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INTRODUCTION

Direct perceptuomotor links and response
inhibition

In a constantly changing environment, the successful control of behaviour

requires an organism to respond quickly and flexibly to novel stimuli. This

includes the ability to rapidly initiate a motor response even before the

respective stimulus has been consciously identified, and to quickly interrupt and

change ongoing behaviour as soon as sensory evidence indicates that it is no

longer appropriate. The former is assumed to be mediated by so-called ``direct

perceptuomotor links''Ðstraight pathways from sensory to motor systems

which allow sensory information to trigger motor responses directly, i.e.,

without the need for prior conscious stimulus recognition (e.g., Neumann, 1990;

Neumann & Klotz, 1994). The latter is assumed to be brought about by inhi-

bitory processes controlled by central executive mechanisms in the prefrontal

cortex (for a recent review, see Band & van Boxtel, 1999).

Initial evidence for the existence of direct perceptuomotor links stems from

the observation that perceptually salient stimulus features (e.g., their spatial

location) will trigger the initiation of a corresponding motor response even if

these features areÐper instructionÐtotally response-irrelevant (Simon, 1969;

see also de Jong, Liang, & Lauber, 1994; Eimer, 1995). A more spectacular

demonstration of direct perceptuomotor links can be found in certain neurolo-

gical impairments such as ``blindsight''. This disorder is caused by a lesion to

the primary visual cortex, and results in a total loss of visual experience in the

affected field. Surprisingly, though, patients are often able to respond accurately

to stimuli appearing in their blind fieldÐdespite denying that they can see

anything at all in this area (Weiskrantz, Warrington, Sanders, & Marshall,

1974). Similar phenomena can also be observed in visual-illusion experiments

with neurologically unimpaired subjects. Results indicate that although con-

scious experience is ``fooled'' by a perceptual illusion, pointing and grasping

movements frequently are not (Agliotti, DeSouza, & Goodale, 1995; Bridge-

man, Kirch, & Sperling, 1981).

The most exhaustive investigation of direct perceptuomotor links, however,

has been conducted in the context of the ``masked prime'' paradigm. In this

paradigm, participants make a speeded two-alternative choice response to a

clearly visible ``target'' stimulus (e.g., a left- or right-hand key press to an

arrow pointing to the left or right). On each trial, the target is preceded by a

briefly presented and subsequently masked ``prime'' stimulus. The prime can

either be one of the two possible targets (e.g., a left- or right-pointing arrow),

or a neutral stimulus that is not associated with any motor response (e.g., a plus

sign). Due to presentation duration and masking, primes are ``subliminal'', i.e.,

they remain below the threshold of perceptual awareness, as evidenced by

various detection and identification procedures (e.g., Dehaene et al., 1999;
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Eimer & Schlaghecken, 1998; Klotz & Wolff, 1995; Schlaghecken & Eimer,

1997).

However, although participants are not consciously aware of their presence,

primes systematically affect responses to the subsequent target. Compared to

neutral-prime trials, responses are usually faster and more accurate on ``com-

patible'' trials, where prime and target are mapped to the same response, and

slower and less accurate on ``incompatible'' trials, where they are mapped to

opposite responses (Dehaene et al., 1999; Jaskoski, van der Lubbe, Schlotter-

beck, & Verleger, 2002; Klotz & Wolff, 1995; Leuthold & Kopp, 1998; Nac-

cache & Dehaene, 2001; Neumann & Klotz, 1994; Schlaghecken & Eimer,

1997, 2000). These behavioural results, together with converging evidence from

electrophysiological and haemodynamic measures (e.g., Dehaene et al., 1999;

Eimer, 1999; Eimer & Schlaghecken, 1998; Jaskowski et al., 2002; Klotz &

Wolff, 1995; Leuthold & Kopp, 1998), indicate that the primes, despite being

inaccessible to conscious awareness, trigger activation of their corresponding

motor response.

Being able to activate a motor response to a stimulus that has not (or not yet)

been fully analysed has the obvious advantage of allowing extremely quick

reactions to novel and potentially important stimuli. On the other hand, it has the

equally obvious disadvantage that these reactions might turn out to be inap-

propriate. Therefore, it has been suggested that all behaviour is continually

monitored by a ``central executive'', whichÐif necessaryÐwill activate inhi-

bitory control processes to interrupt the ongoing motor response (e.g., Dehaene,

Posner, & Tucker, 1994; Kopp, Rist, & Mattler, 1996; Sasaki, Gemba, Nambu,

& Matsuzaki, 1993; and for a review, see Band & van Boxtel, 1999).

Evidence for this comes from event-related brain potential (ERP) studies

of response inhibition. In a typical experiment, participants have to make a

speeded motor response on most trials, but are occasionally required to withhold

any overt response. On these ``stop'' trials, activity in the prefrontal cortex

increases, as evidenced by an enlarged negative-going shift (N2) at anterior

electrode sites on ``stop'' as compared to ``go'' trials (e.g., Bokura, Yama-

guchi, & Kobayashi, 2001; Bruin, Wijers, & van Staveren, 2001; Eimer, 1993;

Falkenstein, Hoormann, & Hohnsbein, 1999; Heil, Osman, Wiegelman, Rolke,

& Henninghausen, 2000; Jodo & Kayama, 1992; Kok, 1986; Kopp, Mattler,

Goertz, & Rist, 1996). The same N2 effect has also been observed when,

instead of withholding all responses, participants have to change from an

inappropriately preactivated response to the response actually required by the

target (Gehring, Gratton, Coles, & Donchin, 1992; Heil et al., 2000; Kopp,

Mattler, et al., 1996; Kopp, Rist, & Mattler, 1996). Converging evidence

from functional magnetic resonance imaging (fMRI) studies (e.g., Carter

et al., 1998) and from patients with prefrontal lesions (e.g., Godefroy, Cabaret,

Petit-Chenal, Pruvo, & Rousseaux, 1999), further supports the hypothesis that

these response inhibition processes depend on prefrontal inhibitory control
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mechanisms (see also Baddeley, 2000; Baddeley & Hitch, 1974; Fuster, 1989;

Shallice, 1988).

There is, however, a problem with this notion: The prefrontal cortex is

generally regarded to mediate voluntary control processes (e.g., Luria, 1992;

Posner & DiGirolamo, 1998; Shallice, 1988; Spence & Frith, 1999), but may not

be involved in automatic behaviour (e.g., Jueptner et al., 1997). Processes of

subliminal perception and automatic motor control rather appear to be a function

of parietal cortex (Frith & Dolan, 1996; Pisella et al., 2000)Ðan area that did not

show any increased activation in the above-mentioned motor inhibition tasks.

Thus one might speculate that if inhibition is a function of the prefrontal cortex,

and if the prefrontal cortex is not involved in the perception of subliminal

stimuli, then inhibitory control might not be available for response tendencies

triggered by subliminal stimuli.

Evidence to support this hypothesis has indeed been found in a number of

different experimental paradigms (e.g., Allport, Tipper, & Chimel, 1985; Mar-

cel, 1980; McCormick, 1997; Neill, Valdes, & Terry, 1995), suggesting that

subliminal stimuli trigger only ``passive'' activation processes, but not active

inhibition. Results from the masked prime experiments reported above are also

generally in line with the activation-only hypothesis. Behavioural positive

compatibility effects (PCEsÐbetter performance on compatible than on

incompatible trials) have been found to be accompanied by electrophysiological

and haemodynamic evidence of motor activation of the primed response (e.g.,

Dehaene et al., 1999; Jaskoski et al., 2002; Klotz & Wolff, 1995; Leuthold &

Kopp, 1998), without evidence for subsequent inhibition.

Despite this compelling evidence, we now have reason to believe that the

``activation-only'' hypothesis of subliminal motor priming is incorrect. In a

recent series of masked prime experiments (Eimer, 1999; Eimer & Schla-

ghecken, 1998, 2001; Eimer, SchuboÈ, & Schlaghecken, 2002; Klapp & Hinkley,

2002; Schlaghecken & Eimer, 1997, 2000, 2001, 2002) behavioural and elec-

trophysiological evidence for the existence of inhibitory control processes in

response to subliminal stimuli has been provided. At the behavioural level, the

basic finding of these experiments is that an initial PCE, obtained when the

target follows the masked prime immediately, i.e., mask±target stimulus onset

asynchrony (SOA) of 0 ms, turns into a negative compatibility effect (NCEÐ

benefits on incompatible trials, and costs on compatible trials, relative to neutral

trials) when the mask±target SOA is sufficiently long (about 80 ms or more; see

Figure 1).

At the electrophysiological level, this sequence of PCEs and NCEs is

reflected in a specific biphasic pattern of the lateralized readiness potential

(LRPÐan online measure of unimanual motor preparation, obtained by com-

puting the difference in activation levels between contralateral and ipsilateral

motor cortex relative to target direction). Figure 2 (taken from Eimer, 1999)

depicts LRP waveforms from an experiment where mask±target SOA was 100
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ms, and behavioural NCEs were obtained. In this graph, the origin corresponds

to prime onset, and potentials are measured up to 600 ms after prime onset. To

reiterate, the direction of deflection (above or below the x-axis) indicates the

activation difference between contra- and ipsilateral motor cortices relative to

target direction, i.e., the difference between motor cortex activations corre-

sponding to the correct and incorrect hand movement. As a reflection of the fact

that the LRPs indicate how the difference in activation between left and right

hemispheres changes over time, we will throughout the paper talk in terms of

separation between response alternatives or, in other words, about the extent to

which one response dominates the other.

In Figure 2 the black arrow indicates the time (around 250 ms after prime

onset) where the LRP shows significantly increased initial separation of the

contralateral motor cortex (corresponding to a correct response preparation) on

compatible trials and of the ipsilateral motor cortex (corresponding to an

incorrect response preparation) on incompatible trials. Since compatible and

incompatible trialsÐby definitionÐdiffer with respect to whether the prime is

mapped to the correct or the incorrect response, these initial separations can

safely be interpreted as motor separations triggered by the masked prime.

Interestingly, the initial separation subsequently returns to baseline and is

replaced by an increased separation in the opposite direction. This is most

Figure 1. Masked priming task response times for different prime±target ISIs. The figure is a re-

representation of data in Figures 1a and 1b of Eimer and colleagues (Eimer, 1999; Eimer &

Schlaghecken, 1998; Eimer & Schlaghecken, 2001; Eimer et al., 2002; Klapp & Hinkley, 2002;

Schlaghecken & Eimer, 1997, 2000, 2001, 2002). Note that in these experiments prime and mask are

presented in the same spatial location, but the target is spatially offset to enable it to be presented

simultaneously with the mask.
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clearly seen on compatible trials, where this ``reversal phase'' results in a

substantial separation towards the ipsilateral (i.e., incorrect) motor cortex. On

incompatible trials, the reversal results in a separation towards the contralateral

(i.e., correct) motor cortex. The white arrow indicates the maximum of the

reversal phase, i.e., the point at which target-related activation begins to cancel

out the reversal in the compatible condition and to accentuate it in the incom-

patible condition. On neutral trials (prime not mapped to any response), neither

initial separation nor subsequent reversal occurs.

The LRP data thus clearly illustrates why PCEs occur with short SOAs, and

NCEs with longer SOAs. If motor preparation in response to the target starts

early, it will benefit from the correct direction separation triggered by the prime

on compatible trials, but will have to overcome the incorrect direction separation

on incompatible trials. If, however, motor preparation in response to the target

starts late, the opposite is true: Now it will benefit from a reversedÐand hence

correctÐseparation on incompatible trials, and will have to overcome a

reversedÐand hence incorrectÐseparation on compatible trials. If the mask±

target SOA is chosen so that motor preparation in response to the target starts

after the initial separation phase, but before the subsequent reversal phase, no

behavioural effects of prime±target compatibility should be obtained. Exactly

this has been demonstrated in two experiments where SOA was increased

stepwise from 0 ms to 100 ms (Schlaghecken & Eimer, 1997) or to 192 ms

Figure 2. LRP for masked priming task (from Eimer, 1999).
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(Schlaghecken & Eimer, 2001): In both experiments, initial PCEs disappeared

with a mask±target SOA of about 60 ms, and turned into NCEs with longer

SOAs.

PCEs turning into NCEs and the reversal of prime-induced motor separation

strongly suggest the operation of inhibitory processes. Moreover, direct evidence

for response inhibition has been obtained in an experiment using a go/nogo

variant of the masked prime task (Eimer & Schlaghecken, 1998, Exp. 3). In

addition to finding NCEs on reaction times (faster responses on go trials when

the prime was a nogo stimulus than when it was a go stimulus), there was also a

substantial reduction of false alarms on incompatible nogo trials (i.e., when the

prime was a go stimulus). This indicates that the response triggered by the prime

had been actively inhibited.

NCE and self-inhibition

The interpretation of the NCE as reflecting motor inhibition is in obvious

conflict with the, previously discussed, assumption that the prefrontal cortexÐa

structure presumably not involved in processing subliminal informationÐis

always implied in inhibitory control. Four different explanations seem possible:

(a) The prefrontal cortex is, despite the evidence to the contrary, involved in

the processing of subliminal stimuli.

(b) The NCE does not, after all, result from inhibition.

(c) The prefrontal cortex is not involved in the processing of subliminal

stimuli, and the NCE does result from inhibition, but primes were not

sufficiently masked, i.e., not subliminal.

(d) Primes were presented subliminally, the prefrontal cortex is not involved

in the processing of subliminal stimuli, and the NCE does result from

inhibition, but the inhibition process responsible for the NCE in the

masked prime task is different from the top-down inhibition process

responsible for the interruption of ongoing motor activity triggered by

supraliminal stimuli.

We disregard explanation (a) on the basis of the available evidence both from

published work (e.g., Frith & Dolan, 1996; Jueptner et al., 1997; Luria, 1992;

Pisella et al., 2000; Posner & DiGirolamo, 1998; Shallice, 1988; Spence & Frith,

1999), and from as yet unpublished data from our own laboratories, indicating

that the prefrontal cortex is not specifically involved in inhibitory control of

subliminally primed motor responses.

We disregard explanation (b) for two reasons: First, on the basis of the go/

nogo data reported above, and second, because there is no acceptable alternative

explanation available. If the NCE is not due to inhibition, it can only be due to a

selective activation of the opposite response above the (uninhibited) activation
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level of the initially primed response (this interpretation does not conflict with

the LRP data because the LRP is a difference waveform, i.e., it reflects differ-

ences in relative activation levels of contra- and ipsilateral motor cortices, not

absolute activation levels). How would such a strong selective activation be

brought about? The only conceivable explanation seems to be that a stimulus

presented after the prime, i.e., the mask, actively triggers preparation of the

opposite response. In the earlier experiments (e.g., Eimer & Schlaghecken,

1998, Exp. 1; Schlaghecken & Eimer, 1997), left- and right-pointing arrows

served as prime and target stimuli, and the mask was composed of superimposed

left- and right-pointing arrows and was presented immediately after the prime.

One might argue that this effectively ``added'' the opposite stimulus to the

prime. This could have resulted in the required selective activation of the

opposite response. However, an increasing number of experiments have

employed masking stimuli that do not share any features with primes or targets

(e.g., Eimer & Schlaghecken, 1998, Exp. 2; Schlaghecken & Eimer, 2002).

Importantly, similar (although somewhat smaller) behavioural and electro-

physiological results were obtained, thus effectively disproving the hypothesis

that a mask-induced activation of the opposite response underlies the NCE. It

might thus be argued that masking with the opposite stimulus artificially

increases the NCE, but it cannot be argued that it causes the NCE.

Finally, we disregard explanation (c) on the basis of the large number of

various stimulus detection and identification tests, all demonstrating that parti-

cipant's performance was at chance level (e.g., Dehaene et al., 1999; Eimer &

Schlaghecken, 1998; Klotz & Wolff, 1995; Schlaghecken & Eimer, 1997).

Furthermore, Klapp and Hinkley (2002) have demonstrated that when primes are

unmasked (i.e., supraliminal), PCEs rather than NCEs occur, thus making an

explanation in terms of ``inhibition triggered by residual prime visibility''

highly implausible.

This leaves explanation (d), that the NCE is caused by an inhibition process

different from the one responsible for controlling motor activations in response

to supraliminal stimuli. We have argued elsewhere (Schlaghecken & Eimer,

2001, 2002) that the NCE reflects the operation of a local self-inhibition process,

which acts as an ``emergency brake'' system so that a strongly preactivated

response becomes actively inhibited if the sensory evidence for this response is

suddenly removed. Self-inhibition mechanisms, where the activation of a

component directly causes its subsequent inhibition, have been described

repeatedly in the literature (see, e.g., Arbuthnott, 1995; Houghton, Tipper,

Weaver, & Shore, 1996). They are characterized by an activation-followed-by-

inhibition sequence (similar to that obtained in masked priming), and generally

show a close relationship between the amount of initial activation and the

strengths of subsequent inhibition.

The same relationship was observed with masked primes. Only responses

triggered by perceptually ``strong'' masked primesÐpresented at the centre of

408 BOWMAN, SCHLAGHECKEN, EIMER



fixation for about 16±33 msÐseem to be subject to inhibition once the

respective sensory evidence is removed. Perceptually weak masked primes, in

contrast, apparently fail to elicit inhibition. If masked primes are not presented

foveally, but in the periphery of the visual field, PCEs instead of NCEs are

obtained (Schlaghecken & Eimer, 1997, 2001). The same holds for primes

presented foveally, but overlaid with visual noise (Schlaghecken & Eimer,

2002). Conversely, if primes are presented peripherally, but are made percep-

tually more salient by increasing prime±mask interstimulus interval (ISI), NCEs

will reappear (Schlaghecken & Eimer, 2002).

In Schlaghecken and Eimer (2002), a simple functional model of subliminal

motor control was presented. It comprised direct perceptuomotor links (both

excitatory and inhibitory), local self-inhibition circuits in the form of inter-

connected ON/OFF-nodes, and an inhibition threshold from OFF- to ON-nodes.

This model informally explains results from a wide variety of priming tasks,

including PCEs turning into NCEs in subliminal priming and PCEs in supra-

liminal priming. It can also account for PCEs in the flanker paradigm (a central

target ``flanked'' by distractors; Eriksen & Eriksen, 1974) and the decrease of

the flanker PCE with increasing retinal eccentricity of the flankers (Goolkasian,

1997; Miller, 1991). However, this model has been formulated at a purely

descriptive level. Thus, its full computational consequences have not been

explored.

However, related computational models can be found in the literature. In

particular, an important influence on our work has been the connectionist

modelling of selective attention by Houghton and Tipper (1994). They have

provided connectionist models of two selective attention phenomena: Negative

priming (Tipper, 1985) and inhibition of return (Klein, 2000). Although different

in nature to masked priming (which is not subject to high-level attentional

control), inhibitory effects not unlike those arising in masked priming, can be

observed in both inhibition of return and negative priming. In addition,

Houghton and Tipper's model was based upon self-inhibitory ON±OFF circuits

not unlike those used in (Schlaghecken & Eimer, 2002). Houghton and Tipper

call these opponent processes.

Due to this common role for inhibition we were drawn to investigate whether

Houghton and Tipper's (1994) connectionist modelling principles could be

applied to the masked priming task. However, as previously suggested, the

existing Houghton and Tipper model is not suitable for modelling masked

priming. This is because, in both their negative priming and inhibition of return

implementations, the release of inhibition is driven by (higher level) attentional

mechanisms, which would classically be viewed to have their locus in prefrontal

areas. Consequently, in this paper we seek a computational explanation that is

``dumb'' in the sense that recourse is not taken to high-level processes. Rather a

model that reflects the characteristics of a direct nonconscious link from per-

ception to motor action is developed. In undertaking this endeavour, we will
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though use a number of mechanisms underlying Houghton and Tipper's mod-

elling work.

Thus, the aim of the present study is to explore how principles from con-

nectionist modelling, particularly those employed by Houghton and Tipper

(1994), can be used to explain the available masked priming data. This will

enable us to provide a computationally prescribed explanation of the mechan-

isms that underlie the masked priming effects. In order to do this we will

develop a simple, but surprisingly powerful, computational model of human

early motor control. This model has also been influenced by the explanation of

masked priming effects given in (Schlaghecken & Eimer, 2002) and can thus

also be viewed as a computational realization of that earlier descriptive model.

The benefits of constructing computational models are numerous, but most

significantly such models force researchers to think hard about their theories,

and prevent them from being able to hide behind imprecise natural language

explanations. A running model can be objectively tested against available and

newly arising data. This approach is particularly worthwhile when a large

amount of empirical data is available to constrain the model; this is exactly the

case with masked priming. Also, a major benefit of the existence of a compu-

tational realization is that it can be used to systematically generate predictions

that can then be fed into further empirical work. The modelling work undertaken

here will yield just such a set of concrete predictions.

We begin by summarizing the masked priming data in the next section.

Subsequent sections describe the theoretical principles that underlie our model,

present the model itself, and document the results of our modelling. The final

two sections contain a discussion and concluding remarks respectively.

MASKED PRIMING

The basic paradigm

From amongst the various experimental paradigms, we particularly focus here

on the masked prime task of Eimer and Schlaghecken (1998)Ðhereafter referred

to as the ``basic paradigm''Ðwhich provides behavioural and electro-

physiological data on priming, as well as data on prime visibility.

In the priming task, trial structure is as follows:

1. Prime phase. A prime is presented for 16.667 ms at the centre of fixa-

tion. The prime is either a response-mapped left- or right-pointing double

arrow (``<<'', ``>>''), or a neutral (not response-mapped) inward- or

outward-pointing double arrow (``><'', ``<>'').

2. Mask phase. A masking stimulusÐconsisting of superimposed left- and

right-pointing double arrowsÐis presented centrally, immediately after

prime-offset, for 100 ms.

3. Target phase. A left- or a right-pointing double arrow is presented
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centrally, immediately after offset of the mask, for 100 ms. A left- or

right-hand key press has to be executed as quickly and accurately as

possible in response to target-arrow direction.

This experimental set-up yields three compatibility conditions:

. Compatible. Where prime and target are mapped to the same response, i.e.,

a directional arrow is presented in the prime phase, and the direction of the

arrows in the prime and target phases is the same.

. Incompatible. Where prime and target are mapped to opposite responses,

i.e., a directional arrow is presented in the prime phase, and the direction of

the arrows is reversed between prime and target phase.

. Neutral. Where the prime is not mapped to any response, i.e., a neutral

(nondirectional) stimulus is presented in the prime phase.

In the basic paradigm, compatible, incompatible, and neutral trials are presented

with equal probability. These three conditions have been extensively investi-

gated and have yielded NCEs on reaction times (RTs) and error rates as shown

in Figure 3 (taken from Eimer, 1999) and LRP waveforms as shown in Figure 2.

In accordance with the ``landmarks'' provided by the LRP waveforms, we

will use the following terminology in the remainder of the paper:

. Prime-induced activation onset. The point, around 200 ms after prime

onset, at which compatible and incompatible waveforms show a significant

enough deflection from the origin that it cannot be attributed to background

activation fluctuations.

. Reversal onset. The point at which suppression starts to take affect,

somewhere around the black arrow.

. Inhibition-induced crossover. The crossover point that is just before 300

ms, at which suppression has taken sufficient hold that direction of response

separation changes.

. Target-induced activation onset. The point at which target activation starts

to take affect, somewhere around the white arrow.

. Target-induced crossover. The compatible case crossover just before 400

ms at which target activation has taken sufficient hold that direction of

response separation changes again.

The spectrum of experiments

Basic experiment

The starting point for our modelling is to reproduce the data arising from the

basic experiment discussed in the previous subsection. One particularly notable

point about this LRP profileÐmost clearly seen in the waveforms from
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compatible trialsÐis that the reversal deflection is substantially larger than the

prime-triggered preactivation. The need to reproduce such a response profile

will impose strong constraints on our model.

However, in order to further constrain the model we wish to reproduce the

full spectrum of data discussed in the introduction. In the following, we will

discuss the implications of these findings for computational models of masked

priming.

Influence of SOA

PCEs obtained with short prime±target SOAs turn into NCEs with longer

SOAs, reflecting the activation-followed-by-inhibition process typical for self-

inhibitory circuits. The model thus has to be able to produce a biphasic temporal

pattern, where initial separation in a particular direction is followed by a

separation reversal.

Figure 3. Reaction times and error rates for masked priming task (from Eimer, 1999).
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Influence of prime strength

Only perceptually ``strong'' primes lead to an NCE (indicating the presence

of self-inhibition), while perceptually ``weak'' primes result in PCEs only

(indicating the absence of self-inhibition). This suggests the operation of some

sort of threshold mechanism, which controls the release of inhibition back onto

response nodesÐonly activation triggered by high strength primes will cross

this threshold and trigger the inhibitory reversal.

Prime visibility results

As noted above, a number of different prime visibility tests have yielded

strong evidence that masked primes are not available to conscious awareness. In

the forced choice variant of the basic paradigm, for example, masked directional

arrow primes are presented with different durations. Results clearly indicated

that for 16.666 ms primes, identification performance was at chance level

(Eimer & Schlaghecken, 1998). This is in itself a revealing outcome since, as is

evident from the LRPs shown in Figure 2, the prime does cause an activation of

its corresponding motor response. That is, prime-induced activation propagates

right through to response systems. Indeed there is a considerable profile of motor

cortex activation before the target is presented and there is no a priori reason to

believe that this activation will fail to arise in the forced-choice experiment. The

implication then of the forced-choice data is that in the absence of a target

stimulus and/or in the absence of speeded RT instructions, these deflections do

not have any effect on response outcomes. In other words, residual activation

induced by the prime only has an effect on overt responses if it is built upon by

target-induced activation.

This suggests that there is some form of selection criterion working at the

response end, which could be defined in terms of motor cortex activation levels.

At first glance a simple threshold might seem to be a sufficient selection cri-

terion, i.e., once the separation of the two response alternatives crosses a par-

ticular threshold, an overt response is released, while activation below this

threshold has no effect on outcomes. However, for reasons that will become

clear in the following subsection, a simple threshold is not sufficient.

Masked and unmasked priming

Perhaps the strongest constraints imposed on our model come from four as

yet unpublished experiments, which varied the masking of the primes. The

experimental set-up was similar to the basic experiment, with the exceptions

outlined below.

Full mask. This experiment is essentially a replication of the basic

experiment described above. However, instead of a superimposed-arrows

mask, a scrambled pattern mask (a rectangular array of overlapping lines of
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different length and random orientation) was employed, and a 50 ms empty

interval, inserted between mask offset and target onset, increased prime±target

ISI (mask±target SOA) to 150 ms. Forced choice and staircase tests have

confirmed that primes are successfully masked with this procedure, and

behavioural and LRP results (cf. Figure 4a and Figure 5a) replicate the earlier

findings (cf. Figure 2 and Figure 3).

There is one small but pertinent feature of these data that it is worth

emphasizing. With the longer ISI, there appears to be sufficient time between

prime and target presentation for the inhibitory reversal to complete and for

activation to reverse again (``double reversal''). This is most evident in the

incompatible condition, where the LRP shows a tendency to return to baseline

prior to the final separation in the target direction. Having to reproduce this

double reversal will impose strong constrains on our model.

It is also noteworthy that the behavioural NCE is smaller in this experiment

(approximately 30 ms) than in the basic experiment (approximately 50 ms).

This might be due either to an artificially increased NCE with arrow masks in

the basic experiment (see the ``NCE and self-inhibition'' subsection on p. 391)

or to the onset of the double reversal. Of course, a combination of both factors

might be possible. We will return to this issue later (cf. the ``Comparing ISI

100 and ISI 150 experiments'' subsection on p. 440).

Figure 4. Reaction times and error rates on compatible and incompatible trials as a function of

masking conditions: (a) Full mask, (b) partial mask, (c) frame, and (d) empty (no mask) 150 ms ISI

experiments.
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Partial mask. This experiment is identical to the one described above, only

that the number of lines constituting the mask has been substantially reduced (3

instead of 30). This results in incomplete masking andÐcorrespondinglyÐ

supraliminally presented primes. The LRP (Figure 5b) shows that, unsurpris-

ingly, the initial prime-triggered activation is much stronger than with fully

masked primes. Also, it can be seen that the partial mask causes some inhibitory

effect (cf. the return of the initial separation to baseline on compatible trials).

However, this inhibition is insufficient to cause a full reversal of relative

activation levels. Behavioural PCEs are obtained in this experiment (cf. Figure

4b), as can be expected with supraliminal primes.

However, from a closer inspection of the LRP one might have expected

NCEs to occur, as the incompatible condition separates towards the final

minimum earlier than the compatible condition does. Its minimum point is later

Figure 5. LRPs for 150 ms ISI experiments: (a) Full mask, (b) partial mask, (c) frame, and (d)

empty (no mask).
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(in accordance with the observed PCE), but it certainly separates faster. It is this

effect, which, we argue, suggests that the selection criterion for response

execution cannot be a simple threshold (cf. the ``Prime visibility results'' sub-

section on p. 397). If the criterion for judging when response separation gen-

erates an overt response was a simple threshold, we should obtain NCEs, since

the incompatible condition would reach the threshold first!

We therefore suggest that the selection criterion is an accumulation of

separation over time, in which ``wrong direction'' separation counts negatively.

Thus, PCEs are obtained in this experiment because the incompatible condition

initially accumulates wrong direction separation, which has to be overcome

when separation moves in the correct direction. In contrast, the compatible

condition only accumulates correct direction separation before target activation

takes effect, thus reaching the point of selection criterion satisfaction earlier. If

we locate the point of selection criterion satisfaction at the final minimum of a

separation curve, this accumulation-based interpretation of selection is con-

sistent with the observation that the incompatible waveform has a lower mini-

mum than the compatible waveform. In fact, we will argue that such an

accumulation-based separation criterion is consistent with neural network

response selection mechanisms that have previously been employed (e.g.,

Cohen, Dunbar, & McClelland, 1990).

Frame. Again, the general experimental set-up was as described above, but

an empty rectangular ``frame'' was presented instead of a mask. Thus there was

effectively no masking, although the same outer contour as the mask was

presented for the usual 100 ms interval. Since the prime was clearly visible on

each trial, participants were explicitly instructed not to respond to it, i.e., to

withhold their response until the target presentation. As expected, behavioural

PCEs were obtained (cf. Figure 4c), and the LRP waveforms show no evidence

of an inhibitory reversal (cf. Figure 5c).

This data gives strong justification for the role of a (successful) mask in

generating the inhibitory reversal, as without a successful mask, the reversal

does not arise. Unsurprisingly, the initial separation build-up is even larger than

in the partial mask experiment. Broadly speaking, the difference between contra-

and ipsilateral motor cortex activationÐstarting around 200 ms after prime

onsetÐcontinues to increase throughout the next 150 ms (although the rate of

increase slows down somewhat over time). In addition, as can be seen clearly for

the incompatible condition, around 350 ms after prime onset, the initial

separation reverses sharply. Both the timing and the slope of this reversal

suggest strongly that it reflects the onset of target-related motor processes, rather

than a mere decay of prime-triggered motor processes.

Obtaining the sustained prime-induced separation that we see for this con-

dition will impose strong constraints on our model. We argue that it is sug-

gestive of two mechanisms. First, the perceptual trace of an unmasked prime

must decay relatively slowly in order to maintain prime-direction response
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separation throughout the 150 ms ISI (discussed in more detail in the ``Sustained

perceptual trace'' subsection on p. 402). Second, there has to be a mechanism by

which separation at the response end is accentuated over time, because a

decaying perceptual trace seems insufficient to actively increase the motor

activation separation until target separation takes effect. Consequently, we

propose that response nodes are competing and that selected directions will be

accentuated over time through this process of competition. The details of this

mechanism will be discussed later (cf. the ``Response competition'' subsection

on p. 404).

Empty interval. In this experiment, a 150 ms blank screen is presented

between the prime and the target. This produces an almost identical LRP to the

frame experiment (Figure 5d), giving further evidence that it is the sudden

removal of sensory evidence with successful masking that causes the inhibitory

reversal. In addition, the behavioural data is largely also in line with that for the

frame experiment (cf. Figure 4d), i.e., a (somewhat larger) PCE occurs, with

similar mean RTs and error rates.

The role of the task set

In several experiments, we have investigated whether compatibility effects in

masked priming are automatically elicited by the directional information

inherent in the arrow-primes, or whether they require the presence of a particular

task set, i.e., knowledge about particular stimulus±response (S±R) mappings,

and the intention to use them. Results strongly supported the latter assumption.

Arrow-primes did not elicit compatibility effects when targets were letters

instead of arrows (Eimer & Schlaghecken, 1998), and arrow-primes that were

mapped to one response modality (e.g., hand responses to arrow-targets) failed

to elicit compatibility effects in a different response modality (e.g., foot

responses to nonarrow-targets). Although, compatibility effects with nonarrow-

targets were reliably found when these targets were mapped to the same

response modality as arrow targets (e.g., Eimer, 1999; Eimer & Schlaghecken,

2001). These findings clearly demonstrate that compatibility effects in masked

priming represent a mixture of voluntary and automatic processes. They are

automatic to the extent that they are triggered by stimuli the participant is not

consciously aware of, but at the same time, they depend on S±R mappings as

defined in the instructions.

THE THEORY

The neural network model that we describe in the section after this is a concrete

realization of our theory of masked priming. However, before we discuss this

formal realization, we first motivate and informally introduce the central

mechanisms of this model.
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Sustained perceptual trace

As noted above, we assume that the initial prime-related phase of motor response

separation is not the result of a one-off (16.666 ms) input to the motor system,

but is supported by input from a sustained, though decaying, ``perceptual trace''.

The psychological justification for this is the literature on (preattentive visual)

iconic memory (Baddeley, 1997), for which time bounds as much as 500 ms

have been suggested (Baddeley, 1997). In addition, it is known from single cell

recordings that briefly presented, unmasked stimuli result in an increased firing

rate of subcortical (Schiller, 1968) and cortical (Rolls, Tovee, & Panzeri, 1999)

neurons, which outlasts stimulus offset for several hundred milliseconds.

Although, it is obviously the case that presentation of a successful backward

mask will cut off the sustained perceptual trace, as it will do in our model.

The LRP data we are working from supports the assumption of such a

decaying perceptual trace. With unmasked primes (Figures 5c and 5d), the

separation between motor cortex activation levelsÐwhich starts 200 ms after

prime onsetÐincreases for approximately 150 ms. This suggests that there is

either a very powerful response competition mechanism at work, or that a

substantial ``afterimage'' of the prime is preserved in the unmasked conditions.

Although, we will include response competition in our model (cf. the

``Response competition'' subsection on p. 404), we have found that if response

competition is made sufficiently strong to simulate the initial separation profile

in unmasked conditions, it will severely disrupt the models' overall perfor-

mance. This is especially the case when testing successful masking conditions

(since the opponent process would have to fight against it when separation sign

reversal occurs in strongly masked experiments). Thus from a modelling per-

spective, as well as from the available physiological data, assuming a sustained

perceptual trace appears to be the best option. In the present model, we obtain

the required decaying trace using a double application of time averaging, which

we describe in the ``Double time averaging'' subsection on p. 415.

Masking and competition between percepts

The next question to answer is how to implement masking. A number of

competing theories for this are available (see, for example, the conflicting

proposals discussed in the articles by Enns & di Lollo, 2000, 2002; Keysers &

Perrett, 2002a, 2002b). However, it is beyond the scope of this paper to enter

fully into this debate. Thus, we have selected a mechanism that is both con-

sistent with one of the main theories of masking and with the empirical data we

are striving to model.

Specifically, we will implement masking as a neural competition mechanism

(Keysers & Perrett, 2002a). In an intuitive sense the masked and masking stimuli

compete for limited resources. Over time, this competition drives the system to

emphasize a single percept, and the process only stabilizes once this single
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percept has come to dominate. This competition mechanism will be imple-

mented using feedforward inhibition, which will be located between a ``per-

ception'' layer at which input stimuli are presented, and a ``perceptual

pathway'' layer, at which the decaying trace of the percept is sustained. Using

simple localist representations, as we do, the resulting mechanism is as shown in

Figure 6 (where each node in each layer codes for the percept indicated and

inhibitory links are shown as broken lines).

We also investigated placing lateral inhibition between perceptual neurons,

which has often been proposed as a masking mechanism (e.g., Rolls & Tovee,

1994). However, we were unable to generate the required ``sharp'' masking

effect.

Note thatÐin accordance with task demandsÐthe mask percept is not

mapped to a response. Indeed the mask/neutral node in the lower (perceptual

pathways) layer actually plays no role in the remainder of the model since it has

no outgoing links, and it could be removed without affecting our simulation

results (we merely include it for completeness of presentation).

The key aspect of the mechanism is that activation of a stimulus at the

perception layer suppresses the traces of previously perceived (competing) sti-

muli. In particular, excitation of the mask perception layer node will both excite

the corresponding mask percept and suppress the perceptual trace of any other

(previously) excited stimuli (e.g., the prime).

Precedents for such a feedforward inhibition-based mechanism can be found

in the modelling literature. For example, Grossberg, Mingolla, and co-worker's

influential boundary contour system (Francis, Grossberg, & Mingolla, 1994;

Grossberg & Mingolla, 1985a, 1985b) makes liberal use of feedforward

inhibition. For example, in their first competitive stage, complex cells (which

have receptive fields corresponding to complex visual cortex cells) feed inhi-

Figure 6. Perceptual system.
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bition forward on to hypercomplex cells at competing spatial locations. Through

such mechanisms masking effects (in particular, metacontrast masking) have

been modelled (Francis, 2000; Francis et al., 1994). Thus, although they use

feedforward inhibition at a much more microscopic (and biologically detailed)

level than we do, the principle of feedforward-induced competition between

percepts is the same. In addition to the literature supporting such neural com-

petition-based accounts of masking, we will also show that the pattern of

unmasked and masked activation we obtain in perceptual areas of our model are

broadly consistent with results from single cell recordings (see the ``Emergent

sustained perceptual trace'' subsection on p. 415).

Response competition

We also postulate that there is a competitive mechanism at work at the response

end of the system. From a theoretical perspective this is an entirely reasonable

assumption: Multiple responses can be excited at the same instant (as some level

of evidence is available for each response); however, only one response will be

executed during performance of the experimental task. Competition ensures this

by emphasizing the dominating response at the expense of competitors.

Furthermore, the LRP data makes clear that throughout the time course of the

experiment, different responses become dominant. For example, in the com-

patible condition depicted in Figures 2 and Figure 5a, the dominant response

changes a number of times. Initially, the ``correct'' response dominates, then the

``incorrect'' response, and finally it switches back to the ``correct'' response.

Such switching between responses is consistent with some form of competition

between response outcomesÐas evidence for one response increases, its capa-

city to dominate other responses increases. However, the available evidence may

then change, and an alternative response becomes dominant.

Perhaps the strongest justification for response competition comes from the

unmasked priming experiments (``frame'' and ``empty'', Figures 5c and 5d). As

already discussed in the ``Masked and unmasked priming'' subsection on p. 397,

and the ``Sustained perceptual trace'' subsection on p. 18, it is notable that on

the basis of only a 16.666 ms prime, response separation continues and even

increases throughout the 150 ms prime±target ISI. In addition to the assumption

of sustained perceptual traces, we also assume that the small excitatory ``push''

given by the prime initiates a temporally sustained competition between

responses, with the primed response slowly but in a sustained fashion sup-

pressing competing responses and in turn being disinhibited (i.e., released from

strong inhibition) by their suppression. The mechanism we use to implement this

competitive process is lateral inhibition between response nodes. Since there are

only two response nodes, the competitive mechanism is rather simple; it can be

depicted as shown in Figure 7, where each node represents a particular response,

e.g., left or right. The relative strength of competing responses determines which

will eventually dominate, with the strongest suppressing the other response over
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time, i.e., a ``winner take all'' dynamics. Of course a human has the capacity to

make more than two responsesÐhowever, we will typically only depict the two

task relevant responses. This is because a mechanism we introduce later (cf. the

``Response-set maintenance, response foregrounding, and selection'' subsection

on p. 409) implements a foregrounding mechanism that is functionally con-

sistent with this two-response perspective.

Opponent processing

As previously discussed, our modelling work has been strongly influenced by

Houghton and Tipper's (1994) model of negative priming and inhibition of

return. The central element of their model that we have inherited is their

opponent network. A number of different incarnations of opponent processing

can be found in their papers (see Houghton & Tipper, 1994; Houghton et al.,

1996; Jackson & Houghton, 1994). However, the central ideas are the same.

First, nodes are designated to reflect response activation build-up. For the

masked priming task, a node would be allocated to each of the two possible

responsesÐleft- and right-hand selections. Activation build-up at one of these

nodes reflects increasing preparation of that response. In fact, in our masked

priming model the interpretation of such activation build-up is slightly more

complicated. This is because the difference in activation between the two pos-

sible responses will actually be the indicator of increasing evidence for a par-

ticular response. We will make this mechanism precise shortly. However, for the

moment a broad understanding of the mechanism is sufficient.

The key element though of an opponent process is that an opponent (OFF)

node is associated with each response, and these two nodes are linked via an

excitatory link from the response to the OFF node and an inhibitory link from

the OFF node back to the response, see Figure 8.

In terms of function, the opponent node regulates activation in the associated

response node through the release of inhibition. Thus, as activation builds up at a

Figure 7. Response system 1.
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response node there is a delayed build-up of activation at the OFF node.

Eventually the OFF node feeds inhibition back onto the response node. In

addition, by adapting the activation function applied in the OFF node, e.g., how

quickly it saturates or how responsive it is to low levels of input (which amounts

to a graded input threshold), the time course with which inhibition is released

onto the response node can be regulated.

The available empirical findings on the masked priming task make it clear

that it is the presentation of the mask that causes the inhibitory reversal (see the

``Masked priming'' section on p. 394). The inhibitory pressure is initiated by the

removal of sensory evidence: The mask suppresses the primed percept, thus

removing sensory evidence for the corresponding response and initiating its

suppression. The hypothesis that we investigate here is that this behaviour arises

from a low-level ``emergency braking'' mechanism, which can be realized by an

opponent processing circuit. We can depict the mechanism as shown in Figure 9,

where we also include the lateral inhibition previously introduced.

This mechanism, representing the basis for inhibition-controlled direct

perceptuomotor links, naturally satisfies two notable requirements:

1. Inhibitory forces should not be so strong that they interfere with

``appropriate'' response activation build-up. Thus, if the build-up and

persistence of sensory evidence is strong and stable, the corresponding

response activation build-up should dominate any inhibitory forces (cf. the

``frame'' and ``empty'' experiments).

2. When sensory evidence changes (e.g., due to mask presentation), inap-

propriate responses should be suppressed quickly and efficiently (cf.

``basic'' and ``full mask'' experiments).

Figure 8. Response system 2: Opponent process.
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Opponent processing provides an elegant realization of both these requirements.

The former is obtained because strong and stable ON (response) node build-up

will counteract any inhibition being fed back from the corresponding OFF node.

The latter arises because removal of sensory evidence for a particular response

causes the (already) built-up OFF node activation to be released (since it is no

longer counteracted by ``bottom-up'' excitation), so that the response is rapidly

suppressed.

We would also argue that the need for the second of these requirements to be

satisfied rules out a solution based purely upon lateral inhibition between

responses. Although we postulate lateral inhibition between response nodes (see

the ``Response competition'' subsection on p. 404), we believe that on its own,

this mechanism is insufficient to obtain the effects described above. Critically,

lateral inhibition can only work to emphasize an existing activation difference

between competing nodesÐhowever, removal of sensory evidence does not in

itself have any excitatory effect on the competing (nonprimed) response. Thus,

in the absence of opponent mechanisms, lateral inhibition between responses

would not generate the separation sign reversal that is characteristic of the NCE.

We provide simulations to justify this argument in the ``Insufficiency of lateral

inhibition alone'' subsection on p. 424.

The selection criterion

We argued earlier (cf. the ``Masked and unmasked priming'' subsection on p.

397) that instead of a simple threshold, accumulation of separation over time

Figure 9. The full response system.
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(with ``wrong direction'' separation counting negatively) should act as the final

response selection criterion. This argument is based upon the observation that

behavioural benefits for one type of trial might be obtained even when LRP

waveforms indicate that it is on the other type of trial that response separation

starts earlier (see ``partial mask'' experiment, Figures 4b and 5b). Furthermore,

it is noteworthy that there is a systematic relationship between behavioural

effects, separation direction immediately before target-related motor separation

takes effect, and size and latency of the final LRP minimum. With fully masked

primes (behavioural costs on compatible trials), compatible-trial LRPs show

wrong direction separation prior to target-related motor activity and their final

minimum is larger (and occurs later) than that of incompatible trials (Figures 2

and 5a). Conversely, with unmasked or partially masked primes (behavioural

costs on incompatible trials), it is the incompatible-trial LRP that shows wrong

direction separation and the larger and later final minimum (Figures 5b, 5c, and

5d). We therefore assume that wrong direction separation occurring prior to

target-related separation has to be compensated for in the size of the final correct

direction deflection. Since the separation slope seems to be relatively unaffected

by experimental conditions, a larger final minimum will also occur later than a

smaller one.

In order to reproduce these data, we have employed an accumulator-based

selection criterion. Thus, in addition to activation driven response nodes, an

accumulator node is included which is updated according to the difference in

activation level between response nodes. Since we only have two responses, we

only need a single accumulator node, for which positive accumulated evidence

indicates one direction of response and negative accumulated evidence the

opposite response. Generalization of this technique to more than two nodes would

require a dedicated accumulator for each response (see, e.g., Ratcliff, 1978).

With the single accumulator neuron approach employed here, if a particular

response, say the left response, is more highly active than the competing (right)

response at a particular time point, a positive difference is added to the accu-

mulator. A more strongly active right response, in contrast, will cause a

reduction in the accumulator value. We also employ a discounting mechanism,

whereby the significance of older separation information is progressively dis-

counted. In effect, accumulator node activation decays over time and more

recent separation information is more influential upon the decision process than

older separation information. Thus, this node yields a measure of the discounted

accumulated separation between response alternatives. In particular, negatively

valued accumulation has to be compensated for by a corresponding sustained

level of positive separation over time before the accumulator node becomes

positive, and vice versa. The actual selection criterion is then a threshold on the

accumulator nodeÐonce accumulated evidence crosses this threshold, either in

a positive or a negative direction, the corresponding response is adjudged to

have been released for execution. This particular approach has its roots in

random walk and diffusion process models (see for example, Ratcliff, 1978), and
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a number of neural network models (e.g., Cohen et al.'s, 1990, Stroop model)

employ related mechanisms.

Response-set maintenance, response
foregrounding, and selection

The results discussed earlier (cf. ``The role of the task set'' subsection on p.

401), demonstrating that compatibility effects in masked priming depend on the

currently active task set, clearly suggest an important role for higher level

cognitive processes even at this automatic level of motor control. However,

results also suggest that these processes operate at the general task level rather

than at the individual trial level. That is as long as, for example, left- and right-

pointing arrows are mapped to left- and right-hand responses, manipulations of

the probability of individual trial types do not affect compatibility effects (see

Schlaghecken & Eimer, 2001).

We aim to account for these findings by introducing a ``response-set main-

tenance node'' (see Figure 10). This node provides excitatory input to the task-

relevant ON and OFF nodes, thereby ``foregrounding'' the relevant response

channels from the remaining channels, which stay at baseline activation levels.

Note that this foregrounding is symmetric between the response alternatives, so

Figure 10. Response-set maintenance (for simplicity of presentation, lateral inhibition between

response nodes is not depicted). Links labelled ``0'' are inactive in this particular experimental

condition, thus maintaining the ``backgrounding'' of irrelevant pathways; links labelled ``+'' are

relaying sustained foregrounding excitation.
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that even though response nodes will become more active, the difference in

response node activation (i.e., separation) will remain at zero until external

stimulation triggers the build-up of asymmetric activation.

Similar preactivation mechanisms have been used in other neural network

models (e.g., Cohen et al., 1990). In that model, nodes are by default placed in a

very unresponsive part of their activation function. This is achieved by giving

nodes a strong negative bias, thus placing them below the graded threshold built

into the low net input end of a sigmoidal activation function. However, addi-

tional ``task demand units'' relay compensatory positive activation into task-

relevant nodes, thereby placing them in the most responsive region of their

activation function. This effectively foregrounds task-relevant from task-irre-

levant nodes, in a similar manner to the mechanism employed here.

We have also endeavoured to tie response selection in with the response-set

maintenance mechanism. As previously stated, the point at which a response is

selected is determined by the selection criterion, i.e., it corresponds to the point

at which discounted accumulated evidence crosses a particular threshold.

However, it is reasonable to assume an additional ``switching off'' mechanism,

which would ensure that separation quickly returns to zero once a response has

been released for execution (cf. LRP profiles in Figures 2 and 5). In the present

model, this mechanism is implemented by an inhibitory link from the accu-

mulator node to the response-set maintenance node. Once the response criterion

has been met (i.e., a motor response has been released), the accumulator node

inhibits the response-set maintenance node, thus enabling the relevant response

channels to return to background activation levels (see Figure 11).

Notice that there are alternative ways in which we could obtain this effect.

For example, we could build inhibitory links from the accumulator system to the

relevant ON and OFF nodes which would suppress these response channels

when a response execution is reached, as signalled by the accumulator out-

putting a 1 (see the ``Response-set maintenance and response selection'' sub-

section in the Appendix on p. 463 for more details of the accumulator

mechanism). This would allow the response-set maintenance node to continually

feed excitation into the relevant pathway and would be consistent with S±R

mappings being sustained throughout a sequence of trials. Notice though that

within the context of the work being presented here, which is only seeking to

reproduce single trial data, this accumulator inhibition approach is functionally

equivalent to the approach implemented.

THE MODEL

We now move to a discussion of how the model is actually put together. A

number of our models have been constructed using the Stuttgart Neural Network

Simulator (version 4.2; SNNS Team, 2001). However, the data presented in this

paper has been taken from an Excel implementation of our model.1

1All these models are available on request.
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There are two types of node in the networkÐinput nodes and hidden nodes.

An execution of the net corresponds to a sequence of cycles. On each cycle a

new activation pattern is presented to the input nodes of the net and activation of

all nodes is updated accordingly. In particular, hidden nodes are updated as a

function of current activation and the new activation flowing into the node; an

activation function, which will be introduced shortly, is defined for this purpose.

Configuration

The basic configuration of the model is as shown in Figure 12. Although, for

simplicity of presentation, accumulator node, response-set maintenance node,

and task irrelevant response pathways are not shown.

In terms of high-level structural configuration, the model contains three

layersÐa perception layer, a perceptual pathways layer, and a response selection

layer. These layers reflect the distinction between input and hidden nodes: All

perception layer nodes are input nodes and all other nodes are hidden.

It is also important to note that, in terms of our perception and perceptual

pathway layers, the process of object recognition is not directly modelled.

Figure 11. Accumulator and response-set maintenance system (for simplicity of presentation,

nonrelevant response channels are not depicted).
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Indeed our model largely abstracts from the question of the level of cognitive

representation of stimuli that is built during performance of the task. In effect,

the perceptual pathway nodes denote (through their activation level) the extent

of the perceptual evidence for a particular stimulus, and we make no assumption

about how activation levels correspond to construction of object representations.

Activation of node PL1 is used to model the mask or the neutral prime being

presented, while activation of node PL2 corresponds to a left double arrow

stimulus and activation of node PL3 to a right double arrow stimulus. Notice one

pair of perceptual nodes (PL1 and PP1) represents both neutral and mask stimuli.

In terms of the particular stimulus sequence we use, this is functionally

equivalent to including two pairs of nodes and adding an extra set of inhibitory

links. Also notice that there is no path from mask or neutral stimuli to a

response. This is consistent with the previously discussed foregrounding

mechanism and the task demands.

Nodes PP1, PP2, and PP3 implement what we will call the perceptual

pathways from perceptual stimuli to (corresponding) response nodes. Each

perceptual pathway node implements a temporally sustained trace of the cor-

responding stimulusÐthe mask/neutral stimulus for PP1, << for PP2, and >> for

PP3.

Nodes R1 and R2 represent a response layer, i.e., each node denotes a par-

ticular motor response channel. Node R1 corresponds to a left-hand response

and node R2 to a right-hand response. Perception of the left and right stimuli

Figure 12. The model.
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causes excitation of their corresponding response node via the perceptual

pathways, through excitatory links from PL2 to R1 via PP2 and from PL3 to R2

via PP3. O1 and O2 are the respective OFF (opponent) nodes for R1 and R2.

Thus, when, for example, activation builds up in R1, it also causes activation to

build up in O1.

Basic activation functions

As previously explained, the activation level of input nodes is determined

externally through the presentation of input patterns. In contrast, the activation

level of hidden nodes is evaluated internally. Time averaging over a sigmoidal

activation function is used for this purpose. This is a standard approach in neural

networks that model activation change over time and is closely related to

McClelland's (1979) cascade approach.

First, we denote the input to an arbitrary node i on cycle t+1 as neti(t+1). This

is defined, in standard fashion, as a weighted sum of the activation currently

being input to the node,

neti�t � 1� �
X

1�j�K

�wij � aj�t�� �1�

where j indexes node i's K predecessor nodes in the network, wij is the weight on

the link from node j to node i, and aj(t) is the activation of the jth predecessor

node on the tth cycle. In particular, activation arriving along negatively

weighted links will reduce neti and will hence have an inhibitory effect. In

addition, as indicated by them not having a cycle parameter, weights are fixed

throughout our simulations. We discuss this issue later (cf. the ``Interpretation of

the model'' subsection on p. 420).

Using these concepts, we can now define the activation function that we use

for hidden nodes.

ai�t � 1� � t ai�t� � �1ÿ t�s�neti�t � 1�� �2�

where t is a constant between zero and one, which regulates the temporal

dynamics of the time averaging.

The function expresses the new activation level of a hidden node, i.e.,

ai(t+ 1), in terms of its current activation, i.e., ai(t), and any new activation being

input into the node, i.e., neti(t+ 1). A level of temporal activation stability is

preserved by the term tai(t). However, the function ``leaks'' at a rate determined

by the constant t. Thus, broadly speaking, temporal stability of the activation

function increases as t increases. In other words, when t is large (i.e., approa-

ches 1) the activation level on previous iterations becomes more significant in

determining the new activation level. Thus, large fluctuations in net input will

have less effect on the value of ai than they would with small values of t.
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The second summand of our activation functionÐ(1±t) s(neti(t+1))Ðdeter-

mines the influence of new activation entering the node. s is a standard sig-

moidal function (see Figure 13), which has three defining parameters denoted,

bs, sp, and rg (which for simplicity of presentation we often omit). It is defined

as follows,

sbs;sp;rg�X� � rg

1� eÿ
�bs�X�

sp

�3�

where, bs is the bias term, which regulates the basic excitability of the node (see

Figure 13), sp is the steepness of the activation function, i.e., how responsive it

is to changes in its input (see Figure 13), and rg determines the output range of

the function, i.e., the corresponding node can be activated between zero and rg

(see Figure 13). We will discuss the settings we have chosen for these para-

meters and their implications shortly.

Perceptual pathways and masking

As previously motivated, perceptual pathway nodes maintain a short-term

(decaying) trace of sensory stimuli. This sustained trace is implemented using a

double time averaging mechanism.

It would though be wrong of us to associate our perceptual pathway nodes

with a single visual region. Rather we would argue that our definitions produce

Figure 13. Sigmoidal activation function.
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an overall (emergent) effect that is commensurate with the composite global

behaviour of the relevant visual regions. In fact, Rolls and Deco (2002, p. 159)

have argued that perceptual traces are sustained through mutual excitation

exchange between the neurons that constitute a particular percept, this activation

exchange being supported via the recurrent collaterals in an autoassociative

(attractor) network. In a fully localist representation like ours, such a solution is

not possible since there is no distribution of processing between neurons and

thus, no possibility of recurrent collaterals sustaining the trace. The time aver-

aging dynamics we implement could be viewed as an abstraction of such a more

detailed mechanism of distributed encoding.

Double time averaging

In order to obtain the required temporal stability of representation we assume

that time averaging is applied to both the input conductances entering the per-

ceptual pathway nodes and the activation build-up itself. Thus, net input is

sustained using the following time averaging mechanism:

NETi�t � 1� � t1NETi�t� � �1ÿ t1�neti�t � 1� �4�

where t1 regulates the temporal stability of the function in the same manner as t
does in equation 2. McClelland (1979) introduced this mechanism in what he

called Cascade networks. Also, related time averaging techniques are applied to

input conductance build-up along dendrites by O'Reilly and Munakata (2000) in

an effort to obtain biologically plausible activation dynamics.

In line with the activation functions used throughout the network we also

apply a second time averaging function at perceptual pathway nodes. This is

ostensibly equation 2, although for perceptual pathway nodes we feed the result

of equation 4 into this definition, i.e.,

ai�t � 1� � t ai�t� � �1ÿ t�s�NETi�t � 1�� �5�

This double time averaging mechanism allows us to sustain the response of

perceptual pathway nodes, with the time averaging of equation 5 building an

extended trace upon the trace yielded by equation 4.

Emergent sustained perceptual trace

As evidence that the temporal dynamics of perceptual pathways that emerges

from our definitions is appropriate we offer the activation profiles presented in

this subsection. These profiles show how the level of activation of a perceptual

pathway node fluctuates over time in response to stimuli being presented at

perception layer nodes.
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Perceptual pathway nodes have a baseline activation level of 0.5, which they

stabilize at during preactivation of the network. This ensures that they are at a

responsive part of their activation function and will consequently respond

rapidly to net input change. This is consistent with findings by Rolls et al. (Rolls

& Tovee, 1994; Rolls et al., 1999) that in order to explain the very rapid

processing in visual areas, background activation levels place neurons close to

their firing threshold (and hence they respond rapidly to input change).

First consider the unmasked prime profile shown in Figure 14a. This is

a recording of the activation at one of the perceptual pathway nodes in

response to one cycle of stimulation of the corresponding perception node

and no other stimuli. In our model one simulation cycle corresponds to

16.666 ms of experiment time. Thus, this stimulus sequence is simulating pre-

sentation of a 16.666 ms prime on its own, in the absence of mask or tar-

get stimuli, which allows us to directly observe the temporal dynamics of

the perceptual trace under ``normal'' conditions, i.e., in the absence of mask-

ing. What we observe is a rapid increase in activation over an approxi-

mately 30 ms period (two simulation cycles, i.e., 33.333 ms) followed by a

slow decay back to baseline. We would argue that the trace has the tem-

poral dynamics we seekÐit responds rapidly to stimulus presentation, but

then sustains that excitation subject to a slow decay. Furthermore, the pro-

file has effectively returned to baseline between 18 and 20 cycles after the

stimulus started having an effect, which corresponds to 300±333 ms. This

is somewhat less than what would be suggested by the iconic memory litera-

ture but is broadly in line with the single cell recordings made by Rolls et

al. (Rolls & Deco, 2002; Rolls & Tovee, 1994; Rolls et al., 1999). The

shape of the activation profile that we obtain is also a reasonable approxima-

tion to the profiles presented in Rolls et al. (Rolls & Deco, 2002; Rolls &

Tovee, 1994; Rolls et al., 1999).

Now consider the perceptual pathway profile that is obtained if we add a

target stimulus. Thus, this corresponds to the ``empty'' compatible condition: A

16.666 ms prime followed by a 150 ms blank screen and then a 100 ms

(compatible) target. The resulting trace is the unmasked profile shown in Figure

14b and is as one would expect: The initial segment is the same as the Figure

14a unmasked profile, but then presentation of the target builds upon the primed

activation to generate a substantial activation increase. The reason that this

increase is much larger than that for the prime being that the target stimulus lasts

much longer than the prime. Once the target stimulus is removed representation

of the percept slowly decays.

Now we consider the perceptual pathway profile that is obtained through

masking. Figure 14a shows the profile for a masked prime (in the absence of a

target stimulus). The first cycle of prime-induced activation is the same as was

observed in the unmasked Figure 14a profile. However, feedforward inhibition

induced by mask onset rapidly suppresses the trace and the perceptual pathway
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node returns to baseline activation. Finally, Figure 14b shows the perceptual

pathway profile for a masked prime followed by a target; this is the ISI 150 ms

compatible condition. It is exactly as one would expectÐa brief priming acti-

vation followed by mask-induced baseline activation and finally significant

target-induced activation.

Figure 14. Activation trace from a perceptual pathway node as result of (a) an unmasked and

masked prime, without a target; and (b) an unmasked and masked prime with a compatible target

(note change of y-axis scale between figures).
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Response selection system

The response system comprises two classes of nodesÐ(ON) response nodes and

(OFF) opponent nodes. We discuss these in turn.

Response nodes

The model provides a simple implementation of response competition

between nodes with time averaged activation dynamics. As previously dis-

cussed, response competition is implemented by including lateral inhibition

between R1 and R2.

Opponent nodes

Due to the rather specific role taken by OFF nodes their activation dynamics

are somewhat different from other nodes; they have the following

characteristics:

Thresholds. As previously emphasized, the purpose of the opponent

networks is to suppress the activation leftover in response nodes when evidence

for the response is removed. Consequently, it would be inappropriate for the

opponent mechanism to inhibit response node activation before any activation

from the perception layer has arrived. Note, we are not arguing that suppression

only starts once a response has been fired, since this would contradict the basic

findings of the masked priming task, i.e., that a subliminal prime can induce a

separation reversal, while not inducing an overt response. It is though one thing

to accept that inhibition can be initiated in the absence of an overt response, but

it is quite another to think that inhibition is initiated even before excitation

induced by perceptual stimuli has filtered through to the response system.

Thus, in order to prevent the opponent system cutting in too early, we have

added nonzero thresholds on the entrance to OFF nodes. These are set to be

above the level of activation of response nodes when their foregrounding has

reached equilibrium. Consequently, OFF nodes remain at baseline activation

levels (i.e., almost zero) throughout response circuit preactivation. The OFF

node threshold can only be exceeded (and OFF nodes excited) when perception

layer activation reaches the opponent system.

In fact this threshold is set somewhat above the level of response node

preactivation. This is because the threshold also ensures that we obtain positive

compatibility with perceptually weak primes, which was discussed earlier (cf.

the ``Prime visibility results'' subsection on p. 397). Our interpretation of this

effect is that a weak prime only excites its corresponding response node a small

amount above its preactivation equilibrium, which does not yield sufficient OFF

node excitation to cross its threshold. As a result, an inhibitory reversal is not

initiated with weak primes and positive compatibility results ensue.
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This threshold is built into the OFF node activation function by giving such

nodes a large negative bias (the bs parameter in equation 3), which shifts their

sigmoidal to the right and ensures that only high levels of net input are mapped

to responsive ranges of the sigmoidal activation function.

Steep activation dynamics. Related to this choice of a high OFF node

threshold is our use of a steep OFF node activation function (the sp parameter in

equation 3). This ensures that once OFF nodes cross their threshold, they build

up activation very rapidly (and also saturate rapidly). The reversal shape

typically observed (see Figures 2 and 5a) justifies this choice. The reversal is

sharp and deep and thus OFF nodes must build up activation very rapidly. The

actual parameter settings for OFF nodes are presented in the Appendix.

Response-set maintenance and accumulators

Response-set maintenance

This mechanism has two components. First, it preactivates the response

selection system according to task demands, by exciting R1, O1, R2, and O2 in

order to ``foreground'' them from the set of possible response circuits. Note that

even when fully foregrounded OFF nodes nonetheless stay at a low activation

level during preactivation. This is because the threshold implementing negative

bias on these nodes is so strong. Secondly, the layer maintains this delineation of

response set, by continuing to feed activation into these nodes. In operational

terms, the response system is preactivated by running the network for a number

of cycles before the experimental sequence starts (i.e., before the prime is

presented) with a pattern which, from amongst the input nodes, only excites the

response-set maintenance node. The number of cycles is chosen in order to

ensure that the preactivation has stabilized and reached an equilibrium level

before the experimental sequence starts.

The second aspect to the response-set maintenance mechanism is that when a

response is released, which occurs when the selection criterion is satisfied, the

response-set maintenance node stops foregrounding the relevant pathway.

Operationally, there is an inhibitory link from the accumulator mechanism to the

response-set maintenance node, which is inactive preresponse selection. How-

ever, when the accumulator node crosses its (selection) threshold, inhibition is

released and the response-set maintenance node becomes deactivated. The

relevant equations are detailed in the Appendix.

Accumulators

The accumulator node operates according to the following equation:

aacc�t � 1� � tacc aacc�t� � �aR1�t � 1� ÿ aR2�t � 1�� �6�
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where aacc(t) denotes the activation of the accumulator node at time t, aR1(t+1)

denotes the activation of the left response at time t+1, aR2(t+1) denotes the

activation of the right response at time t+1, and tacc is the discounting term

(which is set between zero and one). Thus at any time point the activation of the

accumulator node is a sum of the current response separation and discounted

activation of the accumulator on the previous cycle. aacc is initially set to zero

and remains at zero throughout response system preactivation, until priming

induces response separation.

Interpretation of the model

A number of issues impinge upon how the model should be interpreted. First, it

is important to reiterate that even though, in broad terms, activation build up on

a particular response node (i.e., R1 or R2) suggests increased excitation of that

direction, responses are not selected via constraints local to response nodes. The

key criterion is the difference in activation between response nodes (i.e.,

response separation), which when plotted over time serves as a direct com-

parator for the LRP data. From this measure of response separation, an RT

measure is determined via a threshold on accumulator nodes, which, as pre-

viously discussed, determines how separation accumulates over time or, in other

words, the degree to which one response is (stably) dominating the other

response.

We should also make clear the bounds of our model. Most significantly,

unlike a large swath of connectionist research, there is no learning. This is

because there is no empirical evidence concerning how learning affects the

masked priming task discussed here or indeed whether it would at all.

In fact, Klapp and Hinkley (2002) report a strong effect of learning on the

NCE: in their study, participants usually produced reliable NCEs only on the

second day of testing. However, these experiments differed from all the others

reported above in that the target duration was only 16 ms. Since no learning

effect was ever observed with 100 ms targets, it seems likely that in the Klapp

and Hinkley experiments learning was required for successful target dis-

crimination, not for establishing direct perceptuomotor links or their inhibitory

control.

Thus, in the model presented here link weights are hard-wired and fixed

during our simulations. This is not to say that we have not explored the con-

sequences of setting weights to different values. In fact, one element of our work

has been to use the model to explore parameter settings that can reproduce the

available empirical data and central parameters in this respect are the link

weights. It is indeed important to note that the model is sensitive to parameter

change. Thus, the parameter settings used are integral and central elements of

our proposal and are documented in the Appendix.
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Finally, the simulations presented in this paper correspond to mean empirical

data values. For example, the separation profiles the model generates aim to

reflect grand mean LRP values, i.e., averaged across the mean values of 10 or

more participants per experiment. We have not attempted to generate a dis-

tribution of response times, although by applying Gaussian noise to the model, it

would not be hard to do so. For example, we could add Gaussian noise to the

response selection process in a manner similar to Cohen et al. (1990). However,

we would only then average across the resulting distributions in order to com-

pare with the central tendencies reflected in grand mean values. Thus, currently,

we have avoided this added complexity.

Patterns and reaction times

As previously stated, activation is input into the network via activation patterns.

These define the level of excitation of input (i.e., perception layer) nodes on

each cycle. As an illustration, the pattern for a typical cycle of the presentation

of a left pointing target would enforce the following activations:

PL1 ± 0.0

PL2 ± 1.0

PL3 ± 0.0

i.e., the mask is unactivated, left-pointing double arrows are activated, and right-

pointing double arrows are unactivated.

For the basic (ISI 100) experiment, the three pattern sequences are as follows:

1. Compatible. An activation of 1.0 is presented for one cycle at PL2 (this

corresponds to the prime). Then six cycles of an activation level of 1.0 are

presented at PL1 (this corresponds to the mask). This is followed by six

cycles of activation at PL2 again, and finally a number of cycles in which

all input activation is zero.

2. Incompatible. An activation of 1.0 is presented for one cycle at PL3. Then

the sequence proceeds identically to the compatible case.

3. Neutral. An activation of 1.0 is presented for one cycle at PL1Ðthe mask/

neutral location. Following this neutral prime, the pattern sequence is the

same as the compatible and incompatible cases.

Notice that these timings are in the same proportions as those used in the basic

experiment, where the prime is presented for 16.666 ms and the mask and the

target are presented for 100 ms each. One of our cycles corresponds to 16.666

ms of ``human'' experiment time. Because of this one cycle = 16.666 ms

relationship, we can move between cycles and millisecond timings when

relating model and human data.
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In order to implement the response-set maintenance mechanisms we have

discussed, 30 cycles in which just the response-set maintenance node is acti-

vated are prepended prior to these sequences, and the response-set maintenance

node continues to be activated throughout. This prepended 30 cycles is sufficient

to ensure equilibrium has been reached before the prime is presented.

We would like to obtain results from our simulations that correspond to the

LRPs reproduced earlier. However, our graphs will start at some point to the

right of the origin in Figures 2 and 5. This is because there is a lag between

stimulus onset and the point at which this stimulus starts to affect activation in

motor cortex. This lag, which we call the onset delay, arises because it takes

some time for the sequence of processing performed in visual pathways to have

completed before the motor system starts to be affected. This onset lag is not

modelled in our implementation. However, from Figures 2 and 5, it can be

estimated as somewhere around 180±200 ms.

We also wish to reproduce RT data. Obviously, our model does not yield this

measure directly. Human RTs are a measure from stimulus onset to the regis-

tration of a button press, while our model only generates the separation profile

between the point at which motor cortex activation starts to be affected by a

stimulus and the point at which a response selection is indicated in motor cortex.

We will call the time gap between these two points the separation delay. In order

to compare it with RTs, we also need to factor in what we will call the residual

delay. This includes both the onset delay and the execution delay (the time from

when the response decision is made at motor cortexÐassumed to be reflected in

the final LRP minimumÐto when a button press is registered). This residual

delay should, broadly speaking, be fixed across conditions and experiments.

Furthermore, for human performance, we can obtain a measure of residual delay

in a particular experimental condition by subtracting the separation delay (which

we can determine from the relevant LRP) from the overall RT. We can then

obtain a central tendency for the residual delay by averaging across all condi-

tions of all experiments. We have done this and included the condition and

experiment specific separation and residual delays in the Appendix.

The result of the process is an overall central tendency for the residual delay

of 263 ms. Using this, we extract RTs from our model by first measuring the

target separation delay (which is directly extractable from our model). To this,

we add the fixed residual delay to obtain an RT measure. Although this is rather

a crude approach, it produces good results, as will become clear in the next

subsection.

MODEL RESULTS

The main contribution of this section is to document how our model reproduces

the masked priming effects outlined at the beginning of this paper (cf. the

``Introduction'' and ``Masked priming'' sections on p. 386 and p. 394,

respectively). However, as a ``sanity check'' of our model, we begin by con-
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sidering how the model would behave under ``normal'' processing circum-

stances and also we justify our argument that lateral inhibition alone could not

produce the required effect.

Continuous target

It is important to ascertain that our model is well behaved in ``normal'' pro-

cessing situations. Experimental work is often focused on rather specific phe-

nomena and frequently, on situations in which the system behaves in a surprising

or even counterintuitive manner. This is true of the masked priming experiments

considered here, which encapsulate a sequence of stimuli that would rarely (if

ever) occur in natural environments. It is possible to develop models that are too

strongly constrained by such rare occurrences, which successfully reproduce the

specific phenomena at hand, but which are not well behaved in more typical

situations.

This section verifies that our model is indeed well behaved during such

``normal'' processing. That is, we demonstrate that when a single target stimulus

is presented, i.e., without any priming or masking, the system builds up evidence

at the corresponding response node, fires the response (as modelled by satis-

faction of the selection criterion), and then resets itself. Such behaviour is shown

in Figure 15, which presents the separation trace, i.e., difference between

response node activations, that arises from continuously stimulating (with a

value of 1) the right double arrows input neuron, i.e., neuron PL3. It is clear

Figure 15. Separation of left and right response nodes, i.e., the activation difference between R1

and R2, plotted against time, in response to continuous stimulation of the network with a right arrows

target.
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from Figure 15 that the system is indeed well behaved in this situation: Con-

tinuous stimulation ensures that the required response has a sustained advantage

in the winner-take-all race between response nodes. This advantage begins at

cycle 5 and continuous until cycle 11, at which point sufficient evidence has

accumulated for the right response to satisfy the selection criterion. Such

satisfaction denotes release of the response. As discussed earlier (cf. ``The

selection criterion'' subsection on p. 407, and the ``Response-set maintenance,

response foregrounding, and selection'' subsection on p. 409), once the selection

criterion is satisfied, response-set maintenance is withdrawn, removing the

foregrounding of the two responses; as a result, response and off neurons tend

over time towards an activation value of zero, which, in turn, causes separation

between right and left responses to rapidly decline between cycles 12 and 18. By

cycle 19 the system has affectively reset itself.

While this separation profile is completely to be expected, it serves as an

important sanity check with regard to the inhibitory reversal. Once the right

response becomes markedly activated above its baseline level, it will excite its

corresponding OFF node, which will in turn feed inhibition back onto the

response. If parameter settings were selected which made the inhibitory reversal

stronger than the excitatory pressure being brought to bear, the response node

could be prevented from becoming strongly active, which would in turn prevent

sufficient evidence to accumulate to satisfy the selection criterion. Figure 15

demonstrates that this is not the case; it ensures that our off nodes are not

feeding too much inhibition back onto response nodes. In addition, our later

simulations will demonstrate that our off nodes do not feed too little inhibition

back onto response nodes, since they will show that an inhibitory reversal does

occur when evidence for a particular input stimulus is removed. Such removal of

evidence for a stimulus is the key difference between the sequence of stimuli

considered here and the sequence that occurs in masked priming.

Insufficiency of lateral inhibition alone

As a further sanity check, in this section we consider whether the inhibitory

reversal central to the NCE could be obtained from a system that only employs

lateral inhibition between response alternatives and that does not employ

opponent processing. This will give further justification for our position that an

opponent process is required in order to generate the NCE.

The results of our investigation are shown in Figure 16 (which considers a

compatible target) and Figure 17 (which considers an incompatible target).

These simulation results were obtained from networks in which both opponent

processes had been cut out of the model and the strength of lateral inhibition was

varied. The opponent process was removed by setting the weights of excitatory

links from response nodes to OFF nodes, i.e., from R1 to O1 and R2 to O2, to

zero. In addition, as a result of these changes, in order that response nodes still
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Figure 16. 16.666 ms prime, 100 ms mask, and 100 ms (compatible) target without opponent

process.

Figure 17. 16.666 ms prime, 100 ms mask, and 100 ms (incompatible) target without opponent

process.
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stabilize at 0.5 during network preactivation, response node biases had to be

varied; the values used are documented in the Appendix.

In interpreting these simulations, the reader should note that cycle 5 (see, the

x-axis) is the point at which the prime starts to have an effect on the response

nodes, i.e., the start of prime-induced separation. In addition, the prime only

feeds activation into the system for one cycle, as discussed earlier (cf. the

``Patterns and reaction times'' subsection on p. 421). Thus, the profile of

separation between cycles 6 and 11 results from the prime being masked. Note

also that cycle 12 is the point at which target-induced activation reaches the

response nodes and causes a corresponding separation in the direction of the

target, which, in the compatible case (Figure 16), generates separation in the

same direction as the prime and, in the incompatible case (Figure 17), generates

separation in the opposite direction to that resulting from the prime.

These simulations make clear that none of the lateral inhibition values

explored generated the required inhibitory reversal. Specifically, with very low

strength lateral inhibition (0 and ±2) the prime did not even generate a sig-

nificant prime-induced separation, which should commence on cycle 5. In

contrast, with intermediate lateral inhibition values (±4 and ±6) the prime did

induce separation (see the separation commencing at cycle 5), but in this case,

removal of sensory evidence initiated a decay of response node activation back

to baseline, resulting in a corresponding decline of separation towards zero,

which starts at (approximately) cycle 8 and continues through to cycle 11. In

particular, there was no axis reversal pretarget onset, which should occur at

some point between cycles 6 and 11 in order to be consistent with the human

data; see the axis crossover between the black and white arrows in Figure 2. In

addition, with high strength lateral inhibition (±7) separation continued in the

same direction even after sensory evidence had been removed (between cycles 6

and 11). That is, the system is still striving to emphasize ``winner'' nodes

(indeed this aspect of lateral inhibition between responses is at the heart of our

modelling of the unmasked ``frame'' and ``empty'' experiments), but again

removal of sensory evidence does not generate an axis reversal.

These simulations confirm our intuition that on its own lateral inhibition is

insufficient to obtain the NCE. Critically, lateral inhibition can only work to

emphasize an existing activation difference between competing nodesÐhow-

ever, removal of sensory evidence does not in itself have any excitatory affect on

the competing (nonprimed) response. Thus, in the absence of opponent

mechanisms, lateral inhibition between responses would not generate the

separation sign reversal that is characteristic of NCE.

Basic experiment

With the model having successfully passed our two sanity checks, we now move

on to consider how it responds to the basic masked priming sequence. With the

pattern sequence discussed earlier (cf. the ``Patterns and reaction times'' sub-
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section on p. 421), we obtain the separation curves shown in Figure 18. In each

condition, the figure shows the time course of the difference between R1 and R2

activation. Note that we are not plotting activation of the accumulator node;

however, the point at which the accumulator node crosses its threshold deter-

mines when a response is adjudged to have occurred, and hence (through

deactivation of the response-set maintenance node) the final minimum in these

profiles.

As with the LRP waveforms shown above, a downward-going deflection

represents separation (i.e., the activation difference between the two responses)

in the correct direction, and an upward-going deflection separation in the

incorrect direction. The critical behaviour of the model in the basic experiment

is as follows:

1. Response-set maintenance provides a stable preactivation of response

circuits without separationÐthe two relevant response nodes are equally

excited (only a few of these time steps are shown in the separation curves).

2. The prime excites the corresponding perceptual pathway (let's say PP2)

and consequently pushes response node separation a small amount in a

particular direction, i.e., R1 is active.

3. This in turn causes excitation of opponent nodes. However, only the

primed response (R1) is generating enough activation on its ON to OFF

node link to cross the OFF node threshold. Consequently, O1 becomes

highly activated while O2 remains at baseline.

Figure 18. Model separation curves for the basic experiment.
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4. When the mask is presented it rapidly suppresses the prime (i.e., PP2).

5. The build-up of activation at O1 is relayed back to R1, but now in an

inhibitory form. When PP2 becomes inactive the inhibitory pressure is no

longer counteracted and R1 is strongly suppressed. Furthermore, once this

suppression is strong enough to push R1 activation below R2 activation,

lateral inhibition begins to work in the opposite direction; rapidly

emphasizing the reversed direction of separation.

In the compatible case, this reversal yields (pretarget onset) separation in the

incorrect direction, while in the incompatible case it is in the correct direction.

From Figure 18 it is clear that we have reproduced the basic masked priming

effect, and that the separation profile has a good fit to the corresponding human

data (see Figure 2). Compatible and incompatible, but not neutral, curves show

initial separation in the direction of the prime. In the compatible case the fol-

lowing reversal (as inhibition from the OFF node cuts in) results in strong

separation in the incorrect direction. In the incompatible case, it results in

equally strong separation in the correct direction. If we consider the profile from

the point of target-induced activation onset (cycle 13), the incompatible has

already separated in the correct direction, followed by the neutral and then the

compatible condition.

RTs extracted from the model (cf. the ``Patterns and reaction times'' sub-

section on p. 421) are also consistent with the human data (see Figure 19). In

particular, in both human and model RTs, the incompatible condition is faster

than the neutral condition, while the compatible condition is slower. This said,

there is an important discrepancy between model and human RTs for this

experiment. Model RTs do not quite show as large an effect as the human data and

are on average a little faster (see Figure 19). This is an interesting issue since, as

discussed previously (cf. the ``Masked and unmasked priming'' subsection on p.

397), a similar difference has been found between the basic experiment and the

ISI 150 ``full mask'' experiment, with RT effect size in the former considerably

larger than in the latter. We provide an explanation for this discrepancy later (cf.

the ``Comparing ISI 100 and ISI 150 experiments'' subsection on p. 440).

Finally, it is also worth observing that for almost all the human±model RT

comparisons we make, the model RTs will show a similar effect size to the

human RTs. However, model RTs will also generally be a little faster than

human RTs. It is of course possible that an alternative parameter setting exists,

which resolves this problem. However, the main issue is that the model repro-

duces the same pattern of priming effect.

Low strength prime

As discussed earlier (cf. the ``NCE and self-inhibition'' subsection on p. 391),

direction of compatibility effects in the masked prime paradigm depend on the

perceptual strength of the primes, with very low strength primes yielding
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positive compatibility effects (PCEs) rather than NCEs (cf. Schlaghecken &

Eimer, 2002). This has been reproduced in the model. As shown in the

separation profiles of Figure 20, if the activation strength of the prime is reduced

sufficiently (a value of 0.095 is used in the simulations presented here), no

inhibitory reversal is initiated with the basic experiment pattern sequence, and a

PCE is obtained (Figure 21).

It is interesting to note that whenever we have reduced the strength of stimuli

in our simulations (cf. also the reduced masking strength conditions), surpris-

ingly small values have been required in order to yield the desired effect. This

suggests that there is a nonlinear relationship between the strength of stimuli in

the model and of stimuli in the physical world. Although not as yet explained,

this aspect does not affect the interpretation of our model's data since the

stimulus strength reduction is systematic throughout experiments and across

stimulus types. It is interesting that in Francis' (1997, p. 578) metacontrast

masking model, in order to generate the desired target luminance data he also

had to use very small luminance values of simulated targets.

Notice also in Figure 21 that the fact that the neutral RT is the same as the

incompatible RT in the model is artefactual: The difference between compatible

and incompatible RTs is only one model cycle, so that without a more fine-

Figure 19. Model and human RT data for basic experiment (human RTs from Eimer & Schlag-

hecken, 1998, Exp. 1a).
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grained discretization of time, the model is unable to distinguish further between

these conditions. For the same reason, model RT effect size (16.67 ms) cannot

come any closer to human RT effect size (7.5 ms). This effect reflects the strong

negative bias in the sigmoidal activation function for OFF nodes. Thus, OFF

nodes do not respond to low strength ON node activation.

It should also be noted that the separation profile in Figure 20 highlights the

response competition in our model. The prime is so weak that it initially causes

very little separation. However, between cycles 7 and 12 lateral inhibition

between responses works on the small separation and accentuates it, such that

when target presentation starts having an effect, it is at such a level that the

compatible condition reaches its final minimum first. No LRPs for these

experiments have been recorded. Thus, these separation profiles are a concrete

(testable) prediction of the model.

ISI 150 experiments

Full mask

This experiment is the same as the basic experiment except that the prime±

target ISI is somewhat longer. In reproducing this effect we present a sequence

of patterns corresponding to the following series of stimuli:

1 cycle of the prime (16.666 ms)

6 cycles of the mask (approximately 100 ms)

Figure 20. Model separation curves for low strength prime experiment.
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3 cycles of no stimulation (approximately 50 ms)

6 cycles of the target (approximately 100 ms)

The resulting separation profiles are shown in Figure 22. A comparison of these

profiles with the full mask LRP in Figure 5a suggests that (broadly speaking) we

have successfully reproduced the LRP. Model RT data (Figure 23) also

reproduced the required NCE.

One interesting aspect is that, although it is not as pronounced as it is in the

human data, our model shows the same double reversal around time points 14

and 15 (cf. the ``Masked and unmasked priming'' subsection on p. 397). That is,

the separation curves turn back towards zero just before target-induced activa-

tion starts taking effect, as can be most clearly seen in the incompatible con-

dition. Operationally this occurs when the nonprimed response has come to

dominate the primed response (through lateral inhibition) to such an extent that

the opponent node of the nonprimed response crosses threshold and starts to

relay inhibition back on to it. Consequently, the nonprimed response begins to

be suppressed and hence (through lateral inhibition) disinhibits the primed

response. If this process was allowed to continue (by delaying target onset) the

primed response should ultimately start to dominate and to win the response

Figure 21. Model and human RT data for low strength prime experiment (human RTs from

Schlaghecken & Eimer, 2002, Fig. 5; a neutral condition is not available for human RTs).
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Figure 22. Model separation curves for full mask 150 ms ISI experiment.

Figure 23. Human and model RTs for full mask 150 ms ISI experiment (a neutral condition is not

available for human RTs).
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competition race. Thus, a further prediction of the model is that if prime±target

ISI is sufficiently long, NCEs will be nullified, since separation will have

returned to zero by onset of target-induced activation. We discuss this prediction

in further detail later (cf. the ``Simulation predictions'' subsection on p. 449).

Partial mask, ISI 150 experiment

In order to simulate this experiment, the same stimulus sequence as just

described above was used, except that the mask stimulus had a lower activation

level (0.152). The resulting separation curves and RTs are shown in Figures 24

and 25, respectively.

The separation profile is a compromise between unmasked priming (in which

separation continues to increase until target activation takes effect, see Figure

28), and the ISI 150 ``full mask'' experiment (see above). That is, opponent

inhibitory pressures are at work, but they are slower acting and less powerful

than in the fully masked experiments. In particular, they are not strong enough to

push separation back to zero and across the x-axis.

Obviously, however, the separation profile obtained in this simulation is not

an exact match to the LRP profile of the partial mask experiment in Figure 5b. In

particular, separation only shows a weak tendency to return to zero at the time of

target-induced activation onset (cycle 15). A possible explanation for this is that

in the experiment, the partial mask was randomly constructed on each trial.

Consequently, it might have acted as a weak mask only on some trials

Figure 24. Model separation curves for partial mask, 150 ms ISI experiments.
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(corresponding to the situation simulated here). On other trials, however, it

might have fully masked the prime (triggering complete separation reversal and

behavioural NCE), and on yet another set of trials, it might not have acted as a

mask at all (i.e., failing to trigger even a slight reversal, and resulting in

behavioural PCE). There is in fact evidence for this from a reanalysis of the

compatible trials in the partial mask experiment. Separate averaging of LRPs

from slow response trials and fast response trials (relative to median RT) reveal

that slow responses are accompanied by a complete reversal (identical to the one

observed for fully masked compatible primes). No such reversal occurred for

fast compatible trials. If the LRP depicted in Figure 5b results from such a

mixture, then reproducing this profile with a single mask input activation level

would be problematic.

However, a key aspect that has been reproduced here is that despite the fact

that the incompatible separation crosses the compatible separation (around cycle

19), we still obtain PCEs. This is due to the discounted accumulation of

separation evidenceÐeven though at this time point the incompatible condition

has separated further than the compatible condition, its final minimum is still

farther away since it has to compensate for the legacy of previous incorrect

direction separation.

Figure 25. Human and model RT data for ISI 150 ms with partial mask (a neutral condition is not

available for human RTs).
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Unmasked ``frame'' experiment, ISI 150 ms

The data arising from the ``frame'' experiment (Figure 5c) was reproduced

by employing the same stimulus sequence as above, but using a mask activation

strength of only 0.01. The resulting profile is shown in Figure 26. With such low

strength ``masking'', almost no inhibitory reversal is induced. More specifically,

the perceptual trace of the prime is preserved throughout the masking period

because the mask is too weak to suppress it, and this preserved activation

counteracts the build-up of opponent inhibitory pressure. The resulting strong

PCE (cf. Figure 27) is as expected.

Unmasked ISI 150 ms experiment

Finally, data arising from the ``empty'' experiment (Figure 5d), has been

simulated by including a complete blank (i.e., zero activation) between prime

and target. The effect (cf. Figures 28 and 29) is similar to that which is obtained

in the ``frame'' condition, and does not require additional justification.

Short prime±target ISI conditions

As discussed at the beginning of this paper (cf. the ``Direct perceptuomotor links

and response inhibition'' subsection on p. 386) and encapsulated in Figure 1,

short prime±target ISIs (between 0 and 32 ms) yield PCEs, which turn into

NCEs as prime±target ISIs increase beyond 64 ms. In order to reproduce this

effect we need to make some additions to the model, this is because with short

Figure 26. Model separation curves for 150 ms ISI and very low strength masking.
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Figure 27. Human and model RTs for 150 ms ISI and very low strength mask (a neutral condition

is not available for the human data).

Figure 28. Model separation curves for 150 ms ISI and no masking.
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prime±target ISIs, the mask and target presentations overlap in time, which in

the experiments that yielded Figure 1 was obtained by presenting the target in an

offset spatial location. As a result, inhibitory forces change, that is, in the

existing model, the feedforward inhibition between the perception and percep-

tual pathway layers ensures that each new input stimulus backward masks

previous stimuli. In particular, not only does the mask backward mask the prime

but in fact, the target has a backward masking effect on the mask. However, this

will not occur if the target is spatially offset from the target. To reflect this

change, we add a second input pathway, which comprises a separate set of

perception and perceptual pathway nodes, as depicted in Figure 30. This new

pathway is used to model stimuli that are spatially offset, i.e., the target in short

prime±target ISI conditions.

The key point to note is that the PP' nodes are not affected by feedforward

inhibition from PL nodes. Rather, the only input that PP' nodes receive is

excitatory and from corresponding perception nodes. In addition, the two

pathways join at response nodes, which they both have excitatory projections to.

Parameter settings for the additional input pathway are documented in the

appendix.

Figure 31 shows that at short prime±target ISIs of between 0 and 33.333 ms,

the model indeed generates PCEs, which turns into NCEs as prime±target ISIs

Figure 29. Human and model RTs for ISI 150 ms and no masking (a neutral condition is not

available for the human data).
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are increased to 66.666 ms and then 83.333 ms. Although, PCEs change into

NCEs slightly earlier, in respect of prime±target ISI, in the model than they do in

human data (see Figure 1), the key point is that this PCE to NCE transition is

found. As a testable prediction of our model we present Figure 32, which shows

the separation profiles that arise with a 16.666 ms prime±target ISI.

Forced choice conditions

As noted previously (cf. the ``Prime visibility results'' subsection on p. 397),

forced choice identification tasks require participants to respond to the direction

of the masked prime, which is normally presented without subsequent target.

Figure 30. Short prime±target ISI model, with an additional input pathway, which is not subject to

feedforward inhibition.
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Figure 31. Reaction times across conditions as a function of (short) prime±target ISI.

Figure 32. Separation profiles (i.e., response activation differences) across conditions, in which a

16.666 ms prime is followed by a 100 ms mask and a 100 ms target with a short prime±target ISI of

16.666 ms.
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Earlier in the paper (cf. the ``Prime visibility results'' subsection on p. 397) we

offered an explanation for why participants' performance is at chance level in

these tasks, even though prime-induced activation does affect motor cortex

activation levels. We argued that residual activation induced by the prime only

has an effect on response outcomes if it is built upon by target activations.

The same explanation can be extrapolated to our model. Specifically, in order

to reproduce these results we can run the model without target phase activation.

As required, separation fails to reach a point at which the selection criterion is

satisfied. We would interpret absence of selection as reflecting that the prime is

not available to conscious experience and hence, that participants default to a

random selection between response alternatives. The separation profiles that the

model produces in this situation are shown in Figure 33, which serve as a further

testable prediction from the model. Thus, there is significant response layer

activation in this situation, including the expected inhibitory reversal, however,

none of this activation is strong enough to yield response node separation suf-

ficient to satisfy the selection criterion.

Comparing ISI 100 and ISI 150 experiments

As discussed earlier (cf. the ``Masked and unmasked priming'' subsection on p.

397), one issue that arises from the human data is that, in the basic experiment,

RT effects were larger than in the ISI 150 experiments. One would have thought

that, if it had any effect at all, a longer prime±target ISI would produce stronger

Figure 33. Separation profiles across conditions in the forced choice condition, in which a 16.666

ms prime is followed by a 100 ms mask and no target is presented.
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opponent suppression and thus increase RT differences. We offer two expla-

nations, both of which have been illuminated by the model construction: The

double reversal and the arrows mask.

Double reversal

As discussed above, a double reversal (i.e., separation turning back to zero

shortly before target activation takes effect) was obtained in both the simulation

and the human LRP data of the ISI 150 ``full mask'' experiment. This suggests

that the mask-induced reversal has a temporal limit. With longer prime±target

ISIs, target-induced activations start when inhibitory processes have already

declined, thus yielding less pronounced RT effects. Indeed, although RT effects

size in the model do not increase between ISI 100 and ISI 150 ``full mask''

experiments, they do stay the same and with other parameter settings we can

obtain a greater RT effects size for ISI 100 compared to ISI 150 ``full mask''

experiments. Furthermore, it is exactly this aspect that underlies our prediction

that negative compatibility effects will disappear at long prime±target ISIs (see

the ``Simulation predictions'' subsection on p. 449).

However, despite the successful reproduction of the double reversal, since

(with the selected parameter settings) the model does not actually reproduce the

reduced RT effects, we suggest thatÐalthough double reversal may play a

roleÐother factors are also at work. As noted above (cf. the ``NCE and self-

inhibition'' subsection on p. 391, and the ``Masked and unmasked priming''

subsection on p. 397), effects in the basic experiment might have been parti-

cularly large as a result of the specific masking stimulus employed. We will

discuss this possibility in the following subsection.

Arrows mask

It has been argued that the use of overlapping right and left double arrows in

the basic experiment mask effectively resulted in ``adding'' the opposite sti-

mulus to the prime. This, in turn, might result in the perception of ``induced

motion'', i.e., an illusionary movement ``away'' from the initial prime direction

(Eimer & Schlaghecken, 1998). Conceivably, this may trigger corresponding

response activation. In other words, the release of inhibition triggered by suc-

cessful masking, and the response activation triggered by induced motion, would

both facilitate motor response separation in opposite direction to the prime.

Obviously, this would increase the size of the NCE relative to a situation where

response separation is driven only by successful masking.

Although we cannot provide a full exploration of these possibilities within

the context of our model, we can explore the consequences of a superimposed

arrows mask. We investigated this by stimulating both left and right arrow

perception nodes (PL2 and PL3) during masking. However, these nodes were

stimulated asymmetrically with the nonprimed direction being more strongly

excited than the primed direction, as a reflection of the proposed apparent
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motion towards the unprimed response. Thus, the masking part of the pattern

sequence corresponds to stimulation of PL1 to a level of 1 and PL2 and PL3 to

levels of 0.15 and 0.05 respectively, with the former value used for the non-

primed stimulus (these values generate the largest increase in effect size;

however, other values in this range also generate the desired effect). We still

stimulate PL1 to reflect the fact that even the superimposed arrows mask does

function as a mask and suppresses the perceptual trace of the prime.

Comparing the resulting separation profiles (shown in Figure 34) with those

from the basic nonarrow-mask condition (Figure 18) reveals an increase in

reversal size (cf. time point 13 in the compatible condition). This is in line with

the explanation given above, and has indeed had the effect of increasing the

resulting RT effect size (Figure 35). The finding that model RTs now closely

match human RTs from the basic experiment provides further support for our

model (see also the ``General Evaluation'' subsection on this page).

DISCUSSION

General evaluation

In support of our claim that the model accurately reproduces the available data,

we offer Table 1 and Figure 36. The former of these documents how model and

human RTs differ across experiment, both in terms of RT per condition and

overall effect size. Then Figure 36 demonstrates that human and model RTs are

very strongly correlated across experiment and condition.

Figure 34. Separation curves with arrows mask.
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Figure 35. Human RTs from basic experiment compared with model RTs with arrows mask.

TABLE 1
Differences between model and human RTs

Condition Compatible Incompatible Neutral Total Effect

Basic experiment (ISI 100) ±32 ±12 ±14 ±20

Arrows mask (ISI 100) ±15 ±12 ±14 ±3

Low strength prime (ISI 100) ±50 ±40 n.a. +9

Full mask (ISI 150) ±10 ±9 n.a. ±1

Partial mask (ISI 150) ±9 ±18 n.a. ±9

``Frame'' (ISI 150) +2 ±10 n.a. ±12

``Empty'' (ISI 150) +4 ±29 n.a. ±33

Average (ms) ±15.71 ±18.57 ±14.00 ±16.09 ±9.86

Average (cycles) ±0.94 ±1.11 ±0.840 ±0.97 ±0.59
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Relationship to other models

Relationship to Houghton and Tipper's model

Although the work of Houghton and Tipper (1994) heavily influenced our

prototype models (cf. Bowman, Aron, Eimer, & Schlaghecken, 2001b), the

current model is significantly different. This reflects the different purposes of

the two models. As previously stated, Houghton and Tipper's work was con-

cerned with high-level attentional control processes. In contrast, our model is

concerned with low-level motor control processes. In fact, response-set main-

tenance and switch-off is the closest we come to high-level control, providing

the interface between voluntary, instruction-induced set-up of particular direct

perceptuomotor links and involuntary automatic activation and inhibition pro-

cesses controlling these links can be modulated by task demand (cf. Neumann &

Klotz, 1994). The key difference here is that in Houghton and Tipper's work

attention controls the direction of response selection, while our response-set

maintenance mechanism excites both potential responses equally.

A further illustration of the difference in purpose of the two models is that

here we use a simpler opponent network configuration. While, for example, in

Figure 36. Correlation between human and model RTs.
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Houghton and Tipper (1994) a gain system is used which associates both an ON

and an OFF node with each property node, here we associate a single OFF node

with each response node. Thus, in comparison with the Houghton and Tipper

model, we have (in effect) conflated ON cells and property cells into a single

response node (which is actually in line with simplifications made by Houghton

in other papersÐe.g., Houghton, 1994). The central reason for this simplifica-

tion is that the Houghton and Tipper architecture reflected the need to have a

repository for activation redirected from high-level ``target fields''. Obviously,

such selective redistribution of activation is not a concern of our model.

A further difference between our model and that of Houghton and Tipper is

that we have used a standard sigmoidal activation function. In contrast,

Houghton and Tipper's function could accumulate negative activation. Else-

where (Bowman, Aron, Eimer, & Schlaghecken, 2001a), we have clearly

motivated why we have made this change to the function we inherited from

Houghton and Tipper, and the change has enabled us to reproduce the LRP data

more faithfully. Furthermore, it could certainly be argued that we have moved to

a more standard (and biologically accepted) activation functionÐprobably the

most common activation function to be found in the literature is a sigmoidal

function with a minimum activation of zero.

Relationship to Grossberg and Mingolla's boundary
contour system

Perhaps the most complete computational model of masking available is that

which has arisen from Grossberg and Mingolla's (1985a, 1985b) boundary

contour system (BCS). Francis (1997) has demonstrated how a large spectrum of

the available data on metacontrast masking can be reproduced using BCS. The

BCS model provides a more detailed explanation of masking than our model

does. In particular, a detailed treatment of spatial aspects of stimulus pre-

sentation is provided. However, although our model is much less detailed, there

are a number of points of similarity in respect of coarse grain mechanisms

employed. For example, as previously mentioned, the use of feedforward inhi-

bition is at the heart of masking in both models. In fact, we would argue that our

model could be viewed as a high-level abstraction of the more detailed BCS

model. As an illustration of this, note how our use of double time averaging in

the context of our coarse-grain localist representations produces an emergent

after image, and how this is obtained in a more detailed manner through reso-

nating feedback excitation in BCS.

An important avenue for further research would be to replace the perception

layers of the present model with a more detailed BCS style model of the per-

ceptual end of the system. This would have the added benefit of investigating

how the style of backward pattern masking considered in this paper can be
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reproduced in the BCS model, which has to date only been used to explain

metacontrast masking effects.

Earlier versions of the present model

A preliminary version of our model was described in Bowman et al. (2001a,

2001b). This earlier model reproduced the separation reversal, which underlies

the basic experiment. However, it failed to reproduce the spectrum of data (both

separation profiles and RTs) that we have done here, especially the ISI 150

experiments. There are a number of aspects of the model presented here that

differ from the preliminary model; we list these largely without discussion, since

the inclusion of each has been justified elsewhere in the paper.

1. Bowman et al. (2001a, 2001b) used a gating mechanism to implement

masking. This could be viewed as an abstraction of an inhibitory

mechanism and the feedforward inhibition we have employed here is

essentially a refinement of the earlier approach.

2. The response-set maintenance mechanism we employ here has evolved

from the response-set maintenance used in Bowman et al. (2001a, 2001b).

The present mechanism preactivates and maintains excitation of both ON

and OFF nodes in the relevant response channels, while in previous

models it was solely focused on response (ON) nodes. In addition, the

discounted accumulator node mechanism, which is tied to response-set

maintenance, and the manner in which response channels are ``back-

grounded'' when a response is released, are both new to this model.

3. As just discussed, we employ a more standard, positively ranged, sig-

moidal activation function than that which we inherited from Houghton

and Tipper and used in (Bowman et al., 2001a, 2001b).

4. The treatment of perceptual pathway activation dynamics and sustained

traces is new to the model presented here.

5. The rather crude handling of opponent circuit thresholds of (Bowman et

al., 2001a, 2001b) has largely been refined here by integrating them into

the OFF node activation function.

Also, although unimplemented, the model discussed in Schlaghecken and Eimer

(2002) predicted a number of aspects of the model described in this paper. In

particular, although not couched in the same terminology, a form of opponent

process was at the heart of the model described in Schlaghecken and Eimer

(2002).

Relationship to physiology

First, we must emphasize that, in its current form, our model is best viewed as

providing a ``cognitive-level'' explanation of masked priming. In particular, the

relationship between our model and neurophysiology is not completely clear.
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Nonetheless it is valuable to speculate on how the mechanisms we have

employed could relate to brain structures, thus providing a springboard to the

development of a more biologically plausible model of the masked priming data.

Such a consideration is made here.

We divide our discussion into two main issues:

. biological justifications for the micro elements of our model, in particular,

neuron activation functions and activation transfer across links

. how the macro elements of our model, i.e., layers and neural circuits, relate

to anatomical structures that could be involved in the masked priming effect.

Micro comparison

Perhaps the key element of the microlevel of our model is the activation

functions employed. Central aspects of these functions are (a) time averaging

and (b) the sigmoidal function, which were introduced earlier (cf. the ``Basic

activation functions'' subsection on p. 413).

Time averaging. Time averaging is built into the definition of ai(t+1) with t
playing a key role in regulating the responsiveness of the function to fluctuations

in net input. Time averaging can biologically plausibly be explained as

simulating the gradual build-up of postsynaptic generator potentials through

temporal summation, and is frequently used in the computational modelling of

brain functions. For example, in O'Reilly and Munakata (2000) the membrane

potential at a time t+1 is expressed as a function of the potential at time t and the

newly arriving electrical charge in that time interval. In addition, in order to

reflect the ``sluggish'' propagation and aggregation of synaptic inputs, in

O'Reilly and Munakata time averaging is used to express the excitatory input

conductance to a neuron. This is similar to the double time averaging we use in

perceptual pathway nodes.

The sigmoidal function. The sigmoidal function (see Figure 13) that we use

is, as has been argued many times (e.g., O'Reilly & Munakata, 2000), in broad

terms biologically justifiable. Node activation levels represent the firing rate of

neuron populations (not individual neurons). This is a standard approach that

does not in itself preclude biological plausibility. In particular, although there is

some debate surrounding this issue (see Abeles, Bergman, Margalis, & Vaadia,

1993), it has been argued that because of the high noise level of individual

neurons' firing rates, the computationally most meaningful level of neural

activity is the firing rate of neuron populations (O'Reilly & Munakata, 2000).

If we consider the depiction of the function in Figure 13, in standard manner

our function saturates at high positive net inputs. This is justified by neuronal

refractory periods, which ensure that there is an upper bound on the firing rate of

neurons. In addition, the function contains a graded threshold at low levels of net
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input. This is in line with the known threshold mechanisms in biological

neurons, which will produce action potentials only if their integrated input is

sufficient to produce a generator potential that exceeds threshold values.

Connectivity. At the microlevel of comparison we can also identify

biological mechanisms that support activation transfer in the manner we have

been considering here. First, links in our model are broadly related to coarse

biological interconnections such as large-scale neural pathways or projections

between cortical areas. Consequently, link weights denote accumulated synaptic

efficacy across a set of individual connections.

Furthermore, the distinction between excitatory and inhibitory connections

mimics an identical distinction in the nervous system, which can be found at all

levels from individual synapses to types of neurons to neurochemical pathways.

With regard to the opponent processing mechanism it is important to note that

our OFF node is no more than a set of inhibitory interneurons. Neural popula-

tions that when receiving excitatory input have an inhibitory effect back onto the

same neurons are commonplace in the brain. Furthermore, such structures have

increasingly been employed in the move towards biologically plausible neural

network modelling. For example, in O'Reilly and Munakata (2000), layers of

inhibitory interneurons are interconnected with hidden layers. This is done in

order to regulate the level of excitation in hidden layers, since the presence of

(excitatory) recurrent collaterals and autoassociator (attractor) dynamics can

yield unconstrained excitatory self-stimulation and unstable settling dynamics.

The inclusion of inhibitory interneurons stabilizes this process. Consistent with

this perspective we believe that each localist ON or OFF node representation

that we employ in our model would be implemented in the brain as a neural

population, which, in the former case, is composed of excitatory neurons, and, in

the latter, inhibitory interneurons. With, in the same manner as in our model,

excitation of the ON population counteracting the inhibitory pressures from the

OFF interneuron population, until excitation of the ON population is removed

and the inhibitory reversal is initiated.

There is though one potential glitch with such a population encoding, namely,

the degree to which the response encoding is distributed. In a fully distributed

encoding, each response would be encoded across all the available neurons.

However, response neurons need to be suppressed by directing inhibitory

pressure at them through link interconnections. In a fully distributed situation,

directing inhibitory pressure onto the appropriate ON neurons is not straight-

forward, as the inhibitory pressure would act upon all the available neurons and

thus would also suppress competing responses. Consequently, in order that

inhibitory interneurons can be appropriately interconnected and their action

localized, it is important that encodings are sparse (even localist in the sense of

Page, 2000) and that the representation of competing responses is (functionally)

nonoverlapping.
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Macro comparison

At this level of comparison, biological plausibility is less clear. The question

we wish to addressÐbeyond simply saying that single nodes represent popu-

lations of neuronsÐis how components of our model relate to neuroanatomical

structures. Although we can make ``broad brush'' statements such as that our

perception layer is playing the role of early visual areas, the more interesting and

difficult question to answer is where the opponent circuits reside in the brain.

While it is clear that response execution is ultimately triggered in the primary

motor cortex, it is also clear that response selection occurs at an earlier stage.

Although the precise mechanisms are as yet unknown, it is generally assumed

that the basal ganglia play a crucial role in this process (Band & van Boxtel,

1999). These nuclei possess extensive projections to motor cortex and are known

to be heavily involved in controlling motor responses (cf. Parkinson's and

Huntington's diseases, which are pathologies of the basal ganglia). Furthermore,

the basal ganglia are known to have an inhibitory action. For example,

GABAergic neurons in the Globus Pallidus and Substantia Nigra Pars Reticulata

are tonically active and hold the thalamus (amongst other structures) in a state of

tonic inhibition (Redgrave, Prescott, & Gurney, 1999). Furthermore, imaging

and neuropsychological work on the masked priming task has implicated cor-

ticostriatothalamic circuits in the inhibitory reversal (Aron et al., 2003) and

previous work by Jackson and Houghton (1994) has related opponent network

processing to basal ganglia architecture. In addition, there is evidence that lateral

inhibition arises in the striatum and subsequent basal ganglia areas (such as the

globus pallidus) (Rolls & Treves, 1998). Furthermore, it has been postulated that

response competition is implemented by such neural circuitry (Rolls & Treves,

1998), which would be consistent with the view that some analogue of our

response layer resides in the basal ganglia.

Simulation predictions

There are many minor predictions implicit in our model, e.g., the neutral con-

dition RTs for a number of experiments in which human RT measures have not

been made. However, we would particularly emphasize four predictions. The

first three are separation profiles for conditions where LRPs have not yet been

recorded: (1) The short prime±target ISI shown in Figure 32; (2) the separation

profiles that we derived for the low strength prime (cf. Figure 20), a notable

feature of which is that separation builds up slowly but in a sustained fashion

throughout the masking period; and (3) the forced-choice profiles shown in

Figure 33. All of these are concrete testable predictions.

Our fourth main prediction is that as prime±target ISIs increase (from 100 ms,

through 150 ms, and beyond) the NCE will decrease and eventually disappear.

We have run a number of simulations to provide a prediction of the mask length

at which this happens. In the simulations, the following sequence of events is
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presented to the networkÐ1 cycle (16.666 ms) prime; 6 cycles (100 ms) mask; 3

cycles (50 ms) blank; N cycles (16.666 ms * N) blank; 6 cycles (100 ms) target.

We are interested in how the separation profiles and resulting RTs change as N

varies. We have run simulations for values of N between 0 and 10. Figures 37

and 38 are notable separation profiles from amongst these simulations. When N

= 6 the NCE has disappeared (Figure 37), as a reflection of which the final

minima in the three separation profiles have closed up and are almost overlaid

upon one another. In contrast, when N = 8, we obtain the profiles shown in

Figure 38, in which the double reversal is so strong that the compatible condition

separates towards its final minimum first and we obtain positive compatibility.

To summarize these changing RT effects, Figure 39 plots RTs for each of the

three conditions against mask±target ISI, i.e., 50 + (N*16.666) ms. The switch

from negative compatibility (N = 0,1,2,3,4,5); to null compatibility (N = 6); to

positive compatibility (N = 7,8,9,10) is made clear. The separation profiles of

Figure 37 and Figure 38 and the resulting change in RT effect depicted in Figure

39 are a concrete testable prediction of our model.

With regard to this prediction it is also important to note that the kind of

phasic interleaving of facilitation and inhibition that causes first PCEs to turn

into NCEs at short prime±target ISIs and then to turn back into PCEs at long

prime/mask±target ISIs is characteristic of an opponent process, such as the one

we have employed here. In our model, the time course of these phasic changes is

Figure 37. Separation profiles for the sequence: 16.666 ms prime, 100 ms mask, 150 ms blank, 100

ms target.
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Figure 38. Separation profiles for 16.666 ms prime, 100 ms mask, 183.333 ms blank, 100 ms

target.

Figure 39. RT effect size as mask±target blank period is increased (50 corresponds to N = 0,

66.666 corresponds to N = 1, 83.333 to N = 2, etc.).
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complicated by the additional inclusion of lateral inhibition between response

nodes. A typical sequence of states that would arise with our response system is

a follows. First, if say the LEFT response receives bottom-up stimulation it will

initially win the response race (due to the lateral inhibition). However, the LEFT

off node will also become strongly excited and will suppress the response if its

counteracting bottom-up excitation is removed. Assuming no further bottom-up

stimulation, the system then enters a phasic pattern of activation dynamics,

whereby the previously winning response (LEFT) becomes strongly suppressed,

releasing the competitor response (RIGHT), which then starts to use lateral

inhibition to its advantage; however, as it becomes more active, its off node will

eventually cut in and suppress it below the LEFT response, which again begins

to win the race and the cycle repeats itself from this point. Thus, confirmation of

this prediction that PCEs change into NCEs and then back to PCEs as prime±

target ISIs increase will give strong support for some form of opponent system,

since the cardinal marker of such a mechanism would have been identified.

Theoretical justification

Although at first sight the self-inhibition mechanism that we have modelled may

seem a little odd, it is in fact consistent with, and indeed a natural consequence

of, the well accepted ``direct perceptuomotor link'' hypothesis (Neumann &

Klotz, 1994). Specifically, it can certainly be argued that responding to a sti-

mulus, which has not (yet) been fully consciously perceived, could bring evo-

lutionary benefits; for example, in respect of responding rapidly to impending

threat. However, it is clear that dangers could also arise from such a necessarily

``quick and dirty'' and thus, error prone, low-level system. Therefore it is

hypothesized that an emergency brake mechanism is needed, which ensures that

we are not slaves to these nonconscious activations. In particular, if the sensory

evidence supporting such an action is suddenly removed, and the activation has

already come dangerously close to overt response execution, then the system

switches into self-inhibition mode. Furthermore, as previously argued, the

opponent process mechanism that we have presented here has exactly the

necessary characteristics to generate such self-inhibition and is likely to be

widely used in the nervous system for the control of ongoing activity (see for

example, Houghton, 1994; Houghton & Tipper, 1994; Houghton et al., 1996).

The slightly surprising aspect of this emergency braking mechanism is that

the sequence of events initiated by retracting a response (through self-inhibition)

causes the opposite response to become activated above baseline levels. How-

ever, this is a natural consequence of the two responses being connected via

lateral inhibition: If one of the responses becomes strongly suppressed below

baseline, the other will be disinhibited and will thus be pushed above baseline. It

is also interesting to note that the degree to which nonprimed responses benefit

from suppression of a primed response is dependent upon the number of
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competing responses. Specifically, as the number of mutually inhibitory

responses is increased, the degree to which nonprimed responses benefit from

suppression of a primed response decreases. This is because the inhibitory and

disinhibitory forces acting on a particular response are progressively watered

down as the number of response alternatives increases. This raises the possibility

that significant disinhibition of a competing response could be an artefact of

there only being two response alternatives at play in the masked priming

experiment. In contrast, in ``natural'' real world situations, there would always

be a huge number of competing responses.

To explore this issue, we have run a set of (as yet) unpublished experiments

(Schlaghecken, Bowman, & Eimer, 2005) and the findings are indeed consistent

with the view that increasing the number of response alternatives reduces the

extent to which a (retracted) primed response disinhibits competing responses.

Finally with respect to the theoretical justification for our model, there has

recently been debate in the masked priming literature on whether NCEs reflect

self-inhibition or sensory/perceptual interactions between primes and masks

(Lleras & Enns, 2004). Specifically, Lleras and Enns have used the object

substitution masking framework to suggest that visual features contained in the

mask could be exciting the nonprimed stimulus and hence the nonprimed

response. However, Klapp (in press) has completed a series of experiments that

demonstrate that the masked priming NCE is not based on perceptual interac-

tions of the type suggested by Lleras and Enns. That said, we do accept that the

nature of the mask is critical to this issue and indeed that with a mask that

contains arrows as elements, there might in fact be two mechanisms at play: One

of motor activation and inhibition and one of perceptual interaction. We

provided simulations to this effect and associated discussion earlier (cf. the

``Arrows mask'' subsection on p. 441).

CONCLUSIONS

We have given further evidence for an inhibition-based account of the NCE in

masked priming. We have done this by presenting a neural network model of

inhibitory processes, the behaviour of which is consistent with the available

data. The underlying mechanisms we use are related to those employed in

Houghton and Tipper's (1994) influential models of negative priming and

inhibition of return. Although, as stated previously, the notable difference

between Houghton and Tipper's model and ours is the role that high-level

attention plays. Our network has the right flavour to reflect a low-level visuo-

motor link. In this respect the mechanisms used could be described as ``dumb''.

The only role that goal driven processes play is in response-set maintenance.

However, this is not a selective process and its effect is fixed. Our model

proposes a low-level inhibitory mechanism, the initiation of which is controlled

by fluctuating excitatory pressure on response nodes.
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It would be wrong of us to claim that what we have presented ensures that our

model is the only one that could reproduce the masked priming data. Indeed,

such assurances are never available in modelling work. However, we would

argue that the mechanisms employed are strong candidates for those underlying

masked priming. In particular, we can point to the following arguments in favour

of our approach:

1. We have built upon the precedent set by Houghton and Tipper's (1994)

work. Furthermore, similar opponent systems have played an important

role in models of serial order recall such as (Burgess & Hitch, 1999).

Thus, when viewed as a body of research, one might suggest that opponent

effects are ubiquitousÐarising at many levels of cognition, which makes

it more likely that they underlie the masked priming effect. Indeed this is

not surprising considering the ubiquity of inhibitory interneuron popula-

tions in the brain (cf. O'Reilly & Munakata, 2000).

2. Our model is simple and canonical. This is always an advantage in

modelling work.

3. The techniques employed are psychologically plausible and reflect a level

of cognitive mechanism commensurate with the dynamics of the masked

priming task.

4. The model accurately reproduces the available masked priming data. In

particular, not only have we accurately reproduced RT data, we have also

reproduced the spectrum of available LRP data. It is common for com-

putational models to reproduce RT data, but our success in modelling

electrophysiological data is much less common. Thus, in contrast to other

models we also obtain an indication that the ongoing time course of our

model's behaviour is consistent with the human system. This is a sig-

nificant strength of our work, which at the least has allowed us to assess

our model against a very large number of data points, e.g., the separation

profiles for each experiment have around 60 data points.

5. In assessing the value of a computational model, it is generally accepted

that a qualitative fit to the experimental data (i.e., reproducing the broad

pattern of results) is sufficient to demonstrate the worth of a model. The

data presented in this paper demonstrates that our model definitely suc-

ceeds in this qualitative sense. However, we have also been able to obtain

a relatively accurate quantitative fit to the human data, as demonstrated by

the correlation shown in Figure 36 and the close match between our

model's separation profiles and the LRPs recorded from humans. Such a

more precise fit does bring benefits. For example, the main prediction

arising from our model, which was encapsulated in Figure 39, has both a

qualitative and a quantitative component. Specifically, not only do we

assert that NCEs will turn into PCEs as mask±target ISIs are increasedÐa

qualitative predictionÐour model also asserts a particular mask±target ISI
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at which NCEs turn into PCEs (a mask±target ISI of 150 ms)Ða quan-

titative prediction. Although it is extremely unlikely that NCEs will turn

into PCEs at exactly the point predicted by the model, it does suggest a

region where experiments should direct their focus and, most sig-

nificantly, without a close quantitative fit between our model and the

human data, such a quantitative claim could not be made. Finally, it is

important to emphasize again that although the model contains a large

number of parameters, there is only one set (of parameters) being pro-

posed and this is used to generate the, aforementioned, quantitatively

precise fit across the spectrum of conditions.

A key objective of our work has been to provide a testable theory of activation

followed by inhibition effects arising from subliminal priming. We have done this

via a concrete implementation of our theory. This implementation is based upon a

number of key mechanismsÐopponent processes (as implemented by inhibitory

interneurons); response competition (as implemented by lateral inhibition);

competitive masking mechanisms (as implemented by feedforward inhibition);

delineation of response channels through response-set maintenance; and response

selection via discounted evidence accumulation. The value of the computational

model is that it allows testable predictions to be made, which we have docu-

mented earlier (cf. the ``Simulation predictions'' subsection on p. 449).

As previously suggested, a potential weakness of our model is that a number

of parameters need to be set in order to obtain the behaviour sought (all of which

are documented in the Appendix). However, we would argue that these para-

meter settings are integral to the model being proposed; testing our predictions

also tests these parameter settings.

Our theory is consistent with a cognitive-level explanation of activation

followed by inhibition. This ``emergency brake hypothesis'' argues that the

suppression implements a low-level response retraction mechanism. In a direct

(below conscious) parameter specification setting there could be considerable

fluctuation of sensory evidence and responses may be inappropriately activated

on the basis of transient sensory evidence. The opponent inhibitory circuit is a

mechanism to retract such inappropriately excited responses.
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APPENDIX

Accumulated reaction times

In Tables 2, and 3 we document both human and model RTs for the set of experiments and conditions

considered. Basic experiment human RTs are taken from Eimer and Schlaghecken (1998, p. 1740,

Exp. 1a); low strength prime experiment human RTs are taken from Schlaghecken and Eimer (2002,

Fig. 5); and ISI 150 experiment human RTs are new to this paper.

Residual delay calculation

Table 4 shows how the residual delay is calculated for each of the experiment conditions (see the

main text for a description of this process, i.e., the ``Patterns and reaction times'' subsection on p.

421). The separation delays are read off from the corresponding LRP profiles (see Figures 2 and 5)

and then the residual delay is calculated by subtracting the separation delay from the corresponding

RT. We then take the average residual delay over the values in the last column, which yields the

value 263 ms, and feed this into our calculation of model RTs.

TABLE 2
Human RT data

Condition Compatible (ms) Incompatible (ms) Neutral (ms)

Basic experiment (ISI 100) 420.0 367.0 386.0

Low strength prime (ISI 100) 405.0 412.5

Unmasked ``empty'' (ISI 150) 334.0 434.0

Unmasked ``frame'' (ISI 150) 336.0 415.0

Partial mask (ISI 150) 364.0 390.0

Full mask (ISI 150) 398.0 364.0

TABLE 3
Model RT data

Condition Compatible (ms) Incompatible (ms) Neutral (ms)

Basic experiment (ISI 100) 388.3 355.0 371.7

Low strength prime (ISI 100) 355.0 371.7 371.7

Unmasked ``empty'' (ISI 150) 338.3 405.0 371.7

Unmasked ``frame'' (ISI 150) 338.3 405.0 371.7

Partial mask (ISI 150) 355.0 371.7 371.7

Full mask (ISI 150) 388.3 355.0 371.7

Arrow mask (ISI 100) 405.0 355.0 371.7
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Details of model

Basic sigmoidal settings

Consider the parameters used in sigmoidal functions (cf. equation 3). First, bias values (the bs

parameter) differ between layers (this is because we wish all nodes to asymptote at the same valueÐ

0.5Ðand we ensure this by varying biases). However, for all sigmoidals in the network (apart from

those in OFF nodes, see the ``OFF node dynamics'' subsection on p. 463), we set the steepness (sp)

parameter to 1 and the range (rg) to 1.2. The choice of a range of 1.2 (rather than 1) arose in order to

ensure that the preactivation asymptote value (0.5) was just below the most responsive part of the

sigmoidal (which is 0.6). However, there is no technical reason why the whole network could not be

rescaled into a 0±1 range.

Weight settings

Link weight settings are documented in Table 5. The link being referred to is most easily

identified with reference to Figure 12.

Parameters per layer

Biases (bs in equation 3) and tau parameters in activation time averaging (t in equation 2) are set

per layer. These settings are documented in Table 6. Layers have different biases because the

connectivity of the network ensures that different layers have different basic excitatory pressures.

Unless these differences in excitatory pressures are compensated for, which is the role of the bias

term, different layers will asymptote during preactivation of the network at different levels. The bias

settings employed here ensure that perceptual pathways and response nodes all asymptote at a value

of 0.5 (due to their input threshold, OFF nodes asymptote at a much lower level, see the ``OFF node

dynamics'' subsection on p. 463). Different values of tau are employed because different layers have

different temporal dynamics. As previously discussed, perceptual pathways need to sustain their

TABLE 4
Residual delay calculations for all conditions for which LRPs are available

Experiment Condition Human

RTs (ms)

Separation

delay

(ms)

Residual delay (ms)

(RTsÐseparation

delay)

Basic experiment

(ISI 100)

Compatible

Incompatible

Neutral

420.00

367.00

386.00

162.50

101.50

118.75

257.50

265.50

267.25

Unmasked empty

(ISI 150)

Compatible

Incompatible

334.00

434.00

73.50

153.00

260.50

281.00

Unmasked ``frame''

(ISI 150)

Compatible

Incomatible

336.00

415.00

92.00

147.00

244.00

268.00

Partial mask (ISI 150) Compatible

Incompatible

364.00

390.00

134.75

153.00

229.00

237.00

Full mask (ISI 150) Compatible

Incompatible

398.00

364.00

171.50

95.00

226.50

269.00
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activation. Hence a high value of tau is employed. In contrast, response nodes are more responsive to

fluctuations in their net input. We discuss response-set maintenance node settings in the ``Response-

set maintenance and response selection'' subsection on p. 463.

Perceptual pathways

As discussed in the main text (cf. the ``Double time averaging'' subsection on p. 31), perceptual

pathway nodes employ a double time averaging, as regulated by the constant tau. That is, both net

input and activation are time averaged. The value of tau for the latter of these was presented in Table

6, while the value for t1 in equation 4 is set to 0.2. Thus, net input time averaging is very responsive

to changes in net input, while the activation time averaging built over this responsive net input is

much more sustained and stable (i.e., a high value of tau).

We also build into the perceptual pathways a mechanism by which once they have crossed the

preactivation asymptote of 0.5, they cannot drop back below this level (as made apparent in the

perceptual pathway traces shown in the ``Emergent sustained perceptual trace'' subsection on p.

415). This is to reduce the degrees of freedom in our model. When, in earlier versions of our model,

we allowed both perceptual pathways and response nodes to freely fluctuate below preactivation

levels, a very complex dynamics emerged from the network and it was difficult to set parameters

correctly. In the current version it is only response nodes that are free to become suppressed below

0.5, in this way the strong inhibitory pressures are localized to response nodes, which is where our

theoretical argumentation has positioned them.

TABLE 5
Weight settings

Links Purpose Value

PLi to PPj (i not equal to j) Feedforward inhibition ±0.705

PLi to PPi Feedforward excitation 6.140

PPi to R(i±1) PP to corresponding response 6.000

Ri to Rj (i not equal to j) Lateral inhibition between responses ±5.800

Ri to Oi Excitation to OFF node 2.500

Oi to Ri Inhibition from OFF node ±4.250

Response-set maintenance node to Ri

and Oi

Response-set maintenance preactivation

and deactivation

11.300

Accum to response-set maintenance

node

Response selection control of response

channel foregrounding

±10.000

TABLE 6
Parameter settings per layer

Layer Bias tau

Perceptual pathways ±0.325 0.850

Response layer ±11.201 0.315

OFF nodes ±12.300 0.650

Response-set maintenance node 3.000 0.700

478 BOWMAN, SCHLAGHECKEN, EIMER



OFF node dynamics

As previously discussed the activation dynamics of OFF nodes are somewhat different from those

of other nodes. This is consistent with our theoretical position that such nodes have a high input

threshold, are very responsive (i.e., build up activation very rapidly) and also saturate quickly, see

our discussion in the ``Opponent processing'' subsection on p. 405. Thus, the steepness parameter

(sp) is set to 0.02, the bias is set to ±12.3, and OFF nodes saturate at 0.273 (i.e., this is an absolute

upper bound on the activation level of such nodes). It is important to note that with such a strongly

negative bias, OFF node preactivation asymptotes just above zero. Thus, medium levels of net input

will only have small affects on the activation level of the node. However, large levels of net input

will have a dramatic (because of the setting of sp), but bounded (by saturation level) effect.

Response-set maintenance and response selection

As discussed in the main text (cf. the ``Response-set maintenance, response foregrounding, and

selection'' subsection on p. 409, and the ``Response-set maintenance and accumulators'' subsection

on p. 419), the response-set maintenance node feeds a constant level of activation into the relevant

response pathway. However, this delineating activation is dependent upon the strength of activation

of the response-set maintenance node. For example, when the node has an activation of zero, the

response channel will become deactivated and will return to the background.

The response-set maintenance node has a strong positive bias (see Table 6) and only one incoming

link, which is from the accumulator node. This link is inhibitory (see Table 5). Thus, as long as the

accumulator node outputs zero activation, due to its bias, the response-set maintenance node will be

strongly activated. The accumulator node outputs zero activation, unless the selection criterion is

satisfied, at which point it outputs a 1. This has a strongly inhibitory pressure on the response-set

maintenance node and causes the response pathway to be unbound, i.e., returned to the background.

In order to be consistent with the activation dynamics throughout the model, response-set main-

tenance node activation builds up gradually, via a time averaged sigmoidal of the net input (Table 6

has parameter settings). Thus, during preactivation, response pathway foregrounding builds up

gradually and after response selection, returning of pathways to the background progresses gradually.

Activation of the accumulator node is regulated by equation 6, where tacc is set to 0.665. As long as

activation (aacc) is below the selection threshold, this node outputs zero. However when the threshold

is crossed, the node outputs 1. The selection threshold is set at 2.72.

Sufficiency of lateral inhibition investigations

As discussed in the main text (cf. the ``Insufficiency of lateral inhibition alone'' subsection on p.

424), we explored cutting the OFF node circuits and varying the strength of lateral inhibition. Thus,

in these investigations links R1 to O1 and R2 to O2 are both set to zero. In addition, as we vary the

lateral inhibition weight between responses we also vary the response node bias. This is because

changing lateral inhibition between responses also changes the inhibitory forces on response nodes,

thus in order to ensure that response nodes asymptote at 0.5 we have to correspondingly adjust

response node biases in order to compensate. These settings are documented in Table 7. Finally,

more extreme values of lateral inhibition (i.e., beyond ±7) are not considered since we could not

obtain stable network preactivations with these values, i.e., the network went into an oscillatory

pattern of activation.

Second sensory pathway

As discussed in the main text (cf. the ``Short prime±target ISI conditions'' subsection on p. 435),

in order to investigate short prime±target ISIs we also explore a variant of our basic network in which
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a second sensory pathway is added, as shown in Figure 30. The activation equations and parameter

settings for the duplicate perception layer (PL2' and PL3') and perceptual pathways (PP2' and PP3')
are identical to those in the corresponding layers in the basic network. The final settings in the

duplicate sensory pathway are as follows: The PLi' to PPi' weight is set to 6.14, the PPi' to R(i±1)

weights are set to 7, and the response node bias is set to ±14.208 (to compensate for the increased

excitation it obtains during preactivation from the second set of perceptual pathway nodes). Note,

that this second sensory pathway is only used when running short prime±target ISI conditions and all

other conditions are run on the basic network.

TABLE 7
Bias and lateral inhibition settings

Biases of response nodes

(R1 and R2)

Lateral inhibition

(between R1 and R2)

±8.10 0

±7.10 ±2

±6.10 ±4

±5.10 ±6

±4.65 ±7
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