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Abstract 

Investigating variability in reasoning tasks can provide 
valuable insights into key issues in the study of cognitive 
development, such as mechanisms that underlie 
developmental transitions, individual differences and 
developmental disorders. We explored potential sources of 
variability in the development of knowledge of conservation – 
a classic Piagetian task. Taking the task structure and problem 
encoding of Shultz (1998) as the normative case, we 
examined the computational parameters, problem encodings, 
and training environments that contribute to variability in 
development, both across groups and within individual cases. 

Introduction 
Conservation refers to the understanding or belief in the 
continued equivalence of two physical sets, following a 
transformation that appears to alter one and not the other. A 
given transformation may alter a quantity, by adding or 
subtracting, or preserve it through elongation or 
compression. The acquisition of conservation knowledge 
involves learning to distinguish between transformations 
that preserve and those that alter quantity. For example, in a 
typical number conservation task, as shown in Figure 1, a 
child is initially presented with two rows of counters (pre-
transformation). The child is then asked whether these rows 
have the same number of counters or whether one has more 
than the other. A transformation is then applied to one row, 
and the child is asked again whether the two rows are the 
same, or whether one now has more counters than the other 
(post-transformation).  

Piaget (1965) found that young children below 6-7 years 
are non-conservers, in that when presented with a 
transformation that preserves number (such as elongation or 
compression) they answer that one row has more counters 
than the other. In contrast children older than 6-7 years are 
conservers, having learnt that transformations of this type 
do not alter number. This finding has been corroborated 
across a range of conservation tasks, such as mass (using 
modeling clay), liquid quantity (using beakers), and number 
(using counters) (Brainerd & Brainerd, 1972; Halford & 
Boyle, 1985; Klah, 1984; Miller & Heldmeyer, 1975; 
Siegler, 1995; Siegler & Robinson, 1982; Wallach, Wall & 
Anderson, 1967; Winer, 1974). The rich literature on 
conservation has also established a series of biases that 

occur as young children learn to conserve, relating to 
problem size, length, and mode of presentation. These 
effects are summarized in Figure 1.   

       
 

A range of classic Piagetian tasks such as conservation, 
seriation and the balance scale, have been subject to 
computational investigation. Models have sought to specify 
the mechanisms that generate the behavioral profile of 
development (Mareschal & Shultz, 1999; McClelland, 1989, 
1995; Shultz, 1998; Schultz, Mareschal & Schmidt, 1994). 
Recent connectionist implementations use an algorithm 
called cascade-correlation (Falham & Lebiere, 1990). 
During training, network connections are altered but if 
learning stagnates, the size of the hidden layer is increased. 
The success of this generative connectionist approach has 
been attributed to the change in the network architecture 
(Mareschal & Shultz, 1999; Shultz, 1998; Schultz, 
Mareschal & Schmidt, 1994). Thus Shultz (1998) ascribes 
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Figure 1: The number conservation task using counters
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Figure 2: The input encoding 

the ability of his model to capture the abrupt shift from non-
conservation (NC) to conservation (C) to addition of hidden 
units and an attendant increase in representational power. 
However, it is possible that other computational parameters 
have a similar impact upon a model’s behavioral profile 
over the course of development. The influence of diverse 
learning parameters on development and their relation to 
cognitive variability is a question under active exploration 
(Richardson, Baughman, Forrester & Thomas, submitted).  

The study of variability is important for three reasons. 
First, it permits us to explore the conditions under which 
certain behavioral transitions in development may or may 
not occur. Second, variability across individuals of the same 
age gives a window onto general or specific intelligence. 
Third, variations in development from the normal pathway 
are found in disorders, sometimes exhibiting delay, failure 
to reach more complex levels of reasoning, or qualitatively 
atypical patterns. Implemented models have generally 
focused on the normative (average) pathway, yet each type 
of variability must ultimately be explained at a mechanistic 
level (Thomas & Karmiloff-Smith, 2003). 

In the following sections, we report an initial series of 
simulations that investigate potential sources of variability 
in the conservation task. First we introduce our normal 
model of development based on Shultz (1998). Second, we 
explore how manipulating the model’s computational 
parameters, input encoding, and training environment alter 
its developmental behavioral profile. Third, we examine 
within-individual variability by carrying out a case study 
comparison, contrasting two individual model runs. 

The Normal Model 
The normal model was defined as a 3-layer feedforward 
connectionist network consisting of an input layer of 13 
units, a hidden layer of 4 units, and an output layer of 2 
units. The problem encoding used by this network was 
based on Shultz (1998) and is shown in Figure 2. Each row 
of counters was represented over 2 units, encoding row 
length and density respectively, as real numbers. Both rows 
are shown represented in their pre- and post-transformation 
states. The row transformed (either row 1 or row 2) was 
indicated by the activation (-1 or +1) of a single unit. The 
transformation type was encoded arbitrarily over 4 units, 
with the activation of a single unit indicating the type as 
follows: addition (1 -1 -1 -1), subtraction (-1 1 -1 -1), 
elongation (-1 -1 1 -1), or compression (-1 -1 -1 1). The 
three possible response options were encoded over 2 binary 
output units as follows: (i) row 1 longer (1 0), (ii) row 2 
longer (0 1), (iii) both rows equal (0 0). We differed from 
Shultz in using a more standard feedforward architecture 
with a sigmoid rather than hyper-tangent activation 
function. 

The model was trained using back-propagation for 1500 
epochs, with a learning rate of 0.025. Ten network runs 
were conducted per manipulation, with initial weights 
randomized between ±0.5. The standard error across runs is 
depicted in all figures. The composition of the training and 
test sets was again based on that of Shultz, with patterns 

having five levels of row length and five levels of density. A 
total of 400 training patterns and 100 test patterns were 
selected from a full set of 600 possible conservation 
problems (based upon 25 initial rows, 3 possible start states, 
and 4 possible transformations for each of the 2 rows). 
Performance was assessed at 5, 25, 50, 100, and 200 epochs, 
and then at every subsequent 100-epoch interval until the 
end of training at 1500 epochs. 

 
In order to assess the behavior of the model, the test set 

was used in conjunction with 4 metrics, each reflecting a 
target behavioral phenomenon described in Figure 1: (i) 
Acquisition, (ii) the Problem Size Effect, (iii) Length Bias 
Effect, and the (iv) Screening Effect. Metric 1 plotted the 
development of knowledge of conservation, and calculated 
the percentage of test patterns correct. Metric 2 calculated 
the proportion of small vs. large problem types correct. In 
this case, the test set consisted of 40 patterns, 20 small 
problem types (<12 items), and 20 large (>24 items). Metric 
3 used elongation and compression problems from the test 
set (a total of 18 patterns, 8 and 10 of each type 
respectively) to calculate the proportion of patterns where 
the longer row was selected as having more items than the 
shorter row. Metric 4 calculated the proportion of 
unscreened vs. screened problems correct for the complete 
test set. Test patterns presented to the network were 
represented as “screened” by replacing post-transformation 
activation values with zeros. 

The normal network learned the training set to an accuracy 
of 99.5% (SE 0.4%). Training performance exhibited an 
early shift from NC=>C between 100 and 200 epochs (from 
44.58 to 70.35% training patterns correct). This shift was 
preceded by an initial decline in training performance over 
the first 50 epochs and followed by small incremental 
improvements in performance as training progressed. The 
behavioral profile of the model can be seen in Figure 3, 
where the shift from NC=>C (Acquisition) on novel patterns 
occurs between 100-200 epochs and performance leaps from 
36.2% (SE 1.75%) to 61.7% (SE 4.75%). Normality is 
defined as the non-linear shift to conserving. The model also 
exhibited a minor performance advantage for small problem 
sizes (Problem Size Effect) between 100-700 epochs, the 
time during which the model was doing the bulk of its 
learning. Normality is defined as an advantage for small 
problems (+ve values on the chart) during earlier phases of 
training. The model’s bias for selecting longer rows as 
having more items (Length bias effect) was also found to 
reduce after this point in learning. Normality is defined as 
an early positive spike on the length bias chart. Unlike 
Shultz (1998), our model did not show any preference for 

 
  Pre-transformation    Post-transformation  Row ID  Transformation type

  L       D       L        D        L       D       L        D 
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“screened” problems early in learning (Screening-effect), 
which would appear as an early negative spike on the chart. 
This shortcoming may relate to our use of sigmoid 
processing units (see later). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3:  Developmental phases of the normal model. The 
arrow shows shift from NC=>C for the acquisition metric 
   

Exploring Variability 
With our base model in hand, we then sought to assess the 
influence of several factors on development. Variability was 
explored by systematic changes to (1) the base model’s 
computational parameters, (2) its problem encoding, or (3) 
the training environment. 

Variability and Computational Parameters 
The computational parameters that were varied included: (i) 
the number of hidden layers, (ii) the number of hidden units 
in a single layer, (iii) the learning rate, and (iv) the slope of 
the sigmoid transfer function for hidden layer units. 
Increasing the number of hidden layers 
The performance of the model was tested over learning with 
2 and 3 hidden layers (HL), with 4 units per layer. 
Additional hidden layers tend to increase the computational 
complexity of the mappings that can be learned by a 
network while slowing down learning, since the error signal 
must filter back through more levels. So that learning would 
fall within a 1500-epoch window, the learning rate (lr) was 
increased as follows: 1HL=0.025, 2HL=0.05, 3HL=0.075 
(these values hold for subsequent use of these architectures 
unless otherwise stated). These networks achieved mean 
accuracy levels on the training set of 99.5, 99.9, and 99.73% 
(SE 0.4, 0.08, and 0.25%), respectively. The developmental 
trajectories of the networks are shown in Figure 4. The 
profiles of networks with 1HL and 2HL were very similar. 
Both 1HL and 2NL networks showed a shift from NC => C 
between 100-200 epochs, which was slightly larger for 
networks with 1HL than those with 2HL (26.5 and 35.5% 
respectively). Networks with 3HL showed a smaller initial 
shift (18.95%), occurring later between 200-300 epochs, 
followed by a second successive shift (17.4%) occurring 
between 300-400 epochs. There was a sustained effect of 
Problem size for networks with 3HL, as well as an increase 

in variability. The variability for the length bias effect was 
very high, particularly for 2HL and 3HL networks. As for 
Screening, there was no bias in early learning for screened 
problems. However, the developing bias for “unscreened” 
problems increased over learning.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Profile for models with 1 (normal), 2 and 3 HL. 
Arrows show shifts from NC=>C 
 
Increasing the number of hidden units in a single layer 
Adding extra units to a given hidden layer allows a network 
to learn more patterns of a given complexity, and to solve a 
given problem with smaller weight values, thereby requiring 
less training. We assessed networks with 4, 10, and 20 units 
in the hidden layer (HU) for the normal 1HL model. At the 
end of training networks with 4HU had a mean accuracy of 
99.48%; 10HU and 20HU networks had reached 100%. 
10HU and 20HU networks showed earlier acquisition of 
conservation knowledge (between 50 and 100 epochs). This 
shift was also larger than networks with 4HU (30-30.3% in 
comparison to 25.5%). The behavioral profile across metrics 
can be seen in Figure 5. All networks showed a similar 
profile across testing metrics Variability was uniformly low 
across metrics. All networks showed a similar profile across 
testing metrics.  Interestingly, networks with 4HU did show 
a slightly larger length bias effect of an extended duration, 
in comparison to 10HU and 20HU networks. It is likely that 
this is related to the initial learning of the 4HU network 
being lower than that of 10HU and 20 HU networks. 
Therefore, increasing the number of hidden units improved 
training performance, resulting in an earlier shift for those 
networks with more hidden units, but showed a similar 
trajectory in comparison to the normal case. Extending this 
manipulation to 2HL and 3HL networks yielded the same 
results.  Thus, expanding the capacity of the system in terms 
of parallel processing resources alters the onset of learning, 
but not the overall developmental profile. 
Reducing the learning rate 
The term delay is sometimes used to describe individual 
differences and the trajectories of developmental disorders. 
An obvious means of slowing learning would be to decrease 
the learning rate. Though this method may not provide any 
explanation as to the uneven profile of delay, which is often 
encountered across problem domains, it does allow us to 
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explore how learning rate affects the transitions the system 
exhibits during learning. Learning rate was reduced in the 
normal network in four decrements from 0.025 to 0.02, 
0.015, 0.01, and 0.005. After 1500 epochs, these networks 
achieved mean accuracies 99.8, 98.5, 96.6, and 86.3% 
respectively. Figure 6 depicts their developmental phases, 
with the four steps labeled from LR4 to LR1 as the learning 
rate decreases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  Profile for models with 4 (normal), 10 and 20 HU 
in a single layer. Arrow shows shift from NC=>C 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 6:  The 1HL model with reducing learning rates. 
Arrows show shift from NC=>C 
 
Lower learning rates slowed development down. As a 

result, improvements in performance behavior were more 
incremental. This was reflected in the gradual decline in the 
size of the shift from NC=>C with decreasing learning rate 
(from 25.4 for LR4 to 7.7% for LR1). Extending this 
manipulation to networks with 2HL and 3HL, displayed a 
similar pattern of results. Though networks with a lower 
learning rate had a lower level of performance at end of 
training (at 1500 epochs), the overall performance was high, 
but could have improved further through extended training 
time. In contrast, for developmental disorders, performance 
typically asymptotes at a less complex level in comparison 

to the normal case. In terms of individual differences, it is 
not clear as to whether everyone eventually ‘catches up’. 
From this perspective, a reduced learning rate does not seem 
a good (sole) candidate to explain the type of developmental 
delay found in disorders. 
Decreasing the sigmoid slope  
Changing the slope of a transfer function has the effect of 
altering the type of category distinctions a model can make. 
For example, a steep sigmoid slope results in sharp category 
boundaries and is good for tasks where the model is 
required to make rule-like distinctions. Whereas a shallow 
slope is better suited to fine-grained distinctions and tasks 
with broad category boundaries. Altering the level of 
processing unit discriminability has been shown to produce 
patterns of deficits consistent with those seen in 
developmental disorders (Thomas & Karmiloff-Smith, 
2003). This condition explores the impact of changing the 
general properties of processing resources of hidden units, 
through decreasing the slope of the sigmoid transfer 
function for the entire hidden layer. The slope of the 
sigmoid was reduced (from a value of 1) in the normal 
model, by four levels of decreasing discriminability as 
follows: 0.8, 0.6, and 0.25, to 0.125. 

Changing the slope of the sigmoid had a negative effect 
upon the model’s ability to learn. The model lost its ability 
to shift from NC=>C, resulting in low mean accuracies at 
the end of training at all levels, as follows: 34.5, 34, 38.4, 
and 28.3%. Figure 7 depicts their profiles across training, 
with the four steps labeled from S4 to S1 as the sigmoid 
slope decreases. These results indicate a performance that 
was uniformly low for all test metrics. This could not be 
overcome through the addition of extra hidden layers, 
suggesting that the model requires processing units with a 
high level of discriminability in order to achieve task 
success. However, a screening effect appeared for the 
shallowest slope, suggesting that this developmental 
phenomenon may relate to the nature of the non-linear 
activation function used in the network’s processing units. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7:  The 1HL model with declining sigmoid slope 
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Variability and the Problem Encoding 
We explored a variation in problem encoding where the 
salience transition type was increased. The number of units 
encoding transition information (as shown in Figure 2) was 
doubled from 4 to 8, resulting in an input layer consisting of 
17 units, with 8 units encoding pre- and post-transformation 
information, and 8 units encoding transformation type. This 
manipulation was carried out for networks with 1HL, 2HL 
and 3HL. The final performance of the models was found to 
be similar to that shown for equivalent models trained 
without increased transition information. The overall profile 
of development and Acquisition of conservation knowledge 
was also the same as the equivalent models. Therefore, for 
these simulations, changing the salience of a dimension of 
information did not have any notable impact upon the 
developmental trajectory of the model. 

Variability and the Engaged Environment 
Since development in the conservation task corresponds to 
the child’s active exploration of the domain, we refer to the 
training set as the engaged environment. We created a 
training set with a limited coverage of the problem space. It 
consisted of 400 problems with a small quantity of items 
only (<12 items). The normal architecture and problem 
encoding was used. Networks with 1HL, 2HL and 3HL 
were trained on this environment to explore any interaction 
between representational power and the engaged 
environment. Interestingly, this environment did not appear 
to have notable impact upon the overall performance, 
irrespective of the number of hidden layers in the model. At 
the end of training 1HL, 2HL and 3HL networks reached the 
mean accuracies of 99.75, 99.35, and 97.32%, respectively. 
The profile of 1HL and 2HL networks over metrics was 
similar to that shown for equivalent models trained on a 
normal engaged environment. Limiting the engaged 
environment to problems with a small number of items did 
not impact upon the developmental trajectory of the model. 

Individual Variability: A Case Comparison 
Variability also occurs during the development of individual 
children. The risk of averaging across individuals is that the 
resulting variability may not actually be found in any one, 
and this possibility also exists for simulation data. In this 
section we conduct an in-depth comparison of two 
individual cases: (i) a single normal model with 1HL 
(henceforth normal case), and (ii) a 1HL model with a 
reduced learning rate (lr=0.005, henceforth lr case). Both 
models were trained using the normal input encoding and 
engaged environment using the same randomly initialized 
starting weights. The behavioral profile of each model was 
assessed using our 4 metrics. In addition, a detailed analysis 
of the development of conservation according to (i) 
transformation type, and (ii) problem size was conducted for 
test items. The training performance of both models can be 
seen in Figure 8, where the lr case shows a slower 
developing, more incremental trajectory, in comparison to 
the normal case. The shift from NC=>C is also clearly later 
(by approximately 500 epochs) than that of the normal case, 

and subsequent improvements in training performance are 
also smaller.  
 
 
 
 
 
 
 
 
 
 
Figure 8:  Training performance for the normal and reduced 
learning rate models. Arrows show the shift from NC=>C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Profile for the normal and reduced learning rate 
models. Arrows show the shift from NC=>C 
 

 This pattern in training performance can also be seen in 
the behavioral profile for metric acquisition (calculated on 
novel test items) shown in Figure 9. For problem size and 
length bias metrics, the lr case shows an extended problem 
size and length bias effect. These effects are in parallel with 
the protracted learning window of this model. For the 
screening metric, the trajectory of the lr case deviates from 
that of the normal case, showing a minor preference for 
“screened” problems at the onset of acquisition of 
conservation knowledge. Exploring the development of 
conservation knowledge in the normal case across problem 
types (as shown in Figure 10) found a difference in initial 
profile for problems that alter number (addition and 
subtraction), in comparison to those that preserve number 
(elongation and compression). Addition and subtraction 
problems showed a static level of performance early in 
learning, whereas elongation and compression problems 
showed an initial dip in performance. As a consequence, 
performance over learning on transformations that preserve 
number was poorer than those that alter it. This dip was seen 
on all problem types in the lr case. An initial dip in 
performance can also be seen for problems of differing sizes 
(as shown in Figure 9). In the normal case, this dip was 
exaggerated for large problem sizes, resulting in poorer 
performance on large problems during learning. For the lr 
case, the converse pattern is seen, where the performance 
for larger problem types is better. 
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Figure 10: Profile of performance across problem types 
during learning for reduced lr and normal cases 

 
 
 
 
 
 
 
 

 
 

 
Figure 11: Profile of performance across problem types 
during learning for reduced lr and normal cases 

Discussion 
The exploration of mechanisms underlying variability in 
cognitive development may enhance our understanding of 
the origins of individual differences and developmental 
disorders, as well as transitions in the normal development 
of individual children. Simulations of the conservation task 
indicated that changes to the internal computational 
parameters of the model had a marked impact upon the 
acquisition of conservation knowledge. Notably, changes to 
the internal discriminability of processing units through 
varying the slope of the sigmoid transfer function, and 
decreasing the learning rate either resulted in failure or a 
slower rate of acquisition of conservation knowledge. By 
contrast, changes to the problem encoding at input or the 
engaged environment had little impact on the model’s 
developmental trajectory. These results contrast with a 
similar series of computational simulations of variability on 
the balance scale task (Richardson et al., submitted). In that 
case, we found that changes to the model’s engaged 
environment and input encoding, as well as its internal 
computational parameters, resulted in marked alterations in 
the developmental profile. In tandem, these results paint a 
picture in which the effect of alterations in the constraints 
that shape development is highly dependent on the nature of 
the cognitive task. The same parameter may not exert a 
uniform influence across cognitive domains. 
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