
Chapter 5

Measuring Tactile Distance Perception

Matthew R. Longo

Abstract

Illusions of tactile distance have been studied since the start of scientific research on the sense of touch in the
nineteenth century. In the past 15 years, these illusions have become increasingly popular among research-
ers due to their connections with basic aspects of somatosensory neurophysiology, higher-level aspects of
mental body representation, and relation to clinical disorders. This chapter will discuss methods for
measuring tactile distance perception, focusing on two broad classes of methods. One type of method
involves making estimates of the distance between a single pair of touches applied to the skin. The other
method involves making a judgment about the relative distance between two such pairs. These methods can
be applied to a range of experimental designs, body parts, and experimental conditions.
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1 Introduction

Ernst Weber’s studies in the nineteenth century were among the
first systematic investigations of the sense of touch [1]. Among
many seminal observations, Weber observed an intriguing tactile
illusion which now bears his name (Weber’s illusion). As he moved
the two points of a compass across his skin, it felt to him like the
distance between them increased as he moved them from a region
of relatively low tactile sensitivity to a region of higher sensitivity.
Several subsequent studies have confirmed this general pattern that
touches feel farther apart on skin surfaces with high than with low
tactile spatial acuity [2–4]. Analogous illusions have also been
reported for stimuli in different orientations on single skin surfaces,
with distances generally being perceived as farther apart when
oriented across the width of the body [5–7]. Such anisotropies
have been reported extensively on the hand [6], but also on other
body parts including the forearm [5], thigh [5], shin [8], foot [9],
and face [10]. The only place where this effect does not seem to
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appear is on the torso, with no apparent anisotropy on the belly
[11], and two recent studies finding a reversed effect on the lower
back [12, 13].
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Longo and Haggard [6] related both Weber’s illusion and
tactile distance anisotropies to the geometry of the receptive fields
(RFs) of neurons in the somatosensory cortex. RFs are smaller on
highly sensitive skin surfaces compared to less sensitive skin surfaces
[14], and are also generally oval-shaped with the long axis of the RF
running parallel to the long axis of the limbs. This is found in the
somatosensory cortex [15], the spinal cord [16], and even in
individual peripheral afferent fibers [17]. Correspondingly, several
studies have reported that tactile spatial acuity [1, 18] and the
precision of tactile localization [19, 20] are higher across the
width of the limbs than along their length. Consistently, adaptation
aftereffects for perceived tactile distance have been reported [21],
which show selectivity for a range of characteristics (e.g., orienta-
tion, location, skin surface) suggesting that they arise from rela-
tively early stages of somatosensory processing.

At the same time, tactile distance perception also appears linked
to higher-level aspects of body perception, being modulated by
body size illusions [3, 22, 23] (see also Chapter 13, this volume),
tool-use [24–26], and categorical segmentation of the body into
discrete parts [27–29]. Similarly, the baseline distortions in tactile
distance perception in which distances across body-part width are
overestimated are similar to perceptual distortions of body size
measured using a variety of other tasks [30–32]. Finally, several
recent studies have found abnormalities of tactile distance percep-
tion in clinical disorders, such as anorexia nervosa [33] and obesity
[34], low-back pain [35], as well as after surgical elongation of the
arm [36].

2 Materials

A range of stimuli have been used to measure perceived tactile
distance, including wooden, metal, or plastic sticks [3, 5, 6, 28,
29, 37–40], calipers [8, 27, 33, 34, 41, 42], von Frey hairs [7, 43],
solenoid tappers [22], electric shocks [44], vibrotactile stimuli
[2, 12], air puffs [45], and a laser which selectively stimulates
nociceptive afferents [43]. While no research to my knowledge
has directly compared these stimuli, it is worth noting that broadly
comparable results (e.g., Weber’s illusion) are apparent across a
range of stimulus types. For example, anisotropies of similar mag-
nitude have been found on the hand dorsum measured with sticks
[6], von Frey hairs [7], and air puffs [45]. Similarly, comparable
anisotropy in the opposite direction has recently been found on the
lower back using both vibrotactile stimuli [12] and sticks
[13]. Intriguingly, however, one study that compared tactile (von



Frey hairs) with nociceptive (infrared laser) distance perception
found that participants were unable to make meaningful distance
judgments of nociceptive stimuli at all [43].
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Many studies have used simple verbal responses, either of
judged size [2, 5, 7, 37, 43, 46] or of which of two stimuli is
perceived as bigger [3, 6, 21, 22, 47], or manual entry of numbers
[44], which do not require any specialized measurement equip-
ment. Other approaches, however, do require other equipment.
For example, Tamè and colleagues [45] used a visual comparison
procedure in which participants manually adjusted the length of a
line presented on a monitor to match the perceived distance
between two touches. The script was controlled by a custom
MATLAB script using the Psychophysics toolbox [48].

Some other studies [8, 33, 34, 41, 49] have used kinesthetic
judgments in which participants use two fingertips to match the
perceived distance between two touches. While this can be done
using paper-and-pencil and a ruler [34, 49], most studies have used
a more automated procedure in which distances are measured using
a touchscreen tablet computer [8, 33, 41].

3 Methods

Methods for measuring tactile distance perception fall into two
broad families, those involving estimating the distance between a
single pair of touches (size estimation methods) and those involv-
ing comparing the relative distance between two different pairs
(two-interval forced-choice, 2IFC methods, see Chapter 1, this
volume for discussion of different experimental designs).

3.1 Size Estimation
Methods

The first set of methods involves size estimation of a single tactile
distance, which can involve four procedures:

3.1.1 In Magnitude

Estimation

In which participants give a verbal estimate of distance using an
arbitrary magnitude scale [2, 5]. Green [5], for example, asked
participants to respond with “a number that reflected the apparent
distance between the two stimuli” (pg. 316), while explicitly avoid-
ing mapping these numbers onto knownmetric units such as inches
or centimeters.

3.1.2 In Absolute

Estimation

In which participants give verbal [7, 11, 27, 43, 46, 50] or written
[44] estimates of the distance between two touches using an abso-
lute metric scale (e.g., cm or inches). It is important to note that
absolute over- or under-estimation of tactile distance using this
method could be due to misrepresentation of the measuring unit,
rather than an actual tactile distortion. Thus, in my view, inferences
using this method should be restricted to comparisons of different



experimental conditions, not to veridical size. One approach to
addressing this issue would be to have a visual ruler present
showing the actual size of a cm. Even in this case, however, inter-
preting absolute values is potentially problematic.
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3.1.3 In Visual

Comparison

In which participants compare a tactile distance with a visual com-
parison stimulus [45]. In the recent study by Tamè and colleagues
[45], the stimuli were presented on a computer monitor, but they
could also conceivably be printed on sheets of paper or even be
physical 3-D objects. Compared to absolute estimation, this pro-
vides a more valid measure of over- or under-estimation of a single
stimulus, though it is important to keep in mind that deviations
from veridical judgments could just as well reflect misperception of
visual as of tactile stimuli. For example, different estimates will
likely be obtained if the visual comparison stimulus is oriented
vertically versus Horizontally, due to the well-known visual
horizontal-vertical illusion [51].

3.1.4 In Kinesthetic

Estimation

In which participants use the distance between their thumb and
index fingertips to match the perceived distance between two
touches [8, 33, 34, 41, 49]. In these studies, the kinesthetic judg-
ments have been made with a hand that was not being stimulated.
As with absolute estimation and visual comparison, deviations from
veridical judgments could reflect biases in kinesthetic perception,
just as much as tactile distance perception.

3.2 Size Estimation
Analysis

Whichever of these estimation methods is used, different analysis
approaches can be employed:

3.2.1 Linear Regression Some studies have used linear regression to assess how perceived
tactile distance relates to actual tactile distance [5, 43]. Different
skin surfaces, or different orientations on a single surface, can be
compared either in terms of slope or y-intercept.

3.2.2 ANOVA Other studies using similar designs have used analysis of variance
(ANOVA) approaches to analyze data [2, 11, 46]. For example, the
top row of Fig. 1 shows data on the hand and belly [11]. Because
these skin surfaces have very different two-point discrimination
thresholds [52, 53], different actual tactile distances needed to be
used (Fig. 1, top left panel), leading to deviation from a purely
factorial design. Re-expressing perceived distance as overestimation
as a proportion of actual distance (Fig. 1, top right panel) can
facilitate analysis and allow comparison of skin surfaces which
require different absolute distances due to differences in 2-PDT
(seeNote 4.1). The results show a clear anisotropy on the hand, but
not on the belly, as well as relative overestimation on the (relatively
sensitive) hand compared to the (relatively insensitive) belly (i.e.,
Weber’s illusion).
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Fig. 1 Methods for analyzing results from size estimation procedures. Top row: Results (N = 37) showing
tactile distance anisotropy on the hand and belly [11]. Results were analyzed using ANOVA assessing judged
size as a function of actual size and orientation (top left), and assessing overestimation as a percentage of
actual size (top right; error bars show SEM). Middle row: Use of multidimensional scaling (MDS) to reconstruct
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3.2.3 Multidimensional

Scaling

Two recent studies [7, 45] have used multidimensional scaling
(MDS) to reconstruct perceptual maps of tactile space. MDS is a
statistical procedure, akin to principal components analysis, posi-
tioning items in a multi-dimensional space based on a matrix of the
pairwise distances or dissimilarities between items, such that the
pairwise distances between points match the distance matrix as
closely as possible [54, 55]. Applied to tactile distance perception,
a fixed set of locations on the skin is stimulated and across trials
tactile distance estimates are obtained from each pair of locations,
producing a full perceptual distance matrix. MDS applied to this
distance matrix produces coordinates in 2-D (or other dimension-
ality, if so desired) space. The middle panel of Fig. 1 shows results
from the study of Longo and Golubova [7] which used MDS to
reconstruct the tactile space of the hand dorsum (Fig. 1, middle left
panel). Overall distortion in these maps was quantified by finding
the deformation applied to an idealized square grid that minimized
the dissimilarity (quantified as the Procrustes distance) with each
perceptual map (Fig. 1, middle right panel). Tamè and colleagues
[45] also applied the same logic to representational dissimilarity
matrices measured using fMRI to compare perceptual and neural
maps of tactile space.

3.2.4 Computational

Models

Finally, a recent study by Fiori and Longo [37] presented stimuli at
a range of orientations and used a simple computational model to
quantify the magnitude and orientation of “stretch” of tactile
space. The basic idea is that if anisotropy on a skin surface reflects
a geometrically simple stretch of tactile space, perceived distance as
a function orientation should show a sinusoidal function across a
range of orientations (Fig. 1, bottom row). This approach uses
least-squares regression to fit a three-parameter model to individual
participant data, allowing the magnitude and orientation of stretch
to be quantified. For example, the bottom right panel of Fig. 1
shows the orientation of maximal stretch for each of the 25 partici-
pants on the hand dorsum.

3.3 Forced-Choice
Methods

Whereas the size estimation methods described so far involve
making judgments about single stimuli, another set of methods
ask participants to compare the relative size of two pairs of touches,
presented either on two different skin surfaces or in two

Fig. 1 (continued) perceptual maps of the tactile space of the hand dorsum [7] (middle left; N = 12). Overall
distortion in these maps was quantified by identifying the deformation of a square grid that minimized the
dissimilarity (i.e., Procrustes distance; middle right; shaded area shows SEM). Bottom row: The model used by
Fiori and Longo [37] to assess whether tactile distance illusions reflect a geometrically simple stretch of tactile
space (bottom left; N= 25; error bars show SEM). This approach allows the orientation of maximal anisotropy
to be estimated in a data-driven way for each participant (bottom right)



orientations on a single skin surface. In all cases, this has involved
sequential, rather than simultaneous, presentation of the pairs of
stimuli.
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Fig. 2 An example of a psychometric function fit to 2IFC data (N= 18; error bars
show SEM; dotted vertical line shows the point of subjective equality; from [50])

Some studies have simply quantified the percentage of trials on
which one type of stimuli is judged as larger [3, 22]. Most studies,
however, have adopted some form of the method of constant
stimuli, using psychometric functions to quantify biases in the
perceived tactile distance [6, 10, 21, 25, 28, 29, 38, 39, 47].

Figure 2 shows a typical example, taken from the “together”
condition in Experiment 1 of [50]. On each trial, two tactile dis-
tances were applied sequentially, one oriented with the mediolateral
(“across”) hand axis the other with the proximo-distal (“along”)
axis, and the participant judges which one feels larger (i.e., by
saying “first” or “second”). Across trials, five different pairs of
distances were used, varying the relative size of the stimuli in the
two orientations, according to the method of constant stimuli. The
proportion of trials on which the across stimuli were judged as
larger was calculated as a function of the ratio of the across and
the along stimuli. The psychometric function was modeled using a
cumulative Gaussian curve fit using maximum likelihood estima-
tion using the Palamedes MATLAB toolbox [56]. The mean of this
curve indicates the point of subjective equality (PSE), that is the
ratio between the across and the along stimuli where the participant
is equally likely to say that each orientation is bigger. The results
shown in Fig. 2 indicate a typical anisotropy on the hand dorsum, as
the PSE corresponds to a ratio between the across and the along
stimuli less than 1, meaning that the along stimulus needs to be
bigger than the across stimulus for them to be judged as being the
same size.
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4 Notes

4.1 The Two-point
Discrimination Task

As noted above (see Subheading 3.2.2), one issue that frequently
comes up in designing studies of tactile distance perception is the
relation between the actual distances applied and the two-point
discrimination threshold (2PDT) on that skin surface. While the
2PDT has been criticized as a measure of tactile acuity [57] (see
Chapter 1, this volume), in this context what is relevant is whether
or not the participant experiences one point or two. If the partici-
pant only feels a single point, it is not sensible to ask them to judge
how far apart the stimuli felt. In many studies, participants are asked
to assume that if they feel just one point to assume that it was a
small distance [6], and in others to consider the spatial extent of
that single point [5]. In some studies using verbal responses, they
are explicitly told that they can give a response of “0 cm”
[37]. This, however, does not necessarily solve the problem, and
such trials (whether or not they are included in the analysis) can
potentially distort the pattern of results.

To address this issue, researchers can consult studies that have
measured 2PDT across the body [52, 53]. Ideally the smallest
tactile distance applied should be larger than the average 2PDT
on that skin surface, although since the numbers reported in those
papers are averages, even this does not guarantee that participants
will feel two touches on all trials. Another point is that while large-
scale studies of 2PDT [52, 53] have assessed the perception of
stimuli in a single orientation, it has been known since Weber’s
work that 2PDT varies with the orientation of stimuli [1]. Thus,
stimuli which are felt as two distinct touches in one orientation will
not necessarily be felt the same way in another orientation on that
same surface. On some body parts, this can leave a relatively narrow
range of usable stimuli that are both large enough to be felt as two
points and small enough to actually fit on the skin for all partici-
pants. On the palm and dorsum of the hand and on the arms, for
example, we have found that a range of 2–4 cm is appropriate, with
stimuli less than 2 cm commonly felt as a single point and stimuli
more than 4 cm not fitting on some participants’ bodies.

4.2 Testing Different
Parts of the Body

Another consequence of varying 2PDT across the body is that the
stimuli appropriate for testing one body part may not be appropri-
ate for other body parts. For example, as shown in the top left panel
of Fig. 1, a recent study comparing anisotropy of tactile distance on
the hand and belly [11] used different sets of stimuli on each body
part for exactly this reason. While it would obviously be preferable
to use identical stimuli on each skin surface, the combination of
different sensitivity and different size of skin regions makes this
impossible. Analogous problems arise in many types of psychophys-
ical studies, for example comparing different parts of the retina in



vision, or different frequencies in audition. One approach to deal-
ing with this violation of a fully factorial experimental design is to
re-express each judgment in terms of overestimation of actual
distance as a percentage of actual distance, as shown in the top
right panel of Fig. 1.
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