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Abstract 

We used a population-level connectionist model of 
cognitive development to unify a range of empirical 
findings on the influence of socioeconomic status (SES) on 
behavior and brain development. The model captured 
qualitative patterns of development in behavior and brain 
structure, including reductions in connectivity across 
development (gray matter, cortical thickness) as behavioral 
accuracy increases. Individual differences in SES were 
implemented by altering the level of stimulation available in 
the environment. At the brain level, the model simulated 
non-linear effects of SES on cortical surface area (Noble et 
al., 2015), and faster cortical thinning across development in 
children from lower SES backgrounds (Piccolo et al., 2016). 
At the behavioral level, the model simulated the effect of 
SES on IQ, whereby gaps are observed to widen across 
development (von Stumm & Plomin, 2015). The model’s 
main shortcoming was insufficient growth in connection 
magnitude across development in lower SES groups, 
implying that some aspects of the growth of connection 
strengths may be maturational (e.g., myelination) rather than 
experience dependent. 

Keywords: socioeconomic status, brain, behavior, connectionist 
networks, multi-scale models, population modeling 

Introduction 
Differences in socioeconomic status (SES) have marked 
effects on cognitive development (Farah et al., 2006). These 
effects are not uniform across all areas of cognition and are 
stronger in the development of language and cognitive 
control (executive functions), where lower scores are 
observed in children from lower SES families. SES effects 
have been observed on intelligence (IQ) and indeed, it has 
been reported that gaps between children widen across 
development (von Stumm & Plomin, 2015; see Figure 1). 
SES refers to a marker for multiple potential causal 
pathways acting on cognitive development, among them 
effects on prenatal brain development, post-natal nurturing, 
and post-natal cognitive stimulation (Farah, 2017; 
Hackman, Farah & Meaney, 2017). 

Recent work in neuroscience has focused on the impact of 
SES on measures of brain structure, demonstrating that 
cortical surface area and cortical thickness in children and 
adolescents show small but reliable associations with 
differences in family income and parental education; in 
some cases, associations have been observed between SES 

and the size of particular brain structures, such as the 
hippocampus and amygdala (e.g., Noble et al., 2015). 
Although small in size, these effects can be non-linear: for 
example, while lower SES is linked with reduced cortical 
surface area, the impact is larger for the lowest SES groups 
(Figure 2). Moreover, effects on brain structure are strongest 
in areas linked with language (temporal) and executive 
functions (prefrontal); and measures of cortical surface area 
(but not thickness) have been shown to mediate the 
relationship between SES and behavior (Noble et al., 2015). 
SES can be seen to influence the rate of change of brain 
structure over development. The cortex usually thins from 
mid-childhood onwards. In children from low SES 
backgrounds, thinning was observed to be faster. Piccolo et 
al. (2016) found that while cortical thickness showed no 
main effect of SES, it thinned more quickly in lower SES 
children; conversely, cortical surface area was reduced in 
the lower SES children, but showed similar rates of change 
across SES groups. Neuroscience data, then, confirm the 
impact of SES, but do they point to the causal pathways by 
which it operates?  

Two challenges present themselves. First, we need a 
mechanistic account to explain how environmental 
influences produce linked effects on brain and behavior, 
which would provide a basis to evaluate competing accounts 
about causal pathways. Second, any putative causal 
explanation of SES effects must accommodate a range of 
other empirical phenomena: on developmental changes in 
brain structure, on the relationship between cognitive ability 
and various measures of brain structure, and on the origin of 
individual differences. The main qualitative patterns that 
must be captured are as follows. 

First, although behavioral accuracy typically increases 
across development, this is not the case for all measures of 
brain structure: some measures increase (white matter 
volume, cortical surface area) but others decrease following 
a peak in early or mid childhood (gray matter volume, 
cortical thickness) (e.g., Giedd et al., 1999; Sowell et al., 
2004). The mechanisms that drive these changes are still 
debated, but include myelination and pruning of local 
connectivity (synapses, dendrites, axons), but not generation 
or loss of neurons. 

Second, although environmental measures such as SES 
predict individual differences, a large proportion of variance 
in cognitive ability, brain structure, and change in brain 
structure across development is predicted by the genetic 
similarity between people – that is, these phenotypes are 
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highly heritable (Plomin et al., 2013). Heritability may be 
modulated by SES: it has been observed that in individuals 
from low SES backgrounds, the heritability of IQ can be 
reduced (e.g., Tucker-Drob & Bates, 2016). 

Third, brain structure is correlated with intellectual 
ability, with one meta-analysis showing correlations of 0.1-
0.3 between brain volume and IQ (McDaniel, 2005). Ritchie 
et al. (2015) found that brain volume explained 12% of the 
variance in general cognitive ability, cortical thickness 
another 5%, and all structural measures together up to 21% 
of the variance. These individual differences data imply that 
having more neural resources is better for cognition. IQ is 
also related to the rate of thinning of the cortex with age 
(Shaw et al., 2006). Higher IQ is associated with faster 
thickening of cortex across early childhood, and then faster 
thinning of cortex from mid-childhood onwards. Since 
cognition improves as gray matter reduces, the 
developmental data imply that having fewer neural 
resources is better for cognition. This inconsistency is 
rendered more puzzling by the observation that faster 
thinning of the cortex is linked with lower SES (Piccolo et 
al., 2016). Lower SES is associated with lower IQ (von 
Stumm & Plomin, 2015). How can higher IQ and lower SES 
both be linked to faster thinning of cortex, when higher IQ 
is itself associated with higher SES? This complex set of 
effects is summarized in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SES gaps in intelligence widen across 
development (von Stumm & Plomin, 2015) 

 
In the current work, we use a multi-scale model to try and 

unify this complex pattern of data. The model is based on an 
artificial neural network (ANN) trained with 
backpropagation. In a multi-scale model, constrains are 
included at several levels of description (Thomas, Forrester 
& Ronald, 2016). Crucially, because the data concern both 
development and individual differences, it is necessary to 
simulate a population of individuals, and to model the 
influences on development that produce individual 
differences. Because the data span behavior, brain, SES, and 
genetics, the model must have analogues of each of these in 
its design. 

In connectionist models of cognitive development, 
abstract principles of neurocomputation are embodied in 
systems whose activation states correspond to concepts and 
whose inputs and outputs can be linked to behavior (see, 
e.g., Thomas & McClelland, 2008). Thomas (2016) argued 

 
 
 

Figure 2: The link between cortical surface area and 
family income (data re-plotted from Noble et al., 2015). 

 
Table 1: List of empirical phenomena to be simulated  

1. Behavioral accuracy increases across 
development 

2. Some measures of brain structure increase across 
development (white matter, cortical surface area) 

3. Some measures of brain structure reduce across 
development (gray matter, cortical thickness) 

4. Lower SES is associated with lower IQ and gaps 
widen across development 

5. Lower SES is associated with reduced cortical 
surface area, with larger effects at lowest SES 
levels 

6. 
 
7. 

Lower SES is associated with faster thinning of 
the cortex over development 
Lower SES is associated with reduced cortical 
surface area but no modulation of rate of 
development 

8. Cortical surface area partially mediates the 
relationship between SES and behavior 

9. Individual differences in behavior and brain 
structure are highly heritable 

10. Low SES can reduce the heritability of IQ 
11. Brain volume correlates with IQ 
12. Across development, higher IQ is associated with 

faster thickening and then faster thinning of the 
cortex 

that with a simple addition – the onset of pruning of unused 
connectivity after a certain point in training – these models 
could give plausible analogues to measures of brain 
structure, where the total number of connections would 
serve as an analogue to properties that decrease over 
development (gray matter, cortical thickness) – under the 
view that unused connections are pruned away, causing a 
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loss of volume; and the combined magnitude of connection 
weights (excitatory and inhibitory) would serve as an 
analogue of properties showing increases (white matter, 
cortical surface area) – under the view that retained 
connections are optimized through myelination, causing an 
increase in volume. We use the same scheme here. 

To capture genetic influences on behavior and structure, 
each network must have a genome and genomes must vary 
between individuals. To the extent that cognition is seen as 
information processing in the brain, genetic effects must 
translate to influences on neurocomputational properties. 
Accordingly, Thomas et al. (2016) used a method to 
simulate individual differences where the 
neurocomputational parameters of an ANN (e.g., number of 
hidden units, learning rate) were encoded in an artificial 
genome. Genetic variation produced parameter variation. In 
behavior genetics, the heritability of a phenotype such as 
behavior or brain structure is usually assessed using the twin 
design, where more heritable phenotypes show greater 
similarity between monozygotic (MZ) twins than dizygotic 
(DZ) twins. MZ twin networks can be simulated by 
networks with the same genome (and therefore, parameters), 
while DZ twins can be simulated by networks that share on 
average 50% of the gene variants in their genomes (see 
Thomas et al., 2016, for further details). Heritability of 
behavior and brain structure can then be simulated by 
comparing the respective correlations between MZ networks 
versus DZ networks. 

SES can plausibly be implemented in several ways 
(Thomas, Forrester & Ronald, 2013): it might influence how 
a network is constructed (equivalent to prenatal effects on 
brain development); it might influence the information on 
which the network is trained (equivalent to differences in 
levels of cognitive stimulation during post-natal 
development); or it might influence both factors. In the 
following simulations, we evaluated a model that 
implemented SES as differences in the richness of the 
training set. 

An ANN trained with backpropagation has very limited 
biological plausibility. We should therefore be clear what 
are our key assumptions in relating measures of network 
structure to measures of brain structure. They are as follows: 
(1) neuron number is fixed so that changes in structure 
reflect changes in connectivity; (2) structural measures that 
increase over development (cortical surface area, white 
matter) reflect increases in connection strength, while 
structural measures that decrease over development (cortical 
thickness, grey matter) reflect reductions in connection 
number; (3) connection strength increases can only be 
experience dependent; (4) connection strength decreases can 
be experience dependent (training reduces some 
connections), intrinsic (weight decay), or both (an intrinsic 
pruning process operates depending on connection strengths 
which in turn are influenced by experience); (5) connection 
number is intrinsic (growth) or an interaction with 
experience (pruning); (6) we did not include an assumption 
that connection growth might be partly experience / 

environment dependent, nor that there might be intrinsic 
contributions to connection strengthening (e.g., myelination 
occurring through maturation). 

The adequacy of the model in capturing the patterns of 
empirical data will serve as a test of these assumptions. 

Method 
The following simulations use a base model taken from the 
field of language development, addressed to the domain of 
English past-tense formation. Here, the model was 
employed in an illustrative setting, intended only as an 
example of a developmental system applied to the problem 
of extracting the latent structure of a cognitive domain 
through exposure to a variable training environment. The 
intention was to capture qualitative characteristics of the 
empirical data rather than to exactly calibrate variances 
from genetic and environmental sources to fit empirically 
observed estimates of heritability in certain populations. In 
that capacity, the past tense accuracy of the networks was 
taken as a metric of behavioral development, and of 
intelligent behavior more widely (that is, of the type 
measured by cognitive ability tests). However, the base 
model has been used to specifically simulate data on the 
influence of SES on children’s past-tense acquisition 
(Thomas et al., 2013). Full details of the current simulation 
can be found in Thomas (2016).   

Network architecture: The basic model was a 3-layer 
backpropagation network, with 57 input and 62 outputs. The 
process of network growth was not modeled, only the 
outcome of this process. The number and size of initial 
connections was influenced by several factors, including 
number of weight layers, sparseness of connectivity, and 
range of initial random variation. Connection pruning 
occurred after a specified training epoch, and removed any 
connections below a specified threshold with a specified 
probability. Each of these three parameters was free to vary 
between individuals. Pruning onset varied between 0 epochs 
and 1000 epochs, where 1000 epochs was full lifetime 
(median value 100 epochs); pruning threshold varied 
between a magnitude of 0.1 and 1.5 (median 0.5); pruning 
probability varied between 0 and 1 (median 0.05) per 
pattern presentation. Overall, fourteen neurocomputational 
parameters were free to vary between individuals. These 
were: the architecture (fully connected or three-layer), 
number of hidden units, sparseness of connectivity, sigmoid 
activation function temperature, activation noise added to 
unit net inputs, nearest neighbor output threshold, learning 
rate, backpropagation error measure (root mean square or 
cross entropy), momentum, initial weight variance, weight 
decay, pruning onset epoch, pruning threshold, and pruning 
probability (see Thomas, 2016, for parameter specifications, 
and range of values, for the GWEW condition).  

Training set: The training set comprised 508 artificial 
monosyllabic verbs, constructed using consonant–vowel 
templates and the phoneme set of English. Phonemes were 
represented over 19 binary articulatory features. The verbs 
conformed to the past-tense patterns observed in English, 
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with 410 regular verbs (forming the past tense via the +ed 
rule) and 98 irregular verbs of three types, no-change, 
vowel-change, and arbitrary (see Thomas et al., 2016, for 
more details). Training used pattern presentation in random 
order without replacement. 

Implementation of SES differences: Each simulated child 
was raised in a family with a given level of language 
stimulation, taken to be correlated to the family’s SES (Hart 
& Risley, 1995). A family quotient parameter was sampled 
uniformly between the range 0 and 1. This proportion was 
applied as a one-time filter on the full training set. A 
network raised in a family with a family quotient of 0.75 
would be exposed to a training set with around 75% of the 
training patterns. With a range between 0 and 1, networks 
could in principle be exposed to very few training patterns 
(see Thomas, 2016, for discussion).  

Implementation of genetic differences: Differences in 
learning ability arose from the net effect of small variations 
in all the neurocomputational parameters, under a polygenic 
model of intelligence (Thomas, 2018). For this simulation, 
all variation in these parameters was considered to be under 
genetic control. There was a random association of family 
quotient to genotype, that is, we did not simulate gene-
environment correlations. 

Simulation design: A population of 1000 networks was 
created in sets of pairs, either MZ or DZ twins. Each 
network was trained for 1000 epochs. Performance on the 
training set (regular and irregular verbs) and two network 
measures, total number of connections and magnitude of 
connections, were assessed across training. 

Results 
Developmental changes in behavior: Figure 3 shows the 

monotonic improvement in accuracy in regular and irregular 
(vowel-change) verbs across training, averaged across the 
whole population (Table 1, #1). 

Developmental changes in brain structure: Figure 4 plots 
the change in the magnitude of connections (gradually 
increasing) and the total number of connections (a non-
linear decline) across training, averaged across the whole 
population. The plot captures the increase and decrease of 
different structural measures (Table 1, #2 and #3). 

SES effects on behavior: The behavioral scores of the 
networks were split by their SES (upper quartile, family 
quotients >.75, lower quartile family quotients <.25). At 
each measurement point, the population distribution in 
accuracy values was used to convert accuracy to IQ scores, 
by deriving the population mean and standard deviation and 
transforming these to a mean of 100 and standard deviation 
of 15. Figure 5 plots developmental trajectories of IQs split 
by upper, lower and middle two quartiles. The plot captures 
a widening gap between the groups (Table 1, #4). In the 
simulation, this is the result of non-linear developmental 
trajectories, whereby the lower SES groups show earlier 
plateauing of performance. 

SES effects on brain development: Figure 6 shows a 
scatter plot of each network’s connection magnitude against 

SES (family quotient value), after 100 epochs of training. 
The simulations demonstrate a reliable association of SES to 
network structure. The pattern of a small effect size and 
non-linear relationship capture that shown in Noble et al.’s 
(2015) cortical surface area data, with larger reductions in 
area at the lowest SES levels (Table 1, #5). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Average population development for two 
behaviors, regular verb and irregular verb performance. 

(Error bars show standard deviations) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Average population changes in connection 
magnitude and number over development. 

(Error bars show standard deviations) 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: Development of behavior split by SES quartile. 
 
Figure 7 separates the networks into the upper quartile 

and lower quartile according to SES and plots change in 
total number of connections across development (for 
simplicity, linking two points in training, epochs 25 and 
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250). There was no reliable main effect of SES on 
connection total (p=.547), but a reliable interaction, 
whereby connection total reduced more quickly in the lower 
SES quartile (F(1,498)=15.42, p<.001, ηp

2=.030). This 
occurred because lower SES networks received less 
stimulation, causing less strengthening of connections, and 
in turn greater vulnerability to later pruning processes. The 
result captures Piccolo et al.’s (2016) observation that cortex 
thins more quickly in children from a lower SES 
background, without overall differences in cortical thickness 
between groups (Table 1, #6). 

Figure 8 plots the equivalent simulation data for 
connection magnitude, split by SES quartile. The model 
shows a main effect of SES, with smaller magnitudes in low 
SES networks (F(1,498)=13.33, p<.001, ηp

2=.026), but also 
an interaction, where magnitude in low SES networks 
improves much more slowly ((F(1,498)=150.88, p<.001, 
ηp

2=.233). The first effect captures the smaller cortical 
surface area observed by Piccolo et al. (2016) for lower SES 
children, but the interaction does not accord with the 
empirical data – SES does not modify rate of change of 
cortical surface area (Table 1, #7, not captured). 

Brain structure mediates relationship of SES to behavior: 
Noble et al. (2015) found that cortical surface area mediated 
the relationship between SES and behavior but thickness did 
not. In the model, we observed increasing correlations 
between SES, connection magnitude, and behavior across 
training, such that a mediation effect was detectable by the 
end of training. Figure 9 shows that connection magnitude 
mediated associations between SES and regular verb 
performance (β=0.05, t(998)=8.44, p<.001, CI [.04; .07]). 
The Sobel test was significant, confirming partial mediation 
(Sobel-z=7.98, p<.001). Per Noble et al.’s findings, the 
analogue of thickness, connection number, did not show the 
mediation effect. This is because in the model, the 
correlation of SES to connection number did not reach 
significance (Table 1, #8). 

Heritability of individual differences: at 100 epochs, the 
correlations between twin pairs were as follows: Regular 
verb performance: MZ=.99, DZ=.61; irregular verb (vowel 
change) performance: MZ=.97, DZ=.49; connection 
magnitude: MZ=1.00, DZ=.44; connection total: MZ=1.00, 
DZ=.33. Where MZ correlations are higher than DZ 
correlations, this implies genetic influence. The difference 
between the correlations can be used to estimate the 
heritability of the phenotype. Under an additive model, the 
respective heritabilities are .76, .97, 1.12, and 1.34 (that the 
latter values exceed 1 shows that the genetic effects violate 
an additive model and there are dominance effects 
operating). These values are higher than observed for 
behavior and measures of brain structure (Plomin et al., 
2013). The simulations included no measurement error, 
which would appear as an environmental effect unique to 
each individual. Nevertheless, these high estimates of 
heritability imply the assumption that all 
neurocomputational parameter variation is under genetic 
control is not plausible, and that the environment 

contributes to variation in parameters (perhaps during 
prenatal brain development). However, the observed high 
heritabilities meant that effects of SES on brain and 
behavior were successfully simulated against a background 
of strong genetic influence on both measures (Table 1, #9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Connection magnitude versus SES 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Change in number of connections across 
development, split by SES. (Error bars = STD) 

 
Estimates of heritability were also observed to differ 

between upper and lower SES quartiles, with the lower SES 
quartile showing reduced heritability as the impoverished 
training set – rather than the neurocomputational parameters 
– became the limiting factor on performance. For example, 
for irregular verbs at 100 epochs, the upper quartile showed 
MZ correlation of .97, DZ .35, while in the lower quartile, 
these values were .95 and .60. The reduced gap between MZ 
and DZ correlations shows reduced genetic influence in the 
low SES group (Table 1 #10). 

Relation of intelligence to brain structure: The ‘ability’ of 
each network was assessed based on its behavior. We chose 
to assess this based on irregular (vowel-change) verb 
performance at an early point in development (50 epochs), 
which gave good sensitivity to discriminate between 
individuals. At 100 epochs, the correlation of ability with 
total connections was .352, and with magnitude was .371. 
This captures the empirical observation of the small 
correlation between brain size and intelligence (Table 1, 
#11).  
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Based on the ability measure, we derived upper quartiles 
(top 25%) and lower quartiles (bottom 25%) of ability. 
Figure 10 shows the change in total number of connections 
between two points in development, epoch 25 and epoch 
250. At epoch 25, high ability networks had reliably more 
connections (t(458)=8.74, p<.001, Cohen’s d=.81). We did 
not simulate the growth of connectivity, only the outcome of 
this process. The higher peak captures the outcome of 
putative faster thickening of cortex across development for 
children with higher IQs (Shaw et al., 2006). Across 
development, connection number fell reliably more quickly 
in high ability networks than low ability networks 
(F(1,458)=31.60, p<.001, ηp

2=.065). The faster fall is a side 
effect of the higher peak – the greater ability arises from the 
greater computational power of having a larger network, 
while larger networks experience faster pruning. The result 
captures the observation by Shaw et al. (2006) that cortex 
thins more quickly in children with higher IQ (Table 1, 
#12). 

Discussion  
The model was successful in qualitatively capturing 11 of 
12 target phenomena linking SES, IQ, brain development 
and behavioral development. The model used simple error-
driven backpropagation networks, where connection 
strengths are altered to improve performance. Links to brain 
structure were established by adding a pruning process that, 
after a certain point early in development, removes unused 
connections. Measures of network connectivity gave 
analogous fits to brain structure measures that either show 
increases with age (white matter, cortical surface area) or 
decreases (gray matter, cortical thickness). The match of 
simulation and empirical data supports the view that these 
brain measures represent the results of experience-
dependent strengthening of connectivity combined with 
intrinsic processes for connectivity growth and loss, where 
connectivity loss is dependent on the extent to which 
previous experience has strengthened connections. 

The successful simulation of SES patterns in behavior and 
brain support the view that a key element of these effects is 
the level of cognitive stimulation. However, this is unlikely 
to be the full effect, and other environmental influences on 
prenatal and postnatal development undoubtedly contribute 
(see, e.g., Betancourt et al., 2016, for SES-related gray 
matter differences observed in babies at 1 month of age, 
where experience-dependent effects have had little time to 
act). Extension of the model presented here is necessary to 
explore the possibility that environmental effects on brain 
growth may interact with, and indeed may be correlated 
with, differences in cognitive stimulation. 

The model failed in two regards. First, it did not capture 
the observed absence of SES effects in the rate of change of 
cortical surface area (Piccolo et al., 2016). The model did 
not show enough strengthening of connectivity across 
development in the low SES group. This implies that one of 
the assumptions of the model – that connection strength 
increases can only be experience dependent – is incorrect, 

and that there is a maturational contribution to connectivity 
increases (such as myelination). Second, its estimates of 
heritability were too high for individual differences in 
behavior and brain. In part, this is due to the absence of 
measure error in the simulations. But, consistent with above 
comments, it also demonstrates another initial assumption of 
the model is incorrect, that neurocomputational parameters 
are solely under genetic influence. 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8: Change in magnitude of connections across 
development, split by SES. (Error bars = STD) 

 
Figure 9: Partial mediation between connection magnitude 

(CM), SES and behavior (regular verb accuracy) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Change in number of connections across 
development, split by behavioral ability. (Error bars = STD) 

 
A future extension of the model should investigate 

environmental influences on specifying network parameters, 
such as initial network growth. It should also be noted that 
the model set out only to simulate qualitative patterns, not to 
calibrate against precise ranges of genetic or environmental 
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variation, or to capture particular population mean levels of 
behavior at a given point in development. Some 
assumptions could be questioned, such as the extreme 
deprivation implied by training sets that could vary down to 
including no patterns. 

Implementation of a mechanistic model provides the 
benefit that it can reconcile apparent paradoxes in the 
empirical literature. Why are high IQs associated with 
having a bigger brain (as if more neural resources were 
better for cognition) but also associated with faster gray 
matter loss and cortical thinning (as if fewer resources were 
better)? The answer is that the network size is driving ability 
(so more is always better), but that a higher peak of network 
size is then associated with faster connectivity loss during 
pruning of unused resources (in the manner that higher 
mountain peaks have steeper sides). How can faster cortical 
thinning be simultaneously associated with higher IQ and 
lower SES (which is associated with lower IQ)? The answer 
is that in the higher ability networks, there are more spare 
resources to be lost during pruning so thinning is faster; in 
low SES networks, the small training set (equivalent to 
lower cognitive stimulation) produces less strengthening of 
connectivity so that connections are more vulnerable to loss 
when pruning starts, leading once more to faster thinning. In 
other words, rate of change of structure isn’t a direct marker 
of ability; ability is delivered by the full computational 
properties of the network and its developmental origins, not 
proxy measures like cortical thickness. 

The model presented here is highly simplified, employing 
a single artificial network with very restricted biological 
plausibility. The range of the phenomena that the model 
captures probably reflects the fact that the existing 
observations we have on behavior, brain structure, and SES 
give limited insight into the detailed neural processes 
underlying behavior, development, and environmental 
influences. Nevertheless, we argue here for the importance 
of building multi-scale models that integrate individual 
differences within a developmental framework, and which 
can therefore evaluate causal mechanisms linking SES, 
brain and behavior. With causal, mechanistic accounts in 
hand, we are better able to consider interventions to 
ameliorate the impact of poverty and deprivation on 
children’s development. The results here point to the 
importance of cognitive stimulation, and encourage 
interventions that seek to enrich that stimulation for children 
from poor backgrounds. 
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