrinsic reference system for most participants. That is, overall, parti-
cipants divided the shape through the middle of each side. This flex-
ibility contrasts with previous research on spatial categorization,
showing that default categories in the circle are very robust and diffi-
cult to overcome (Huttenlocher et al., 2004; Lipinski, Simmering,
Johnson, & Spencer, 2010; Sampaio & Wang, 2010, see also Spencer &
Hund, 2002). In particular, Huttenlocher et al., (2004) showed that
category biases persisted regardless of the target distribution, even
when the full distribution of locations was made explicit to the parti-
cipant. In one experiment, for instance, participants were presented
with the full distribution of dots, occupying only the surroundings of
the vertical and horizontal axes, right before the presentation of the
target dot. They found that participants kept imposing vertical and
horizontal boundaries (i.e., showing one prototype at each quadrant),
even though no dot was ever presented on the proximities of each
quadrant. In contrast, we found a fast re-shaping of categorical biases
across subjects, where the simple presentation of other shapes in Ex-
periment 4 (or the introduction of basic extrinsic environmental cues),
enhanced one reference frame over other as compared to Experiment 5
where only one shape was presented (see Fitting et al., 2005, for the
effect of field rotation when peripheral cues are available). Thus, it is
possible that this form of categorization is more flexible than previously
thought, as long as the object can be subdivided using intrinsic cues and
not only extrinsic cues, as in the case of the circle.

Our results instead are consistent with the idea that spatial mem-
ories are organized using intrinsic reference systems (McNamara, 2003;
Mou et al., 2008a; Mou, et al., 2008b; Wang et al., 2005; Xiao, Mou, &
McNamara, 2009). According to this view, people use intrinsic frames
of reference of an object to encode and retrieve other objects whenever
intrinsic cues are present or evident. In particular, individuals would
primarily use an intrinsic reference frame to encode the location of
objects organized as a regular layout, and would resort to extrinsic
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frames of reference whenever intrinsic cues are not evident because the
layout is not regular (Xiao et al., 2009). Individual objects can also have
intrinsic directional axes of reference (Tamborello et al., 2012; Wang
et al., 2005) that are used to mentally represent the configuration of
potential targets around the reference object. Interestingly, these in-
trinsic frames of reference are especially used when the task is suffi-
ciently easy (Wang et al., 2005). Furthermore, an object or scene often
invite the use of multiple intrinsic reference frames, either because
there are conflicting situations or ambiguous infromation (Tamborello
et al., 2012) or because certain cues are more salient than others (Wang,
Johnson, & Zhang, 2001). This line of research indicates that the type of
reference frame used to encode and retrieve information in memory is
not fixed but depends on various factors such as the task or the saliency
of the environmental cues.

We also showed clear anti-prototypes running along the vertical axis
and with less strength, along the horizontal one, in the rectangle, the
circle, and the non-rotated square. We were therefore able to image
these hidden subdivisions for the first time, which likely reflect the
borders of each category (e.g., each quadrant). It has been argued that
vertical and horizontal axes are imposed by default and are difficult to
overcome because they provide category boundaries that are more
precise than other boundaries (such as diagonals; Engebretson &
Huttenlocher, 1996; Huttenlocher et al., 2004). This comes from the
idea that symmetry detection is better around the vertical than the
diagonal axis (Engebretson & Huttenlocher, 1996), and humans and
monkeys exhibit greater sensitivity to vertical and horizontal than to
oblique lines (Wakita, 2012; Wenderoth, 1994). Better symmetry de-
tection at the verticals, therefore, would translate into reduced mis-
classification of stimuli into other categories (in this case quadrants)
producing a larger bias away from the vertical (Engebretson &
Huttenlocher, 1996; Schmidt, 2004). Boundary precision could explain
why we observed larger anti-prototypes at the vertical as compared to
the horizontal axis. However, the idea that boundary precision, per se,
is a major factor in the imposition of vertical and horizontal boundaries
is challenged by our results in the rotated square. This challenge comes
from the fact that corners in the rotated square are unbiased landmarks
of the actual location of the vertical and horizontal axes (at least in a
gravitational frame of reference), which should produce little, if any,
misclassification of stimuli into other categories, yet participants
nonetheless imposed boundaries at the sides and not the corners of the
rotated square.

The finding that intrinsic properties of a shape directly affect cate-
gorical biases brings into question whether the prototype structure we
find relates to existing algorithms for identifying internal or ‘skeletal’
structure within objects. Blum (1973), for example, introduced the idea
of the medial-axis skeleton, and developed the so-called grassfire al-
gorithm for calculating it. In a rectangle, the medial axis skeleton is
formed by one inward triangle on each side, and a horizontal line in the
middle connecting the two vertices of the triangles (Firestone & Scholl,
2014, see Fig. 3b). This shape skeleton might offer a structurally sim-
plified description of the shape which can be used for coding into
memory (Kovács & Julesz, 1994). Other approaches to identifying
skeletal structure within shapes have also been developed, such as
Feldman and Singh's (2006) Bayesian approach, which attempts to
balance fit to the exact details of the shape with skeleton complexity. In
the case of a rectangle, this latter model gives a skeleton consisting of a
single line in the center of the rectangle aligned with the rectangle's
long axis. It is noteworthy, however, that neither of these skeletal re-
presentations has any apparent connection to the pattern of spatial
prototypes that we identify.

Langlois et al. (2017) recently found that angular shapes show bi-
modal peaks (i.e., prototypes) at the vertices. In principle, one could
argue that the eight-prototype pattern found in Experiment 4 and to a
lesser extent in Experiment 5, reflect intrinsic bimodal peaks linked to
the presence of a vertex. However, the absence of bimodal peaks in the
rectangle and square suggests that the effect is driven by the actual

rotation of the shape and hence a combined use of reference frames
across participants. Note that in Langlois et al.'s study, the pattern of
errors is the result of bias accumulated and passed along a chain of
participants (i.e., using the method of serial reproduction), thus it is
unknown whether bimodal peaks would still be observed in a within-
subject design.

Finally, several studies have investigated categorical biases in the
recall of locations within natural scenes (such as scenes of geological
interest or in real outdoor settings; Holden, Curby, Newcombe, &
Shipley, 2010; Holden, Newcombe, Resnick, & Shipley, 2015; Holden
et al., 2013). Overall, these studies suggest that memory for locations is
biased towards the prototype. However, in these studies, a central
prototype (center of mass) of a proposed category is always assumed.
Thus, the actual structure of categories and prototypes remains hidden
in these studies. Our approach could prove relevant to fill this gap and
depict a complete structure of shape categories. For instance, using this
method, we have recently been able to extract complex patterns of
categorical biases in non-geometrical shapes, such as in pictures of faces
and bodies (data unpublished), which would have been overlooked
with previous methods.

To conclude, we provided a detailed description of a new method
for ‘imaging’ and testing the internal structure underlying spatial re-
presentation of objects. This allowed us to visualise spatial biases and
map the mental spatial prototypes and divisions used to localize events
from memory with a level of detail never previously reported.
Furthermore, we showed that the internal structure of the investigated
shapes is not only defined by information extrinsic to shape (e.g., re-
tina- or gravity-based), but also by cues intrinsic to shape (e.g. the axes
of symmetry). These results are important as they provide new in-
formation to explain how people divide the internal space of geome-
trical shapes. Furthermore, our results suggest that our approach can be
used to ‘image’ the internal structure of shape categories for a wide
range of perceptual phenomena, even across irregular shapes. This
could allow measurement of categorical biases in spatial memory using
natural scenes, or biologically-related stimuli, such as faces or bodies.

Supplementary data

The full dataset for this study is available to download at https://
osf.io/zvq6f/.
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