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a b s t r a c t

We experience our body as a 3D, volumetric object in the world. Measures of our conscious

body image, in contrast, have investigated the perception of body size along one or two

dimensions at a time. There is, thus, a discrepancy between existing methods for

measuring body image and our subjective experience of having 3D body. Here we assessed

in a sample of healthy adults the perception of body size in terms of its 1D length and 3D

volume. Participants were randomly assigned to two groups using different measuring

units (other body part and non-body object). They estimated how many units would fit in a

perceived size of body segments and the whole body. The patterns of length and volume

misperception across judged segments were determined as their perceived size propor-

tional to their actual size. The pattern of volume misperception paints the representation

of 3D body proportions resembling those of a somatosensory homunculus. The body parts

with a smaller actual surface area relative to their volume were underestimated more.

There was a tendency for body parts underestimated in volume to be overestimated in

length. Perceived body proportions thus changed as a function of judgement type while

showing a similarity in magnitude of the absolute estimation error, be it an underesti-

mation of volume or overestimation of length. The main contribution of this study is

assessing the body image as a 3D body representation, and thus extending beyond the

conventional ‘allocentric’ focus to include the body on the inside. Our findings highlight

the value of studying the perceptual distortions “at the baseline”, i.e., in healthy popula-

tion, so as to advance the understanding of the nature of perceptual distortions in clinical

conditions.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Distortions of the body image are central to several serious

diseases, including eating disorders (Cash & Deagle, 1997) and

body dysmorphic disorder (Phillips, Didie, Feusner, &

Wilhelm, 2008). Indeed, since the seminal work of Bruch

(1978) perceptual distortions of body image have been

considered central to the aetiology of anorexia nervosa.

Conversely, the body image in healthy individuals was

assumed to be highly accurateeif not infallible, and as such it

was used as a standard in early studies to interpret body size

misperceptions, e.g., in anorexic or obese patients (Bell,

Kirkpatrick, & Rinn, 1986). Calling this assumption into ques-

tion, recent evidence showed systematic distortions of body

representation in healthy cognition. The understanding of

these neurotypical distortions may shed more light on the

perceptual distortions in clinical conditions (Longo, 2015,

2017). One particularly interesting recent finding was that

the body image distortions in healthy individuals appear to be

linked to homuncular distortions in primary somatosensory

cortex (SI) (Linkenauger et al., 2015; Longo & Haggard, 2012).

Here we aimed to replicate these observations, and to address

an important limitation of this research and of the work on

perceptual body image in general. Traditional methods of

body size perception in patients and healthy individuals alike

come short of assessing our experience of having a 3D volu-

metric body of a certain size. We addressed this limitation by

investigating the representation of body volume in healthy

cognition. Analogous to the functional role of cortical

magnification in SI, we also set out to investigate if body part's
surface area relative to its volume (SA/VO), i.e., the proportion

of its 3D size at interface with the outer world, predicted the

perception of volumetric size.

A large literature going back several decades has investi-

gated perceptual body size estimation, largely in the context

of eating disorders such as anorexia and obesity. A number of

paradigms for body size estimation have been developed,

which Longo and Haggard (2012) grouped into two broad

families. Depictive methods involve comparing the experi-

ence of one's own body with a visual image of a body, and

include tasks such as the distorting mirror (Traub & Orbach,

1964), the distorted photograph technique (Glucksman &

Hirsch, 1969), video distortion (Probst, Vandereycken, Van

Coppenolle, & Pieters, 1998), and template matching

(Gandevia & Phegan, 1999). Metric methods, in contrast,

involve comparing the experienced size of one's own body to

a physical length, and include tasks such as the moving

caliper (Slade & Russell, 1973), the image marking procedure

(Askevold, 1975), and the adjustable light beam apparatus

(Thompson & Spana, 1988). Depictive methods thus involve

comparing our body to a 2D image, while metric methods

involve comparing our body to a 1D standard. The body size

is not assessed in all three dimensions when judged with

reference to 2D images (Benson, Emery, Cohen-Tov�ee, &

Tov�ee, 1999; Cafri & Thompson, 2004; Gandevia & Phegan,

1999; Traub & Orbach, 1964; Walsh, Hoad, Rothwell,

Gandevia, & Haggard, 2015). Similarly, metric methods

come short of assessing the 3D body size given their focus on

one dimension at a time, e.g., in width or length judgements
(Linkenauger et al., 2015, 2017; Longo & Haggard, 2012;

Reitman & Cleveland, 1964; Slade, 1985), or circumference

judgements (Horne, Van Vactor, & Emerson, 1991; M€olbert

et al., 2016; Salbach, Klinkowski, Pfeiffer, Lehmkuhl, &

Korte, 2007; Schneider, Frieler, Pfeiffer, Lehmkuhl, &

Salbach-Andrae, 2009).

To our knowledge, no studies have looked into what the

mental image of our 3D body is like and how it may deviate

from the actual 3D body form. This may seem surprising

given our experience of having 3D bodies; however, the rea-

sons become clear once the importance of the visual

component in body size assessment is considered. Indeed,

the term ‘body image’ itself suggests predominantly visual

representation of a conscious body shape and size, akin to a

2D photograph of what we look like and how other people see

us in a manner not dissimilar from other visual objects in the

environment. In addition to our ability to assess it as if

viewed from the outside, the body is however also perceived

‘from the inside’. This internal access, clearly unavailable for

other objects, comes with additional sources of information

including touch, proprioception, and interoception.

Although these senses may not appear as informative as

vision in perceptual assessment of body size, recent research

has validated their relevance. For instance, Longo and

Haggard (2012) reported a dissociation between depictive

and metric methods in judgements of hand size, with the

metric measurements showing distortions qualitatively

similar to those of a somatosensory representation (Longo,

2017; Longo & Haggard, 2012), while the performance was

nearly veridical in the visual template-matching task. They

suggested that the metric assessment did not involve the

visual body representations alone but some weighted com-

bination of the visual and (distorted) somatosensory body

representations.

In another study, Linkenauger et al. (2015) asked partic-

ipants to judge the length of body segments or of the whole

body in units of the length of other body part (e.g., hand) or

a non-body object (dowel). This assessment involved esti-

mating how many measuring units would fit in a size of a

judged body segment, or, to put it differently, by how much

the body segment differed in size relative to the measuring

unit. Linkenauger et al. (2015) found a robust pattern of

length mis-estimation, which suggested that some body

parts such as torso and arms were misperceived as longer

more than others like the head and leg for instance.

Notably, for judgements in body units, the pattern of

misperception was predicted by the segment's actual size

and tactile spatial sensitivity. Body parts which are under-

represented in primary somatosensory cortex (SI), i.e.,

showing reduced tactile spatial sensitivity (Mancini et al.,

2014; Weinstein, 1968), were more overestimated in

length, particularly if they were small in their actual size.

Based on these findings, the authors developed a ‘reverse

distortion’ theory whereby the distortions of body image

were of compensatory nature to those of the distorted so-

matosensory maps (Penfield & Boldrey, 1937; Penfield &

Rasmussen, 1950), alleviating thus the negative impact of

the latter on somatoperception.

In this study, we aimed to fill the gap in existing body

image literature, by assessing the experience of our body in

https://doi.org/10.1016/j.cortex.2018.10.016
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terms of a perceived volume of 3D space contained by the

skin on the body surface. We adapted the paradigm devel-

oped by Linkenauger et al. (2015; 2017) by asking participants,

in addition to their length estimates, for judgements of the

volume of body segments in units of a volume of their hand

(body units) or an object (non-body units). An important

novel aspect of this study therefore is the inclusion of the

inside of the body, i.e., body's volumetric substance, rather

than just its superficial exterior. Judging, for instance, how

many volumes of a finger fit in a volume of the foot, may

require partitioning in one's mind the volume of the foot into

smaller parts, and thus a mental image of the volumetric

body. To put it another way, these judgements are expected

to extend the typical allocentric assessment of perceived

body dimensions common in the body image literature, by

probing the representation of 3D space that our bodies

occupy. This has implications for relating the somatosensory

body representation and body image the way Linkenauger

et al. (2015) did. While the body in SI is two-dimensional,

reflecting the two-dimensionality of the skin, the body vol-

ume is unlikely to be represented in SI since it is given by the

volume of a musculo-skeletal body structure, its internal

organs, and other tissue and liquids. The actual surface area

is not linearly related to volume across body segments

(Tikuisis, Meunier, & Jubenville, 2001) due to differences in

their 3D shape and size. Mathematically, a sphere (e.g., the

head) would have a smaller surface area than a truncated

cone (e.g., the forearm) even if their volume was identical,

and the increase in surface area relative to volume with an

increasing object size is a power function (Schmidt-Nielsen,

1984).

The literature, however, suggests that the body image is

related to both, the somatosensory representation and the

awareness of interoceptive sensations from within the body.

A recent review of the literature implicates the sensations

generated by internal organs in a formation of body image

(Badoud & Tsakiris, 2017). Intriguingly, it has been reported

that patients with eating disorders show impaired tactile

processing (Keizer et al., 2011; Keizer, Smeets, Dijkerman,

van Elburg, & Postma, 2012) as well as reduced interocep-

tive awareness (Pollatos et al., 2008; Santel, Baving, Krauel,

Münte, & Rotte, 2006). Notably, in healthy individuals,

interoceptive sensations tend to reach conscious awareness

less than signals from senses used to interact with the

environment, including those from the skin on body sur-

face. At a smaller scale, there are differences across body

parts with regards to the size of their surface area relative to

how volumetric they are (Tikuisis et al., 2001), which would

imply differences in terms of a conscious accessibility of

bodily information. The advances in body image research

discussed so far suggest that alongside with vision this

general access to tactile and interoceptive information may

play important role in the assessment of body size. We

therefore hypothesised that some body parts will be judged

more accurately in volume than others, as is the case for

their length estimation (Linkenauger et al., 2015; 2017), and

that the less reliable volume estimates would be observed

for body parts with smaller surface area relative to their

volume.
2. Method

2.1. Participants

Forty individuals were randomly assigned to either the Object

Standard group (8 females/12 males, Mean age ± SD:

32.75 ± 9.78 years) or the Hand Standard group (10 females, 10

males, 28.41 ± 5.79 years). Mean ± SD of body mass index was

23.95 ± 4.24. Participants in both groups were predominantly

right handed, as assessed by the Edinburgh Handedness In-

ventory (Oldfield, 1971; Mean ± SD: 89.1 ± 34.4 in the Object

Standard group and 85.8 ± 33.1 in the Hand Standard group). All

procedures were approved by the Department of Psychologi-

cal Sciences Research Ethics Committee at Birkbeck, Univer-

sity of London.

The average effect size (hp
2) for differences in length esti-

mation across body parts in previous studies was .3

(Linkenauger's et al., 2015). A sample of 14 participants, as

determined in a G*Power software (Faul, Erdfelder, Lang, &

Buchner, 2007), would be large enough for this effect to be

detected with a power of .95 at alpha level .05. Given that the

perception of body volume has not yet been investigated, we

determined the sample size for a small effect (hp
2 ¼ .1), using

the same alpha level and power parameters. Our analysis

shows that a sample of forty participants, in a repeated-

measures design with two groups and six body parts to esti-

mate, would be appropriately powered to find an effect of this

magnitude.

2.2. Stimuli, design and procedure

The experiment began bymeasuring the length and volume of

the participant's right hand and foot while they were blind-

folded. The lengthsweremeasuredwith a rulerwhile the body

part rested flat on a sheet of a foamboard. Participants were

seated and they did not wear shoes or garments on the

measured body part (e.g., gloves, socks). The volume of each

body part was measured using the water displacement

method (WDM). The proximal boundary of the hand was the

centre of the ulnar styloid process, which was marked with a

pen. The proximal boundary of the foot was the centre of the

lateral malleolus, which was also marked. Each body part was

immersed in cool water (~10� Celsius).We recorded theweight

of the water displaced by each body part using a scale (AMPUT

APTP457A 7500 g, Shenzhen Amput Electronic Technology Co.

Ltd). According to Archimedes principle, the volume of dis-

placed water equals the volume of the immersed object. The

downward force produced by this displacement is equal to the

weight of the water displaced, regardless of the weight of the

object doing the displacement. Given the known density of

water (1 g/cm3), the change in weight on the scale can be used

to measure the volume of the displaced water, and therefore

the volume of the measured body part.

We used the obtained estimates of hand length and vol-

ume to select objects to use as measuring units (Object Stan-

dard group), or items in the size judgement task (Hand Standard

group). The exact volume and length of the measuring units

were recorded. For length judgements, we used sticks cut out

https://doi.org/10.1016/j.cortex.2018.10.016
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of a foamboard matched to the length of the participant's
hand from the ulnar styloid process to the tip of the middle

finger. For volume judgements, we selected seven books and

wrapped them in a beige paper to eliminate extraneous visual

features and reduce distraction (Mean volume: 415.06 cm3, SD:

129.73). The books were selected to visually match the size of

an average hand in depth and width/length ratio. The exact

dimension correspondence was of course not possible since it

would have inflated the object volume, inflating thus the size

of a measuring unit in Object Standard group relative to the

Hand Standard group. We therefore focused our efforts on

matching the hand and object for each participant in volume

first and foremost, and we added catch trials (cf. below) to

understand the impact of other differences between the

measuring units. Each book and item matched the partici-

pant's actual hand volume as closely as possible. We calcu-

lated for each participant the % of how the book deviated in

volume from their hand (M: 97.85%, SD: 10.23). The partici-

pants in the Object Standard group used what they perceived to

be the volume of a beige cuboid object and length of a stick as

measuring units in their body estimates. Those in the Hand

Standard group used a perceived volume of their right hand

and its length from the centre of the wrist to the tip of the

middle finger.

Participants were seated at a table facing the wall. They

wore a black smock which prevented them from seeing their

body. The experimenter sat behind them, out of their field of

view. The instructions were to visualize their body in an up-

right posture with outstretched arms in order to judge the

volume and length of different body parts. The judged body

parts and how theywere described to participants are given in

Table 1. The region boundaries were explained in plain, non-

technical language with an emphasis on clarity. Apart from

the leg (crotch to ankle) and arm (excluding the hand), body

part boundaries were identical to those used by Linkenauger

et al. (2015). Each trial consisted of read-out instructions fol-

lowed by a verbal response which was recorded by the

experimenter. Participants made estimates of the perceived

length or volume of each body part by estimating how many

multiples of the measuring unit (i.e., their hand or the object)

would fit in the length or volume of each part of their own

body. The measuring unit was in the participant's full view
Table 1 e Judged object boundaries. Participants visualized them
judgements of volume and length of body parts using either a n
(Hand Standard group) as measuring units. The body part bound
participants' understanding. The anatomical terms are presente

Judged object Instr

Volume

1. right foot From the ankle down

(girth of the lateral malleolus)

2. head From the top of the neck up

(uppermost girth around the neck below the m

3. right arm Shoulder bone to wrist

(Acromion to ulnar styloid process)

4. right leg Crotch to ankle

(gluteal fold to lateral malleolus)

5. torso Shoulder bone to the top of pelvis

(Acromion to iliac crest)

6. body Whole body
throughout the experiment. Participants made unspeeded

responses and they were instructed to respond as accurately

as possible and to use fractions and decimal places.

The impact of different measuring units was assessed

through catch trials, in which participants in the Hand Stan-

dard group judged the object (i.e., the book volumes or the

stick lengths) while the participants in the Object Standard

group made judgements of their hand. For the former, the

object on a far-end of a 20 � 50 cm foamboard tray was placed

on a table next to the participant, to their right. The partici-

pant had a full view of the object whichwas removed after the

judgement was made. The correct answers for catch trials

were 1, giving the accuracy ratio of 1, since themeasuring unit

and the judged item were matched in size. The number of

catch trials in the block was the same as number of trials for

individual body parts. The catch trial analysis is separate from

the main analysis.

Each participant completed four blocks, two involving

judgments of length and two involving judgments of volume.

The blocks were counterbalanced in an ABBA fashion, with

the initial condition counterbalanced across participants.

Each block consisted of six repetitions of each of the six body

parts and a catch trial item in random order, for forty-two

trials in total.

2.3. Estimation of actual body-part volume and length

In the post-testing phase, we recorded the actual volume and

length of the judged body parts. Together with 3D body

scanning (Robinette, 2000; Tikuisis et al., 2001), water

displacement is the most reliable way of estimating the vol-

ume of an object, and it is the gold standard in cadaver studies

which have estimated the volume of different body parts

(Clauser, McConville, & Young, 1969; Dempster & Gaughran,

1967). Without specialized water tanks, the WDM poses

obvious difficulties when used with living people. Extremities

like the hand and foot are straightforward to measure using

water displacement, but more proximal body parts are less

feasible. The data available from cadaver studies report the

average volume of individual body parts and their ratios to

total body volume. Although they are useful approximations,

they are often limited to a particular demographic. The
selves standing upright with outstretched arms to make
on-body object (Object Standard group) or the right hand
aries were explained in plain language to ensure
d for comparison with anthropometric literature.

uctions (anatomical definition)

Length or height

Heel to toe

(tip of the longest toe to the end of the calcaneus)

andible)

Chin to the top of the head

(mandible to the top of the head)

Shoulder bone to wrist

(Acromion to ulnar styloid process)

Crotch to ankle

(gluteal fold to lateral malleolus)

Shoulder bone to the top of the pelvis

(Acromion to iliac crest)

Body height

https://doi.org/10.1016/j.cortex.2018.10.016
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alternative methods in the literature include the multi-

viewpoint photography (McConville, Churchill, Kaleps,

Clauser, & Cuzzi, 1980), use of plaster moulds (Schneider,

Robbins, Pflug, & Snyder, 1983), and geometric shape

approximation (Katch & Weltman, 1975).

We estimated the volume of the right hand and foot using

the WDM. The volume of the body was computed as a ratio of

the participant'sweight and body density of 1.003 g/cm3 (Table

7 in Dempster & Gaughran, 1967), as determined in cadaver

studies. We approximated the arm and leg to two truncated

cones each, the head to a sphere, and the torso to a cylinder

with an oval base. The measurements of the participant's
body were recorded as detailed in Fig. 1. The volume formulas

for truncated cones and sphere were used by Katch and

Weltman (1975). The calculations required circumferences at

the two bases and height of the cones. The volumes of indi-

vidual cones were summed for a final body part estimate. A

circumference of the head was used to compute the head

volume. The volume of the torso was calculated from its

height and averages of its three widths (major axis) and

breadths (minor axis) at the level of chest, waist and pelvic

bone.

We also computed the volume for the body parts propor-

tional to the total body volume using cadaver data. These

values, averaged across participants (Fig. 1, column 6), were

then compared to anthropometric estimates. Clauser et al.

(1969) and Dempster and Gaughran (1967) together provide

an overview of anthropometric evidence from seven US-based

studies using cadavers. Fig. 1 (column 7) presents the
Fig. 1 e The actual length and volume of judged objects. The bo

for one-dimensional length (height) measurements. All circumf

body. Three methods were used to compute the volume of bod

conversion (whole body), and geometry (arm, leg, head, torso).

cones separated at the elbow and knee. The head and torso wer

respectively. The last two columns show the segment volumes p

(column 6) and as reported in the anthropometric literature (co
anthropometric data averaged across these studies. Our data

for hand and foot which were also estimated with WDM, and

for the arm, are nearly identical with the anthropometric ev-

idence. Some deviation observed for the remaining body parts

may be due to factors including the use of simplified geo-

metric shapes, demographic differences, but also discrep-

ancies in segment boundary across studies (we report the

neck and pelvic region excluded from head and torso esti-

mates, respectively).

Fig. 1 shows a summary of approximations to geometric

shapes, the measurements, and mathematical formulas. A

tape measure was held flat against the body to record the

circumference of any given body part. The participants could

wear their clothes but they would take off extra layers for

better measurement accuracy. We subtracted 1 cm when

appropriate due to a thick layer of clothing (e.g., jeans). A

maximum girth around head, at temporal bones in the hori-

zontal plane, was used in head volume computation. The arm

and leg were approximated to two truncated cones each,

separated at the elbow and knee. The circumferences were

recorded for each truncated cone. The length (height) of body

segments as specified in Fig. 1 (column 3) was marked with an

erasable pencil with participants standing upright with their

back against the wall. The widths of torso were marked at the

level of chest, waist and pelvis while participants stood

against the wall with their back and right side (Fig. 1). An

empty box aligned with the body part was placed perpendic-

ularly to the wall to ease themarking of round body parts. The

distance between each pair of markings was recorded.
dy segment boundaries were marked on the wall allowing

erences were measured with a tape measure flat on the

y segments: WDM (hand and foot), weight to volume

The arm and leg were each approximated to two truncated

e approximated to a sphere and cylinder with an oval base,

roportional to the volume of whole body in this experiment

lumn 7).

https://doi.org/10.1016/j.cortex.2018.10.016
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Table 2 e The differences in length overestimation across
body parts. The post-hoc t-tests formain effect of body part
were conducted based on the overestimation pattern
across body parts shown in Fig. 2. The largest
overestimation for torso was compared against the second
and third largest overestimation for the whole body and
arm,whichwere then compared to each other. The data for
each, the arm and whole body, were then compared to the
data for head and leg, which followed in magnitude of
overestimation error. The final three comparisons were of
the head and leg, and of them each to the foot. The results
confirm the largest overestimation for the torso, followed
by the arm and body height, leg and head, and finally the
foot.
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2.4. Data analysis

We computed ratios of judged and actual volume and length

estimates to determine the judgement accuracy. Thus, values

greater than 1 indicate overestimation, and values less than 1

indicate underestimation. The judged estimates were ob-

tained by multiplying each judgement by the size of corre-

sponding measuring unit. One of our objectives was a

replication of the study by Linkenauger et al. (2015) which

reported patterns of length misperception (overestimation)

across six body parts. As in the original study, we used the

hand and object (stick) measuring units and we analysed the

length accuracy ratios in a 6-by-2 ANOVA. Our main interest,

however, was in accuracy of volumetric size perception across

body parts in hand and object (book) units, which was tested

in a 6-by-2 ANOVA on volume accuracy ratios. We then report

the analyses for the catch trials, in which the size of a judged

item corresponds with the size of the measuring unit. Finally,

we tested how well our predictor variables explained patterns

of length and volume misperception (accuracy ratios). The

influence of somatosensory representation was tested for 1D

length estimates as in the original study by Linkeauger and

colleagues (2015). Our predictor for volume judgements was

the SA/VO e i.e., the ratio of body part surface area and its

volumetric size. Our predictors relate to the role of body parts

in external signal processing. The somatosensory homun-

cular distortions serve a functional role by enhancing skin

sensitivity at regions required to read tactile signals most

accurately, and the SA/VO indexes the proportion of 3D body

size at interface with the external world.

To identify potential outlier data, we calculated z-scores

for each trial in subsets of accuracy ratios grouped for each

participant by the judgement type and judged object. Trials

with z-scores greater than ±3 were excluded as outliers (.36%).

To identify potential outlier participants, Cook's distance

scores were calculated with an averaged accuracy ratio per

participant and compared to a cut-off value of .1 (4/sample

size; Bollen & Jackman, 1985). On this basis, one participant

from a group using the hand measuring unit with a Cook's
distance value .56 was excluded from the analysis. The type III

sums of squares method which weighs group means equally

in unbalanced designs was used in all ANOVAs (Keppel &

Wickens, 2004). Apart from foot length judgements (Levene's
test p ¼ .03), the test assumption of homogeneous variances

was not violated.

The Holm-Bonferroni correction (HB-corr) was used to

correct for multiple comparisons. The corrected p values are

reported for all post-hoc tests.
Comparisons Statisticsa

Torso and body height t(38) ¼ 6.54, p < .001, dz ¼ 1.05

Torso and arm t(38) ¼ 3.61, p ¼ .004, dz ¼ .58

Arm and body height t(38) ¼ .54, p ¼ .59, dz ¼ .09

Arm and leg t(38) ¼ 5.37, p < .001, dz ¼ .86

Body height and leg t(38) ¼ 2.65, p ¼ .04, dz ¼ .42

Arm and head t(38) ¼ 4.38, p < .001, dz ¼ .70

Body height and head t(38) ¼ 4.45, p < .001, dz ¼ .71

Head and leg t(38) ¼ .40, p ¼ .69, dz ¼ .06

Leg and foot t(38) ¼ 3.11, p ¼ .01, dz ¼ .50

Head and foot t(38) ¼ 3.72, p ¼ .004, dz ¼ .60

a Holm-Bonferroni corrected p values are reported.
3. Results

3.1. Length judgments

In order to replicate the analyses of Linkenauger et al. (2015),

we initially assessed the accuracy ratios for length judge-

ments alone. We conducted an ANOVA with the judged body

part (foot, head, arm, leg, torso, body) as a within-subject

factor and measuring unit (hand, object) as a between-

subjects factor. The response bias differed across judged
body parts, F(1.95,71.96) ¼ 26.69, p < .001 (GG-corr), hp
2 ¼ .42,

following the pattern reported by Linkenauger et al. (2015).

The post-hoc t-tests in Table 2 report that the torso is mis-

perceived as longer the most, followed by the arm and body

height, leg and head, and finally the foot.

As per previous findings, the participants who used their

hand as a measuring unit gave larger responses than those

who used an object, F(1,37) ¼ 8.96, p ¼ .01, hp
2 ¼ .20. We also

found a trend for interaction (Fig. 2), F(1.95,71.96) ¼ 3.15,

p ¼ .05, hp
2 ¼ .08 (GG-corr). It was driven by larger over-

estimations with hand measuring unit relative to those in

object units for the torso, t(37) ¼ 2.82, p ¼ .03, dz ¼ .63, arm,

t(1,37) ¼ 3.23, p ¼ .02, dz ¼ .72, and leg, t(37) ¼ 3.17, p ¼ .02,

dz ¼ .71, but not the foot, head and body height (p > .05; HB-

corr). Taken together, these results provide a clear replica-

tion of the main findings of Linkenauger et al. (2015).

3.2. Volume judgments

Next, we ran an ANOVA on volume estimates identical to the

one used above for length estimates. In contrast to length

estimates, the overall response bias for volume judgements

was notmodulated by the unit ofmeasurement, F(1,37)¼ 2.84,

p ¼ .10, hp
2 ¼ .08, nor was there an interaction between body

part and measuring unit (Fig. 3), F(2.88,106.38) ¼ .94, p ¼ .42,

hp
2 ¼ .03 (GG-corr). There was, however, a clear pattern of dif-

ferential judgments across body parts, F(2.88,106.38) ¼ 28.02,

p < .001, hp
2 ¼ .43 (GG-corr). Critically, however, this pattern

(Table 3) was different from the pattern observed for length

judgements. The volume of the torso was underestimated the

most, more than the volume of the whole body and leg. The

whole body and leg volume underestimation was greater than

that observed for the head, foot, and arm.

https://doi.org/10.1016/j.cortex.2018.10.016
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Fig. 2 e The accuracy ratios for body length estimates in

hand and object measuring units. The plot shows a pattern

of estimation error across body parts. The overestimation

and underestimation bias is indicated by values > 1

and < 1, respectively. Error bars are ±1 SEM. The biases

larger than 1, as determined by one-sample t tests using a

Holm-Bonferroni correction for multiple comparison error,

are marked by asterisks.

Fig. 3 e The accuracy ratios for body volume estimates in

hand and object units. The plot shows a pattern of

estimation error across body parts. The overestimation

and underestimation bias is indicated by values > 1

and < 1, respectively. Error bars are ±1 SEM. The biases

marked by asterisks deviate from the mean ¼ 1, as

determined by one-sample t tests using a Holm-Bonferroni

correction for multiple comparison error.

Table 3 e The differences in volume misperception across
body parts. The post-hoc t-tests formain effect of body part
were conducted based on the accuracy ratio pattern across
body parts shown in Fig. 3. The comparison of volume
accuracy ratios collapsed across measuring units
confirmed the largest underestimation for the torso,
followed by the leg and whole body, and finally by the
head, foot and arm.

Comparisons Statisticsa

Torso and whole body t(38) ¼ 3.51, p ¼ .01, dz ¼ .56

Torso and leg t(38) ¼ 3.43, p ¼ .01, dz ¼ .55

Leg and whole body t(38) ¼ .73, p ¼ .62, dz ¼ .12

Leg and head t(38) ¼ 7.67, p < .001, dz ¼ 1.23

Whole body and head t(38) ¼ 4.97, p < .001, dz ¼ .80

Head and arm t(38) ¼ 2.46, p ¼ .07, dz ¼ .39

Head and foot t(38) ¼ 1.03, p ¼ .86, dz ¼ .16

Arm and foot t(38) ¼ 1.08, p ¼ .86, dz ¼ .17

a Holm-Bonferroni corrected p values are reported.
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3.3. Measuring unit estimates (catch trials)

In addition to body estimates, we presented catch trials in

which the participants estimated the size of the other

measuring unit. Thus, those judging in hand units would es-

timate the volume and length of objects which would have
been their measuring unit if they were in the other group.

Similarly, the Object Standard group judged their hand size in

object units. As previously discussed, since the objects were

selected to match the hand size as closely as possible the

correct answers and the accuracy ratios for catch trials in both

groups should be 1. The analysis shows that the length of

sized-matched object (sticks) was overestimated in hand

units, t(18)¼ 4.54, p < .001, dz ¼ 1.04, while the estimates of the

hand length in object units did not deviate from veridicality,

t(19) ¼ .82, p ¼ .42, dz ¼ .18. Similarly, the perceived volume of

the size-matched object was overestimated in hand units,

t(18) ¼ 5.55, p < .001, dz ¼ 1.27, while the estimates of the hand

volume in object units again did not deviate from veridicality,

t(19) ¼ 1.17, p ¼ .26, dz ¼ .26 (HB-corr).

The measuring unit was in full view throughout the

experiment. All accuracy ratios for size estimates in hand

units, including those of a non-body object, were larger than

accuracy ratios for estimates in object units. Nevertheless, a

general underestimation of hand size can be ruled out, given

the findings for hand size judgements in object units. One

possible interpretation may be that the hand size is perceived

differently, i.e., as smaller, when the hand is directly viewed

compared to when it is covered by a cloak with other judged

body parts The reason for that may be that the length of a

viewed handmay be perceptually ‘shrank’ relative to its width,

which is greater than the width of a stick-object in the Object

Standard group. Similarly, the hand view may lead to a reca-

libration of perceived volume by a reduction, as it highlights

the shape discontinuities in gaps between the fingers.

3.4. Inverse distortion model of tactile size constancy

In their original study, Linkenauger et al. (2015) found that the

skin sensitivity alone (predictor 1) comes short of predicting

the pattern of length overestimation across body parts; how-

ever, it interacts with body part's actual size (predictor 2). That

is, body parts which are less represented in somatosensory

cortex tend to be mis-judged as longer but this misjudgement

is scaled down by body part's actual size. Those body parts

which are already long will be less elongated perceptually.

https://doi.org/10.1016/j.cortex.2018.10.016
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Fig. 4 e Length overestimation as a function of the overestimation predicted by a product of relative sensitivity and physical

size. The judgements in hand and object units are shown respectively in panel a and b. Note a larger scale in (a) due to larger

response variability. The black line is the regression line. The data is not averaged across trials, i.e., the scatter plots show

all recorded observations. Darker circles reflect higher concentration of the values. This is a replication of previous findings

(cf. Linkenauger et al., 2015, Fig. 6).
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Linkenauger et al. (2015) also reported that the actual body

part length alone (predictor 3) did not explain the pattern in

length overestimation across body parts. The authors went on

to introduce the inverse distortion model (Linkenauger et al.,

2015) positing that the influence of somatosensory homun-

cular distortionsmay be counteracted by the distortions of the

explicit body image. They reported their findings to be con-

strained to the relative body size judgements, i.e., not the

judgements in object units.

To test the theory with our data, we used the tactile spatial

sensitivity measurements from the whole-body mapping

study by Weinstein (1968), which comprises the data of 48

subjects (24 males and 24 females). We obtained the com-

posite sensitivity measure for each body part as an average

across individual location measurements (e.g., leg: mean

acuity for calf and thigh). The predictors were calculated

following the procedures of Linkenauger et al. (2015). The

acuity predictor was computed as the sensitivity of each body

part powered by negative hand sensitivity or �1 for judge-

ments in object units. The second predictor was a product of

the acuity predictor and the proportional body part and

measuring unit length. The body height overestimations were

not included given the large tactile spatial variability across

individual body parts (Linkenauger et al., 2015). The outcome

variable were the raw clean accuracy ratios not averaged

across trials.

We used R analysis software (R Core Team, 2012) and lme4

(Bates, M€achler, Bolker, & Walker, 2015) to perform a linear

mixed-effects analysis of the relationship between tactile

spatial sensitivity and length accuracy ratios. The maximal

random effects structure (Barr, Levy, Scheepers, & Tily, 2013)

in our design included the random participant and body part

intercepts, and by-participant slopes. In a null model, only the

random effects were entered (“empty model”; Quen�e & van

den Bergh, 2004). The model improvement after inclusion of

the predictor (fixed effect) was tested by assessing the

reduction in the residual sum of squares with a Chi-square

test. Our results show that the length overestimation in

hand units was predicted by the product of tactile spatial

sensitivity and body size (Fig. 4a), X2(1,N ¼ 19) ¼ 3.95, p < .05.
This is a direct replication of the previous findings

(Linkenauger et al., 2015; refer to Fig. 6). However, we also

found that the product of sensitivity and size reliably pre-

dicted the length overestimation in object units (Fig. 4b),

X2(1,N ¼ 20) ¼ 11.54, p < .001. Thus, rather than being

restricted to relative body part misperception, the length esti-

mation error in this experiment increases for less sensitive

body parts which are smaller regardless of the measuring

unit. Consistent with the literature, the acuity alone did not

predict the length misperception, X2(1,N ¼ 19) ¼ 1.84, p ¼ .17

(hand units), and X2(1,N ¼ 20) ¼ 1.33, p ¼ .24 (object units).

3.5. Body volume perception

The length misperception was previously linked to tactile

spatial acuity (Linkenauger et al., 2015). However, the tactile

spatial acuity concerns only the skin on body surface, which

is not linearly related to 3D volume of body parts (Tikuisis

et al., 2001). Our predictor for volume judgements was the

SA/VO e i.e., the ratio of body part surface area and its overall

volume. Thus, analogous to a functional role of SI magnifi-

cation in processing of external tactile signals, we tested how

the size of 3D body parts' outer world interface impacted on

their perceived volumetric size. We used linear mixed-

effects modelling with the random effects structure re-

ported in previous section. A freely available SA/VO (Tikuisis

et al., 2001, Table 3) obtained in 3D-scanning was submitted

to the analysis as a predictor. The SA/VO for the whole body

was not provided and thus it could not be included. The

measuring unit groups were collapsed together after

removing the baseline difference by subtracting the grand

mean from the raw accuracy ratios in each group. As ex-

pected, the null model including only the random effects was

improved after the inclusion of SA/VO for the volume accu-

racy ratios, X2(1, N ¼ 39) ¼ 4.55, p ¼ .03, and there was a trend

for it to improve also for the length accuracy ratios, X2(1,

N ¼ 39) ¼ 3.14, p ¼ .08 (Fig. 5). The results thus show that the

volume is underestimated less with the increasing SA/VO.

There is a trend for the length to be overestimated less with

the increasing SA/VO.
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Fig. 5 e The volume (a) and length (b) estimation error predicted by the skin surface to volume ratios. The measuring units

are collapsed together after the removal of their baseline difference. The volume underestimation decreases with larger SA/

VO (m2/m3). There was a trend for the surface to volume ratios to predict the length estimation error. The empty circles at

each body part on the x axis represent demeaned accuracy ratios for all participants. Darker circles indicate higher

concentration of the values.
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The final two linear mixed-effects models assessed how

actual body volume and length alone predicted estimation

error across all six judged body segments. The baseline dif-

ference between the measuring unit groups was again

removed, and we used the previously specified random ef-

fects structure. The length overestimation was not predicted

by the actual body length, X2(1,N ¼ 39) ¼ .01, p ¼ .92. Simi-

larly, the volume underestimation was not increased simply

due to body parts being more volumetric, X2(1,N ¼ 39) ¼ 1.62,

p ¼ .20.
4. Discussion

Earlier, we introduced one particularly interesting recent

development in the literature, namely that the perceptual

distortions of body image in healthy cognition may be linked

to classic homuncular distortions in SI (Linkenauger et al.,

2015; Longo & Haggard, 2012). Our results replicated the find-

ings of Linkenauger et al. (2015), providingmore support for an

increased length overestimation of less sensitive body parts

(Weinstein, 1968) forwhich the somatosensory representation

is compressed (Green, 1982; Sadibolova, Tam�e, Walsh, &

Longo, 2018; Weber, 1996). This suggests that the distortions

of one representation may balance out those of the other

(Linkenauger et al., 2015). Critically, we built on and extended

this literature by testing the volumetric size perception (3D

body image) and finding a pattern of underestimation across

body parts. This underestimation was smaller for body parts

with larger SA/VO ratios, i.e., larger interface between the

body part and outer world relative to its volume on the inside.

Our results add to the evidence suggesting a relationship be-

tween the role of body parts in external signal processing and

body image. The absolute perceptual errors were in similar

magnitude across body parts for both judgement types. Thus,

while the actual size did not predict the misperception pat-

terns, the smaller SA/VO was related to a larger volume un-

derestimation, and a trend for a larger length overestimation.
The largest volume underestimation was found for the

torso, followed by the leg and whole body, and finally by the

head, foot, and arm. In the human body, the distal body parts

actively used for interactionwith the environment have larger

SA/VO, whereas more proximal body parts help maintain the

homeostasis and preserve the heat by being less exposed to

the outer world on account of their smaller SA/VO

(Romanovsky, 2014; Tikuisis et al., 2001). Notably, there is a

rough correspondence between SA/VO and tactile spatial

acuity, suggesting that the body partswhich aremore exposed

to the environment are also equipped with greater skin

sensitivity for interacting with it. The representation of 3D

body proportions (panel b) thus shows some resemblance to a

classic somatosensory homunculus (Penfield & Boldrey, 1937;

Penfield & Rasmussen, 1950). There were no theoretical

grounds to use the tactile spatial acuity as a predictor of vol-

ume misperception, however, because it only relates to skin

on the body surface rather than to the 3D volume itself.

The length of body segments was misperceived as larger.

The largest overestimation was found for the torso, followed

by the arm and body height, leg and head, and finally the foot

(Fig. 6c). Linkenauger et al. (2015) found that the body parts

which are less represented in somatosensory cortex are mis-

judged as longer but this misjudgement is scaled down by

body part's actual size. Those body parts which are already

long will be perceptually less elongated. Our pattern of 1D

length misperception and its relation to a product of actual

length and tactile spatial acuity is a direct replication of

Linkenauger's et al. (2015) findings. Unlike in their study,

however, our effect was not constrained to relative judge-

ments of body parts. Instead, our data in hand units and object

units both attest to a relationship between the explicit body

image and the implicit somatosensory representation. These

findings were previously interpreted as evidence for the ‘in-

verse distortion model’ of tactile size constancy (Linkenauger

et al., 2015). Given that the early somatosensory maps are

distorted (Sur, Merzenich, & Kaas, 1980), the reliability of

somatoperception based solely on themwould be diminished.

The inverse distortion model posits that the negative impact

https://doi.org/10.1016/j.cortex.2018.10.016
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Fig. 6 e Perceptual distortions of body image. Panel (a) shows a body with normal proportions. The representation of 3D

body proportions (panel b) show some resemblance to a classic somatosensory homunculus (Penfield & Boldrey, 1937;

Penfield & Rasmussen, 1950). The body parts underestimated in volume tend to be overestimated in length, thus giving rise

to a tall body shape (panel c). Perceived body proportions change as a function of the judgement type, showing similarity in

a magnitude of the absolute error for individual body parts, be it an underestimation of volume or overestimation of length.
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of early somatotopy may be alleviated by inversely distorted

body image (Linkenauger et al., 2015). As a result, the size of

objects touching the skin is judged more accurately

(Linkenauger et al., 2015).

Conversely, Longo and Haggard (2012) pointed out a

dissociation between the visual template-matching tasks and

1D body size judgements with the latter showing the so-

matosensory distortions but to a reduced degree. When their

participants judged how the lengths of lines on a computer

screen compared to the length of each of their fingers,

perceptual distortions were observed, which were consistent

but smaller than the distortions in their implicit size percep-

tion task. However, the performance was nearly veridical in

their visual template-matching task. The authors suggested

that the 1D size perception was not a pure measure of the

body image, which they thought was veridical, but a weighted

combination of both the visual and somatosensory represen-

tations. Thus, contrary to Linkenauger et al. (2015), Longo and

Haggard (2012) assumed a positive relationship between the

1D length misperception and homuncular distortions.

The key to converge these theories may be in under-

standing how the body surface area is represented at the

explicit level. The under-representation of the segment's
volumes may be related to us being less aware of body's
inside than of its surface. We are indeed much less aware of

the interoceptive signals originating from the body,

including our musculo-skeletal, gastro-testinal, respiratory,

circulatory and hormonal systems (Seth, 2013; Tsakiris &

Critchley, 2016), compared to the signals from our
exteroceptive senses, including touch on the skin. There-

fore, it could be hypothesised that the extent of a surface

interface for contact with the world will not be as under-

represented in the explicit 3D body image as is the vol-

ume. In this scenario, surface area would be overestimated

relative to perceived volume across body parts, and

increasingly so for those body parts which are more

underestimated in volume. The 1D length misperception

may reflect this relative body surface overestimation and

body inside underestimation. Critically, the body parts with

large SA/VO such as hands and feet are the least under-

estimated in volume and overestimated in length, while

those with a small SA/VO like the torso show the largest

magnitude of error in both directions. This arrangement

could indeed counteract the effect of homuncular distor-

tions, and it would not be detected when testing with sen-

sitive fingers (large SA/VO) as did Longo and Haggard (2012).

As such, if corroborated by more empirical evidence, it

would expand on and potentially reconcile the two seem-

ingly contradicting theories.

On the other hand, it could be assumed, that the body sur-

face area will be explicitly underestimated akin to pattern of

misperception found for the body volume. The 3D body image

proportions would then be similar to those of the somatosen-

sory homunculus albeit possibly distorted in a reduced

magnitude as suggested by Longo and Haggard's (2012) evi-

dence. In other words, the 3D body image measured by other

than pictorial body-matching techniques would roughly be a

3D version of the 2D somatosensory homunculus. The

https://doi.org/10.1016/j.cortex.2018.10.016
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overestimation of 1D length for perceptually shrunken body

parts would be difficult to interpret in this scenario. It may be

related to largely unexplored dissociations in body perception

across different dimensions. For instance, the blockage of

incoming signals in anaesthetised finger results in a perceptual

enlargement of its width but not its length (Walsh et al., 2015).

Similarly, Hashimoto & Iriki (2013) found an activation in two

distinct cortical regions when participants made judgements

about their body with reference to their photographs from two

different viewing angles (front and the side). Finally, M€olbert

et al. (2016) reported overestimations for body widths and

depths but an underestimation of body circumference. There

could be dissociations in body size perception studied in 1D, 2D

and 3D space if different aspects of body representation are

being probed for each.

Might these results be affected by perceptual illusions? A

volume of water in a tall and slim glass for instance will be

perceived differently as the same water volume in a short and

wide glass. It is important to note that the body parts were not

directly viewed, and as the catch trial evidence suggests, the

unseen hand was not misperceived in object units while it

may have been judged as smaller when viewed directly.

Nevertheless, the role of perceptual illusions should be

empirically studied and if possible dissociated. A study with

non-body objects of similar shape and size is underway to

address this concern. Correlations between body size esti-

mation error and visuospatial dysfunctions have been re-

ported (Thompson & Spana, 1991) given that the mental body

image requires visuospatial abilities. Thus, similarities in

body and non-body perception may be observed. However,

differences were found when participants judged themselves

as opposed to judging mannequins, which suggests a differ-

ence in size perception for other bodies or objects (Dolce,

Thompson, Register, & Spana, 1987). Given that the volu-

metric body perception is fairly under-explored, there may be

numerous other potentially important factors to address in

future studies, such as how the feeling of satiety or the

changes in body posture with their corresponding shifts in

centre of gravity across body parts may interact with the

perception of volumetric body size.

There could be a concern about the study being rather

intrusive for a participant whose measurements had to be

taken with a tape measure. Future studies may take advan-

tage of a 3D body scanning (Stewart et al., 2012), with the

added benefit of recording accurately the actual size of par-

ticipant's body parts. Another issue that may be raised is the

difficulty with mentally adding up more measuring units for

large body parts. However, this does not seem to be a concern

given that the magnitudes of misperception error were unre-

lated with actual body size in this experiment. An alternative

method for investigating the 3D body size perceptionmight be

in virtual environments (Alca~niz et al., 2000). Still, there is an

important point to be made. To our knowledge, our study is

one of the pioneer studies exploring in healthy adults the

representation of their 3D body size. As hinted in the term, the

body image would be largely conceived of and studied as a

mental image of how the body would be seen from the outside.

This study has shown that the research may actually benefits

from reducing the focus on this rather ‘allocentric’
photograph-like visual perspective when studying the 3D

body perception. Nevertheless, it would be interesting to

compare our results to those from a study in the virtual

environment where again the emphasis will shift to how the

3D body looks from the outside.

To conclude, one of the main contributions of this study is

addressing the body image for the first time as a representa-

tion of a 3D volumetric body, and in directing the research

enquiry towards the ‘body on the inside’. To our knowledge,

no prior study assessed the representation of body size and

shape in this respect before. Our results showed that healthy

individuals tend to underestimate their body parts in volume

while overestimating them in length. The patterns of

misperception across body parts thus gave rise to propor-

tionally distorted body shapes, that similar to a well-known

depiction of a somatosensory homunculus and a tall bean-

pole, respectively. Our findings add to a growing evidence that

healthy adults do not have highly accurateeif not infallible

representation of their body size as previously assumed, and

that their perceptual errors may be determined by a role of

body parts in external signal processing. More generally, these

findings and the corresponding recent advances in body

image literature highlight the importance of studying the

perceptual distortions “at the baseline”, i.e., in healthy popu-

lation, given their potential to further elucidate the nature of

perceptual distortions in clinical conditions. Indeed, without

understanding the distortions in healthy individuals, it is

impossible to pinpoint the unique influence of clinical disor-

ders on body image. Dissociating normal versus clinical body

distortions will likely allow practitioners to develop more

objective and reliable diagnostic criteria for patient pop-

ulations. Thus, our study should provide a useful point of

departure for future work to replicate and extend with clinical

samples. Indeed, new testable theories were already intro-

duced based on the related evidence; e.g., theories positing

that individuals with eating disorders may be more reliant on

distorted somatosensory representations than healthy people

(Longo, 2015).
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