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Abstract Although the spatial representation of number
(mental number line) is well documented, the scaling asso-
ciated with this representation is less clear. Sometimes peo-
ple appear to rely on compressive scaling, and sometimes
on linear scaling. Here we provide evidence for both com-
pressive and linear representations on the same numerical
bisection task, in which adult participants estimate (without
calculating) the midpoint between two numbers. The
same leftward bias (pseudoneglect) shown on physical
line bisection appears on this task, and was previously
shown to increase with the magnitude of bisected num-
bers, consistent with compressive scaling (Longo and
Lourenco in Neuropsychologia 45:1400–1407, 2007). In
the present study, participants held either small (1–9) or
large (101–109) number primes in memory during bisection.
When participants remembered small primes, bisection
responses were consistent with compressive scaling. How-
ever, when they remembered large primes, responses were
more consistent with linear scaling. These results show that
compressive and linear representations may be accessed
Xexibly on the same task, depending on the numerical
context.

Keywords Numerical cognition · Mental number line · 
Compressive and linear scaling

Introduction

The spatial representation of number has been well estab-
lished. Much evidence suggests that numbers are repre-
sented along a so called mental number line, oriented (at
least in Western culture) with increasing values from left
to right (e.g., Dehaene et al. 1993; Fischer et al. 2003;
Loetscher et al. 2008). The scaling of numerical representa-
tion, however, is less clear. Although two types of scale—
compressive (e.g., Dehaene and Mehler 1992; Piazza et al.
2004) and linear (e.g., Gallistel and Gelman 1992, 2000)—
have been proposed, there is disagreement as to which type
better depicts the spatial organization of number. Here we
provide evidence for the co-existence of compressive and
linear numerical scales, as well as insight into the dynamics
that may support access to each type of scale.

Space and number

Perhaps the classic demonstration of the relation between
space and number comes from experiments showing that
parity (odd/even) judgments are faster for smaller numbers
(e.g., 1 and 2) when executed in the left hemi-space, such as
when using one’s left hand, and for larger numbers (e.g., 8
and 9) when executed in the right hemi-space, such as when
using one’s right hand, the so called spatial¡numerical
association of response codes (SNARC) eVect (e.g., Dehaene
et al. 1993; Shaki and Fischer 2008). Spatial¡numerical
associations have also been demonstrated on bisection
tasks. Patients with hemi-spatial neglect, which typically
occurs following injury to right posterior parietal cortex
and parieto-frontal connections in underlying white matter
(e.g., Bartolomeo et al. 2007; Bisiach and Vallar 2000),
tend to ignore the left side of space, indicating the midpoint
of physical lines too far to the right. Some of these patients
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show analogous eVects when asked to ‘bisect’ numerical
intervals, estimating (without calculating) the number mid-
way between two others. Zorzi et al. (2002) found that
these patients respond with numbers larger than the true
midpoint, as if showing rightward bias along a mental
number line (also, Zorzi et al. 2006; although, see, Doricchi
et al. 2005). Recently, Pia et al. (2009) described a patient
with right neglect following damage to the left posterior
parietal cortex who showed leftward biases for both physical
and mental number line bisection.

Numerical scaling

Dehaene et al. have argued that the mental number line is
non-linearly compressive, such that the subjective space
allocated to numbers becomes smaller with increasing
numerical magnitude (e.g., Dehaene 2001; Dehaene and
Mehler 1992; Piazza et al. 2004; also, Nieder and Miller
2003). In contrast, Gallistel et al. have argued that number
is organized linearly, such that the subjective distance
between numbers remains constant, albeit more variable,
across magnitude (e.g., Gallistel and Gelman 1992, 2000;
also, Brannon et al. 2001; Whalen et al. 1999). It has often
been diYcult to distinguish between these models, since
they tend to make identical behavioral predictions, and,
when they do make diVerential predictions, Western adults
sometimes appear to rely on compressive scales (e.g.,
Banks and Coleman 1981; Banks and Hill 1974; Longo and
Lourenco 2007; van OeVelen and Vos 1982), and, on
others, on linear scales (e.g., Banks and Coleman 1981;
Dehaene et al. 2008; Siegler and Opfer 2003).

On the number bisection task described above, we
(Longo and Lourenco 2007) found that, as in physical line
bisection in which healthy adults generally show a slight
leftward bias, known as pseudoneglect (Jewell and
McCourt 2000), they also show leftward bias when ‘bisect-
ing’ the interval between two numbers, underestimating the
true midpoint. In addition, this bias increases with the mag-
nitude of the numbers to be bisected, consistent with com-
pressive scaling. Constant leftward attentional bias on this
task leads to increasing leftward numerical bias because
larger numbers are subjectively closer together (see Fig. 1,
top). Previous studies have reported numerical modulation
of spatial attention. Fischer et al. (2003), for example,
showed that perceiving smaller versus larger numbers
biased spatial attention leftward and rightward, respec-
tively. Variation in spatial attention is not likely to account
for the pattern of bisection responses, however. In the num-
ber bisection task, leftward bias increased with numerical
magnitude, the opposite of what would be predicted if per-
ceiving numbers aVects spatial attention, suggesting that
attentional bias is likely to be approximately constant on
this task.

Why might numerical representations appear compres-
sive on some tasks and linear on others? One possibility is
that number is actually represented with multiple scales,
compressive and linear, which are used Xexibly depending
on the demands of the task. What demands might favor one
scale over another? Dehaene et al. (2008) recently sug-
gested that the (universal) default scale of number is com-
pressive, with increasing reliance on linear representations
driven by particular cultural experiences such as language
and schooling. Consistent with this view are Wndings show-
ing a developmental transition from compressive to linear
scaling (Siegler and Opfer 2003; also, Booth and Siegler
2006; Siegler and Booth 2004), and variation in adults
across culture, with linear scaling in Westerners and com-
pressive scaling in the Mundurukú, an Amazonian popula-
tion (Dehaene et al. 2008).

As discussed below, there are adaptive reasons for repre-
senting numerical information along compressive scales.
One reason concerns the psychological signiWcance of
making errors when discriminating smaller numerical val-
ues versus larger values. It is frequently the case that diVer-
ences at the lower end of the scale are more meaningful
than those at the higher end (e.g., Nieder 2005). Relatedly,
people tend to have more experience, and, hence, greater
familiarity with smaller numerical values. As in cases
where greater experience leads to changes in the allocation
of representational resources (e.g., Elbert et al. 1995), more
exposure to smaller numbers might lead to their (spatial)
over-representation via compressive scaling. Particularly
important for supporting access to linearly scaled represen-
tations, then, may be exposure to large numbers. Indeed,
Siegler and colleagues (e.g., Siegler and Booth 2004;
Siegler and Opfer 2003) have suggested that greater overall
experience with small numbers, especially earlier in life,
might account for the initial reliance on compressive scal-
ing, wherein greater representational space is allocated to
more familiar numerical values.

Fig. 1 The eVects of leftward attentional bias (i.e., pseudoneglect) on
the number bisection task, given compressive (top) versus linear (bot-
tom) scaling of number. With compressive scaling, the extent of
numerical bias (i.e., underestimation of the midpoint for numerical
intervals) increases with greater numerical magnitude (of the
midpoint). With linear scaling, the extent of numerical bias remains
constant regardless of magnitude
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Present study

The purpose of the present study was twofold: (1) to test
whether Western adults have access to both compressive
and linear scales on the same task, and (2) to test the condi-
tions that mediate access to the diVerent scales. If number is
represented with both types of scale, it may be possible to
prime their use, diVerentially, on the same task. We tested
participants under diVerent memory conditions (mainte-
nance of small versus large numbers) on our number bisec-
tion task, in which participants have been shown to rely, by
default, on compressive scaling (Longo and Lourenco
2007). Compressive scales have the eVect of over-repre-
senting small numbers, whereas linear scales give equal
representational weight to small and large numbers. Thus,
maintaining larger numbers in memory, which would have
the eVect of making these numbers more salient than is typ-
ically the case, and, hence, more familiar, should result in
greater reliance on linear scaling. Conversely, maintaining
smaller numbers in memory should reinforce the use of
compressive scaling. On this number bisection task, linear
scaling should lead to consistent leftward numerical bias
across magnitude since the subjective spacing between
numbers does not vary (see Fig. 1, bottom); this contrasts
with compressive scaling in which numerical bias increases
(i.e., shifts even more leftward) with increasing magnitude.

Method

Participants

Fifteen students (11 females) between 18 and 23 years
(M = 19.27, SD = 1.67) participated for course credit or
payment ($10). The majority were right-handed (N = 12,
M = 51.7, SD = 68.1), as measured by the Edinburgh inven-
tory (OldWeld 1971). Experimental procedures were
approved by the local ethics committee.

Stimuli, design, and procedure

Participants sat approximately 55 cm from a 17 in.
(43.2 cm) computer monitor. Number pairs (1.25° in
height) were presented using Matlab (MathWorks, Natick,
MA, USA) script, centered on the screen, and separated by
a small horizontal line. Numbers varied between 11 and 99,
randomly selected. The same 216 pairs were used for each
participant. Smaller numbers in these pairs ranged from 11
to 85 with a mean of 35.97 (SD = 18.39) across all
instances. Larger numbers in these pairs ranged from 23 to
99 with a mean of 74.02 (SD = 19.02) across all instances.
By using a wide range of numbers, we would be able to test
for diVerences in the magnitude of the number pairs and

interval size. Based on previous work showing ceiling
eVects for smaller intervals of number pairs (e.g., Longo
and Lourenco 2007; Zorzi et al. 2002), intervals here
ranged from 11 to 87 (M = 38.72, SD = 1.26).

Participants estimated the number midway between each
pair of numbers. They were told not to compute the answer,
but to answer as quickly as they possibly could, using
whichever number seemed immediately intuitive. Prior to
the presentation of number pairs, participants were primed
with three diVerent numbers, presented sequentially, at the
top, bottom, and center of the screen. Each number was
presented for 500 ms, with the order (top, bottom, center)
randomly determined on each trial. Participants were asked
to recall the three prime numbers after indicating their
bisection response. On half the trials, participants were pre-
sented with small primes (1–9), and, on the other half, with
large primes (101–109); prime numbers on each trial were
randomly selected. We used primes outside the range of the
number pairs presented for bisection stimuli for two rea-
sons: (1) to highlight the ‘smallness’ and ‘largeness’ of the
primes, and (2) to avoid any direct memory interference
between the primes and the bisection stimuli. The experi-
ment was divided into six blocks of 36 trials, with each
block comprised of 18 trials of small and large primes. On
half the trials in each block, the smaller number in the pairs
to be bisected appeared on the left, and, on the other half,
on the right. Trial order was randomized. Responses were
verbal, and recorded by an experimenter who was seated
behind the participant.

Results

All participants made errors in reporting the primes
(M = 9.48%, range 1.8–27.78%). Approximately half the
errors involved remembering small primes as large primes
(M = 53.85%, SD = 24.68%), t(14) = 0.60, P > 0.1. Because
of these errors, analyses were conducted on trials as a func-
tion of remembered primes. Trials on which bisection
responses were outside the interval of number pairs were
excluded from the analyses (M = 1.9%, range 0–11.11%).

For each number pair, deviation scores were computed
by subtracting the true midpoint (i.e., arithmetic mean)
from participants’ bisection responses. SigniWcant underes-
timation of the midpoint, that is, leftward bias was observed
for both conditions (small primes: M = ¡2.10, SD = 1.76,
t(14) = ¡4.62, P < 0.001; large primes: M = ¡1.29,
SD = 1.58, t(14) = ¡3.16, P < 0.01), whether the smaller
number in the pair was presented on the left or right (all P
values < 0.05). For both conditions, the majority of partici-
pants showed overall leftward bias in their bisection
responses (small primes: 14/15; large primes: 14/15; both
P values < 0.001, binomial test).
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EVects of priming and numerical magnitude

Change in bias with numerical magnitude was investigated
using least-squares regression to compute slopes for each
participant in each condition regressing bias on the mean of
the numbers to be bisected. In the small primes condition,
regression slopes were signiWcantly negative, � = ¡0.049,
t(14) = ¡7.39, P < 0.0001 (see Fig. 2, top), indicating that
leftward bias increased as numerical magnitude increased.
This suggests that participants relied on compressive scal-
ing, as in previous research with no priming (Longo and
Lourenco 2007). Similar eVects were observed with the
smaller number in the pairs on the left, � = ¡0.052, t(14) =
¡5.98, P > 0.0001, or right, � = ¡0.047, t(14) = ¡5.19,
P < 0.0001.

In contrast, in the large primes condition, regression
slopes did not diVer signiWcantly from zero, � = ¡0.013,
t(14) = ¡1.53, P > 0.1 (see Fig. 2, bottom). Similar eVects
were observed with the smaller number on the left,
� = ¡0.020, t(14) = ¡1.98, P > 0.06, or right, � = ¡0.006,
t(14) = ¡0.489, P > 0.1. Additionally, regression slopes in
the large primes condition diVered signiWcantly from those
in the small primes condition, t(14) = 3.79, P < 0.01,
d = 1.21, with the majority of participants showing reduced

slopes (13/15, P < 0.05, binomial test). These results sug-
gest that participants relied on linear scaling during number
bisection on trials in which they held large number primes
in memory.

Could the diVerence between conditions result from a
more general increase in the numerical values of bisection
responses? Having been primed with large numbers, partic-
ipants might have over-estimated the midpoint regardless
of magnitude. Although the reduction in slope argues
against this possibility, since greater numerical bisection
responses would not predict a change in slope, it is worth
noting that for both conditions the extent of bias was com-
parable for smaller number pairs. That is, analyses compar-
ing the lower quartile of number pairs revealed no
signiWcant diVerence in bias between small primes
(M = ¡1.09, SD = 2.33) and large primes (M = ¡0.76,
SD = 1.85) conditions, t(53) = ¡0.92, P > 0.1, suggesting
that greater overall numerical responses does not account
for the change in slope. Another possible explanation for
the diVerence between conditions concerns numerical inter-
val. Siegler and Opfer (2003) showed that, at least in young
children, a smaller numerical interval invoked linear scal-
ing, whereas a larger interval invoked compressive scaling
(see, also, Banks and Coleman 1981). As in Longo and
Lourenco (2007), although overall error for each partici-
pant increased signiWcantly with increasing interval size in
small primes (mean r = 0.39), t(14) = 13.06, P < 0.0001,
and large primes (mean r = 0.42), t(14) = 15.27, P < 0.0001,
conditions, there was no signiWcant increase in directional
bias for each participant with increasing interval size in
either condition (both P values > 0.1). This suggests that
the diVerence in slope across the two conditions was not
driven by eVects of interval size, but, rather, by exposure to
small versus larger number priming.

The analyses above were conducted on remembered
primes (i.e., the prime numbers participants actually
reported seeing). We also conducted separate analyses on
the presented primes (i.e., the prime numbers that appeared
on the computer monitor on each trial). When recall was
not factored into the regression analyses, regression slopes
were signiWcantly negative in both small primes,
� = ¡0.036, t(14) = ¡3.86, P < 0.01, and large primes,
� = ¡0.026, t(14) = ¡3.69, P < 0.01, conditions, which did
not signiWcantly diVer, t(14) = ¡0.96, P > 0.1. In other
words, the change in slope observed in the large prime con-
dition only occurred if participants remembered the primes
as larger numbers. That there was no diVerence when recall
was not factored into the analyses suggests that active
maintenance of—rather than merely passive exposure to—
small versus large number primes was critical to determin-
ing reliance on compressive versus linear scaling.

Could diVerences between the two conditions be due to
diVerential working memory demands? Although Doricchi

Fig. 2 Numerical bias as a function of numerical magnitude (calcu-
lated as the mean of the two numbers in a pair) for remembered small
primes (top) and large primes (bottom) conditions. In the small primes
condition, bias increased with numerical magnitude, suggesting that
participants relied on compressive scaling during number bisection. In
the large primes condition, bias remained relatively constant across
numerical magnitude, suggesting that participants relied on linear
scaling
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et al. (2005) have pointed to a relation between (spatial)
working memory and number bisection responses in
patients with hemi-spatial neglect, there are reasons to
believe that the present results with healthy adults are not
due to diVerent memory demands. First, the number of
recall errors did not diVer between the two conditions
(small primes condition: M = 12.47, SD = 12.69; large
primes condition: M = 8.00, SD = 4.12; t(14) = 1.34,
P > 0.1), suggesting that working memory demands did not
in fact diVer across conditions. Furthermore, if anything,
greater working memory demands would be predicted in
the large primes condition, which appeared to lead to more
linear scaling. Given that the default numerical representa-
tion appears to be compressive (Dehaene et al. 2008; Longo
and Lourenco 2007; Siegler and Opfer 2003), the higher
load condition would be expected to lead to increased com-
pression, the exact opposite of what was observed.

Discussion

The present Wndings demonstrate that the same bisection
task can elicit compressive and linear representations of
number in the same individuals, depending on the numeri-
cal context. When the context involved maintaining small
number primes in memory, the leftward bias on number
bisection increased with numerical magnitude, consistent
with compressive scaling. When the context involved main-
taining larger number primes in memory, the leftward bias
remained relatively constant, consistent with linear scaling.
In a previous study, with no priming conditions, partici-
pants relied on compressive scaling to bisect numerical
intervals (Longo and Lourenco 2007). Although the appar-
ent default on this task is compressive, the present Wndings
show that Western adults have access to both compressive
and linear representations, which are deployed Xexibly on a
single task.

Dehaene et al. (2008) recently suggested that the univer-
sal default representation of number is compressive, and
that linear representation is a cultural invention, seen more
commonly in Western than Indigenous cultures. They sug-
gested that experiences related to measurement, and to
addition and subtraction lead to the gradual development of
linear scaling. Siegler and Opfer (2003) showed Xexibility
across development in Western children, with a shift from
compressive to linear scaling on a task in which numbers
were explicitly placed at particular locations along a line
segment. Importantly, Xexibility was also observed within a
single age depending on the numerical context. SpeciW-
cally, second-graders’ placement of numbers varied as a
function of the interval marking the ends of the line. With
the smaller interval (0–100), children distributed the num-
bers to be placed on the line evenly, consistent with linear

scaling. However, with the larger interval (0–1,000), they
allocated more space to the smaller numbers (e.g., placing
25 near the middle of the line), consistent with compressive
scaling. That responses depended on the numerical interval
suggests that greater familiarity with larger numbers may
be an important factor in supporting access to linearly-
scaled representations. The present results dovetail with
these Wndings by showing that both compressive and linear
representations of number co-exist, and that this holds for
adults as well as children, across diVerent tasks.

Although multiple representations of number might
appear ineYcient, lacking neural economy (e.g., Dehaene
2008), co-existing compressive and linear scales make a
great deal of adaptive sense, especially since each type
might be better suited to particular task dynamics. Thus, the
default numerical scale on a given task would depend on
the relative advantage of that scale for that task. For exam-
ple, compressive scaling might be advantageous when
exact distinctions for small numbers are critical (e.g.,
Dehaene 1997; Nieder 2005), which, as discussed above, may
be the more common scenario. In general, errors in preci-
sion are more likely to impact behaviors involving smaller
numerical values than those involving larger values. The
ecological salience of encountering two predators versus
one predator, for example, would be greater than encoun-
tering 20 versus 19. In the former case, there might be the
option to Wght or Xee; in the latter, the best option would
almost certainly be Xight. Linear scaling, in contrast, pro-
vides a more veridical description of the actual state of the
world. The linear representation of number might be partic-
ularly advantageous when precise discriminations are also
necessary for larger numerical values (e.g., Gallistel and
Gelman 2000) where compressive scaling would most cer-
tainly lead to biased judgments. Precise discriminations with
larger numerical values may be particularly critical when
errors of even a single unit could have serious consequences,
as when determining one’s tax bracket.

Our results suggest that greater active experience with
larger numbers may highlight the need for making precise
distinctions with these values. Although cultural and devel-
opmental factors, noted above, may exert their own inXu-
ence, exposure to larger numbers is likely to co-vary with
these factors. Recent Wndings have demonstrated cultural
eVects on numerical scaling, with diVerences between
Western adults and an indigenous population known as the
Mundurukú (Dehaene et al. 2008). Our Wndings suggest
that similar diVerences may occur even within Western
adults as a function of using large numbers, and, perhaps,
other numerical-related expertise.

A large body of research has demonstrated that represen-
tations of number are inherently spatial, organized along a
mental number line from left to right. The scale of this
number line, however, has been controversial, and two
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types have been proposed: linear and compressive. Although
both types provide attractive models of numerical representa-
tion, it has been diYcult to distinguish between them given
that some data appear more consistent with linear scaling and
other data with compressive scaling. The present study sheds
light on this controversy by providing evidence for the co-
existence of both types of numerical representations in West-
ern adults. Although our data speak clearly to the use of mul-
tiple spatial representations of number, they do not address
speciWc questions concerning the underlying dynamics of
these representations. Are there separate static compressive
and linear representations of number, or do these representa-
tions emerge on-line as a function of the task demands?
These are important questions for future research.
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