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Abstract

The use of self-organizing feature maps (SOFM ) in models of cognitive development has frequently been associated with explana-
tions of critical or sensitive periods. By contrast, error-driven connectionist models of development have been linked with
catastrophic interference between new knowledge and old knowledge. We introduce a set of simulations that systematically
evaluate the conditions under which SOFMs demonstrate criticallsensitive periods in development versus those under which they
display interference effects. We explored the relative contribution of network parameters (for example, whether learning rate
and neighbourhood reduce across training ), the representational resources available to the network, and the similarity between
old and new knowledge in determining the functional plasticity of the maps. The SOFMs that achieved the best discrimination
and topographic organization also exhibited sensitive periods in development while showing lower plasticity and hence limited
interference. However, fast developing, coarser SOF Ms also produced topologically organized representations, while permanently
retaining their plasticity. We argue that the impact of map organization on behaviour must be interpreted in terms of the cognitive

processes that the map is driving.

Introduction

Theories of how the brain acquires knowledge are required
to address the stability—plasticity problem, that is, how new
knowledge may be incorporated into an information
processing system while preserving existing knowledge
(Grossberg, 1987). The stability—plasticity problem has
particular importance where the individual’s environment
is non-stationary — that is, where the information content
of experience tends to change over time. If one assesses
the individual in adulthood, one can ask whether earlier
experiences or later experiences were more influential in
determining adult behaviour. If the earlier experiences
were more important, one might refer to this as evidence
of a critical or sensitive period in development. If the
later experiences were more important, one might refer
to this as evidence of catastrophic interference of new
knowledge overwriting old knowledge.

The stability—plasticity problem comes to the fore in
attempts to construct computational models of learning
and development. For example, at least one popular com-
putational methodology for studying development — back-
propagation connectionist networks — has indicated that
catastrophic interference may be a serious problem for the
cognitive system when it attempts to acquire conceptual
knowledge. Indeed, it may be such a serious problem that
special processing structures are needed to overcome it
(e.g. McClelland, McNaughton & O’Reilly, 1995).

In this paper, we consider the effects of a non-stationary
environment on learning within an alternative neuro-
computational formulism, self-organizing feature maps
(Kohonen, 1995). Such maps have been employed within
a range of developmental models, capturing the formation
of representations within visual, sensorimotor, and language
development domains (e.g. Li, Farkas & MacWhinney,
2004; McClelland, Thomas, McCandliss & Fiez, 1999;
O’Reilly & Johnson, 1994; Oliver, Johnson, Karmiloff-
Smith & Pennington, 2000; Westermann & Miranda, 2002,
2004). To date, and in contrast to back-propagation net-
works, self-organizing feature maps have been more closely
associated with critical or sensitive period effects in develop-
ment. However, their potential vulnerability to catastro-
phic inference has not been systematically explored. If
these maps are a key mechanism within cognitive develop-
ment, how robust are they to variations in the environ-
ment? In the following sections, we compare critical/
sensitive period and catastrophic interference effects in
self-organizing feature maps under conditions of a non-
stationary environment. We take into account three poten-
tially important factors that may modulate these effects:
the intrinsic conditions of plasticity within the maps, the
representational resources available to the system, and the
relative similarity between old and new knowledge. We
begin with a brief review of the empirical and computa-
tional literature relevant to the two facets of the stability—
plasticity problem.
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Catastrophic interference

For the human cognitive system, it is rare to find a total
disruption or loss of previously acquired long-term know-
ledge as a result of learning new information. We are able
to acquire new memories without forgetting old infor-
mation. For example, our somatosensory cortex is able
to retain and assimilate new information during motor
learning without compromising the stability of previous
skills (Braun, Heinz, Schweizer, Wiech, Birbaumer &
Topka, 2001; Buonomano & Merzenich, 1998). Never-
theless, under some circumstances, catastrophic inter-
ference can be observed. When Mareschal, Quinn and
French (2002) examined sequential category learning in
3- to 4-month-old infants, they found an asymmetric
interference effect. The infants were shown a series of
pictures of either cats or dogs and were able to induce
the CAT or DOG category sufficiently to distinguish a
novel animal from a cat or dog in a subsequent preferential
looking task. When the two categories were learned sequen-
tially, knowledge of the DOG category was preserved
when the CAT category was learned after it. However, if
learning of the DOG category followed learning of the
CAT category, the later learning interfered with the
earlier learning and knowledge of the CAT category
was lost. The authors interpreted this effect in terms of
catastrophic interference in a connectionist memory
system; the asymmetry was taken to reflect the relative
perceptual similarity structure of the two categories.

Interference effects have also been observed for more
robust, long-term knowledge. Pallier, Dehaene, Poline,
LeBihan, Argenti, Dupoux and Mehler (2003) examined
the word recognition abilities of adults born in Korea who
were adopted between the ages of 3 and 8 by French
families. For these individuals, the language environment
changed completely from Korean to French at the point
of adoption. Behavioural tests showed that these adults
had no residual knowledge of the Korean vocabulary that
they knew as children. Moreover, functional brain imag-
ing data demonstrated that their response to hearing
Korean was no different from that produced by listening
to other foreign languages that they had never encoun-
tered, and was the same as that found in native French
speakers who had never learned Korean. Together the
behavioural and imaging data are suggestive that under
some circumstances, previously acquired knowledge can
indeed be overwritten. Interestingly, comparison of the
brain activations produced when listening to French differed
between the two groups, with the Korean-born adults
producing weaker activations than the French mono-
linguals. Interpretation of this effect is not straightforward
but it does indicate that the earlier phase of Korean
learning appears to have left its mark on the brains of
the adopted individuals. It is possible that residual traces
of prior Korean knowledge may still exist such that,
should these individuals be re-exposed to Korean, they
may find it easier to re-acquire the language (Pallier et al.,
2003).
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The use of connectionist networks as models of memory
has led to the extensive consideration of catastrophic inter-
ference in these systems (see French, 1999, for a review).
Catastrophic interference appears to be a central feature
of architectures that employ distributed representations
and it is closely tied to their ability to generalize. Via super-
position of knowledge over a common representational
resource (the matrix of connection weights), distributed
systems offer generalization for free; that is, they can
extract the central tendency of a series of exemplars and
use this tendency to generate responses to novel inputs.
Where new knowledge conforms to the central tendency
extracted from previous knowledge, learning is facilitated
and new knowledge is easily accommodated (Ratcliff,
1990). Problems of catastrophic interference arise when
the new knowledge is different from the old knowledge.
The later learning has to use the common representational
resource and overwrites previous knowledge (McCloskey
& Cohen, 1989; Ratcliff, 1990).

Numerous computational solutions have been proposed
in order to alleviate the catastrophic interference problem
and thereby redeem connectionist models as plausible
models of human memory. These approaches include the
modification of the back-propagation learning rule in order
to produce semi-distributed representations (Kortge, 1990;
French, 1991, 1992). Alternatively, noise or ‘pseudo’
patterns may be used in order to extract the function
learned by the network in response to early training
(French & Chater, 2002). This knowledge may then be
interspersed with subsequent training (Robins 1995;
Robins & McCallum, 1998; Ans, Rousset, French &
Musca, 2004). Essentially, catastrophic interference can
be avoided in three ways: (1) use new representational
resources for new knowledge; (2) use non-overlapping
representational codes on the same resource (‘localist’
coding); and/or (3) simultaneously refresh old know-
ledge as new knowledge is introduced, so that the old
and new knowledge can be combined within distri-
buted representations over the same resource (called
‘interleaving’).

The occurrence of catastrophic interference effects in
connectionist models prompted a proposal that the human
cognitive system may incorporate processing structures
specifically to avoid it. McClelland et al. (1995) suggested
that human memory is split into two systems — the neo-
cortex and the hippocampal system. The hippocampal
system allows for rapid learning of new information,
which is then transferred and integrated into the previous
long-term knowledge stored in the neocortex. Seidenberg
and Zevin (2006) argue that humans do not exhibit cat-
astrophic interference effects because our experiences are
typically interleaved. It is when we are immersed in one
particular type of experience that interference may occur
(as was the case in the Korean children switched to a
French language environment). Moreover, in many cases,
the new knowledge we are trying to learn bears some
resemblance to previously acquired knowledge, reducing
the scope for interference effects.



To date, the majority of simulation work exploring
catastrophic interference effects has focused on error-
driven learning systems such as back-propagation net-
works (Ans et al, 2004; French, 1991, 1992, 1999;
French & Chater, 2002; Kortge, 1990; McCloskey &
Cohen, 1989; Ratcliff, 1990; Robins, 1995; Robins &
McCallum, 1998; Sharkey & Sharkey, 1995). There has
been no comparable work for self-organizing learning
systems, in spite of their increasing prevalence in models
of cognitive development (Li et al, 2004; O’Reilly &
Johnson, 1994; Oliver et al, 2000; Westermann &
Miranda, 2002, 2004). Given that some authors view self-
organizing systems and error-driven associative systems
as the two principal experience-dependent architectures
within the brain (O’Reilly, 1998), this is a notable omission.

Critical periods

The notion of a critical period was used in the context of
language acquisition by Lenneberg (1967) to refer to a
limited duration in development during which children
are particularly sensitive to the effects of experience.
Latterly, alternative terms have been employed such as
sensitive or optimal period, which are more neutral as to
whether the period of plasticity comes to a complete close
(see Birdsong, 2005; Johnson, 2005; Knudsen, 2004). The
idea that early experiences are particularly influential and
that they may even have irreversible effects on behaviour
has been invoked in many examples of animal and human
development, including filial imprinting in ducks and
chicks, early visual development in several species, song
learning in birds, and language acquisition in humans
(Brainard & Doupe, 2002; Doupe & Kuhl, 1999; Hubel
& Weisel, 1963; Johnson & Newport, 1989, 1991;
Lorenz, 1958; Senghas, Kita & Ozyiirek, 2004). To take
a well-known example, in second language acquisition,
children are better learners than adults in terms of their
ultimate proficiency (Johnson & Newport, 1989, 1991).
This effect appears to be related to the age at which
second language learning commences rather than degree of
exposure, implicating differential contributions of early
and late experiences. The exact function linking age of
acquisition and ultimate attainment is still debated (e.g.
Birdsong, 2005; DeKeyser & Larson-Hall, 2005).

At the neurobiological level, neuroplasticity is central
to critical period phenomena.' Present data suggest that
the termination of critical periods for more basic functions
occurs prior to the opening of critical periods in higher-
level systems (Jones, 2000). In this way, the development
of low-level systems can have a lasting impact upon the

!'In what follows, for brevity we will sometimes refer simply to ‘critical
period’ effects, by which we intend the combined phenomenon of critical/
sensitive/optimal periods in development. Debates on the distinctions
between these terms are not directly relevant here, other than to note
that all imply a non-linear relationship between age and functional
plasticity in which there is a reduction in plasticity over time. The
terms differ in the exact shape of the function and the residual level of
functional plasticity when the period has closed.
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opportunities for subsequent higher-level development.
Although the profiles of plasticity that regulate critical
periods may vary across brain systems (Uylings, 2006), there
is a general trend for plasticity to decrease with increasing
age (Hensch, 2004). As plasticity reduces, the ability of
the system to undergo large-scale, speeded change also
diminishes, thereby safeguarding existing information.

The mechanistic basis of critical periods has been studied
extensively through the use of both connectionist-style
error-driven and self-organizing learning systems. These
models have explored early visual development (e.g. Miller,
Keller & Stryker, 1989), age-of-acquisition effects in
language (Lambon Ralph & Ehsan, 2006; Ellis &
Lambon Ralph, 2000; Li ez al., 2004; Zevin & Seidenberg,
2002), and recovery after brain damage (Marchman, 1993).
In error-driven connectionist networks, the privileged
status of early learning has been explained with reference
to the idea of entrenchment, where large connection
weights produced by early training then compromise the
ability of the network to alter its structure to accom-
modate new information (Ellis & Lambon Ralph, 2000;
Zevin & Seidenberg, 2002; Seidenberg & Zevin, 2006).
However, the prominence of catastrophic interference
effects for this type of network implies that other factors
— such as the similarity between old and new knowledge,
the resource levels of the network, and continued train-
ing on old knowledge while new knowledge is intro-
duced — must all play a role for early training to exert a
greater influence than later training on endstate per-
formance (Lambon Ralph & Ehsan, 2006; Thomas &
Johnson, 2006).

Self-organizing feature maps fall into two camps,
depending on whether their implementation involves
dynamic changes to the model’s parameters. Kohonen’s
(1982) algorithm uses two phases of training to achieve
a topographic organization across the network’s output
layer that reflects the similarity structure of the input
domain. In the organization or ordering phase, the network
is trained with a high learning rate (a parameter that
modulates the size of weight changes) and a large neigh-
bourhood size (a parameter that modulates the extent of
weight changes across the map in response to each input
pattern). These parameter settings allow the network to
achieve an initial rough organization of the appropriate
topology. In the second convergence or tuning phase, the
learning rate and neighbourhood size parameters are
reduced to fine-tune the feature map and capture more
detailed distinctions in the input set. The two phases are
sometimes implemented by continuously declining func-
tions that asymptote to non-zero values. We will refer to
this configuration as the dynamic parameter implementa-
tion of the self-organizing feature map. Most saliently
for this implementation, the functional plasticity of the
system reduces by definition. The models will necessarily
exhibit a sensitive period because this is the mechanism
by which they achieve good topographic organization
(Kohonen, 1995; Li et al., 2004; Miikkulainen, 1997
Thomas & Richardson, 2006).
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Some implementations of self-organizing feature maps
keep their parameters fixed across training but still report
evidence for critical periods (e.g. for imprinting in chicks:
O’Reilly & Johnson, 1994; for adult Japanese speakers
attempting to learn the English /I/~/r/ phoneme contrast:
McClelland et al., 1999). In the O’Reilly and Johnson
model, the critical period effect appears to be a consequence
of input similarity and limited computational resources,
while in the McClelland et al. model, it is a consequence
of input similarity and assimilation in the output layer
(see Thomas & Johnson, 2006, for discussion). However,
both these models are characterized by highly simplified
training sets in which little is demanded of the network
in terms of detailed topographic organization. It is not
clear that their behaviour will generalize to more complex
training sets.

In sum, much more work has addressed critical periods
in self-organizing feature maps than catastrophic inter-
ference, but even for critical periods the relative impor-
tance of several factors remains unclear. These include
whether parameters are dynamic or fixed across training,
the similarity between old and new information, and the
level of resources available in the model to accommodate
new information. We therefore set out to address these
issues in a set of computer simulations.

Simulations

Design

Literature reporting simulations of catastrophic inter-
ference and critical period effects is typically qualitative
in nature (e.g. catastrophic interference effects: French &
Chater, 2002; McCloskey & Cohen, 1989; Ratcliff, 1990;
Robins, 1995; Robins & McCallum, 1998; Sharkey &
Sharkey, 1995; critical period effects: McClelland et al.,
1999; Oliver et al., 2000; O’Reilly & Johnson, 1994). This
form of abstract modelling is useful in these early stages
of theory development in that it serves to identify the
range of computational mechanisms that can generate
broadly characterized empirical phenomena (Thomas,
2004; Thomas & Karmiloff-Smith, 2002). Relatively fewer
computational accounts of catastrophic interference and
critical period effects have the goal of simulating specific
human behavioural data and even in these cases, such
simulations may employ artificial or abstract training
patterns and so are not necessarily quantitative in the
strictest sense (catastrophic interference effects: Ans
et al., 2004; Mirman & Spivey, 2001; critical period
effects: Ellis & Lambon-Ralph, 2001; Li et al, 2004).
The simulations outlined below are in keeping with the
qualitative use of modelling in initial theory development,
since the relative influence of critical period and parti-
cularly catastrophic interference effects in SOFMs is
poorly understood. Nevertheless, the following simula-
tions employ a cognitively constrained training environ-
ment (semantic representations with prototype/exemplar
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structure) rather than the arbitrary training patterns
used in some simulations. The aim of future work will be
to extend the principles to the simulation of quantitative
data (for example, using larger scale systems such as Li
et al’s DevLex model, 2004).

We began by selecting a reasonably complex cognitive
domain drawn from neuropsychology to assess both
catastrophic interference and critical period effects in
self-organizing feature maps (henceforth SOFMs). The
training set comprised feature-based representations of
exemplars from eight semantic categories (vehicles, tools,
utensils, fruit, vegetables, dairy produce, animals and
humans). These were based on vectors constructed by
Small, Hart, Nguyen and Gordon (1996) to simulate patient
performance in neuropsychological tests of semantic
deficits. We split the training set into two halves that
would correspond to early and late training experiences.
The split was made in two ways. We either: (1) split each
category in half, thereby producing two similar subsets;
or (2) assigned living categories to one half and non-
living categories to the other half, thereby producing two
different subsets.

Each network was first exposed to the early set and,
at a variable point across its training, a switch was made
to the late set. We avoided interleaving training sets to
maximize the effects of variability in the environment.
We then evaluated the quality of the SOFM at the end of
training. To assess catastrophic interference, we focused
on performance on the early training set — had the early
acquired knowledge been overwritten by the later acquired
knowledge? To assess critical periods, we focused on
performance on the /ate training set — was the network’s
ability to learn the late set compromised for switches that
occurred at increasingly greater ‘ages’ of the network?
Based on our review of the literature, we explored whether
three additional factors modulated these effects:

1. SOFMs with dynamic parameters versus fixed para-
meters: we employed the standard Kohonen (1982)
method of reducing neighbourhood and learning rate
across training and contrasted it with a condition in
which these two parameters were fixed at intermediate,
compromise values throughout training. Can topo-
graphically well-organized maps only be achieved by
reducing plasticity across training? If so, the existence of
such maps in the brain might necessitate critical periods.

2. Resource levels: the capacity of the SOFM may be
important for determining its flexibility to changes in
the training environment. Intuitively, if there is no
space left in a system when the environment changes,
the system must either be compromised in learning
the new or it must sacrifice the old. This manipulation
either gave the map sufficient resources to employ a
separate output unit for each pattern in the (combined)
training set (resource rich), or reduced this level to
approximately 25% capacity (limited resource).

3. Similarity: depending on the way in which the original
training set was split, there was either high similarity
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Table 1 Training set information (note: ‘humans’ only had one prototype)
Category n items n prototypes M angle between prototypes M angle between exemplars M features active
vehicles 30 7 51.62 24.14 22.03
tools 22 6 51.72 28.71 17.91
utensils 20 6 46.96 26.65 15.85
dairy produce 15 4 48.09 29.31 15.33
animals 29 7 52.85 24.17 21.85
humans 21 1 - 33.19 28.52
fruit 26 6 46.05 23.06 17.99
vegetables 22 4 3547 21.74 17.52
Table 2 Angles between mean exemplars

vehicles tools utensils dairy animals humans fruit vegetables
vehicles - 66.43 64.29 76.94 75.4 73.29 78.75 80.58
tools 66.43 - 56.59 66.61 78.95 73.79 68.78 68.73
utensils 64.29 56.59 - 49.99 85.07 81.55 60.18 62.65
dairy 76.94 66.61 49.99 - 78.54 76.46 49.74 52.03
animals 75.4 78.95 85.07 78.54 - 36.05 72.81 73.43
humans 73.29 73.79 81.55 76.46 36.05 - 73.1 75.23
fruit 78.75 68.78 60.18 49.74 72.81 73.1 - 31.03
vegetables 80.58 68.73 62.65 52.03 73.43 75.23 31.03 -

or low similarity between the early and late training
environment. If early knowledge and late knowledge
are similar, will interference be eliminated since old
knowledge generalizes to new? Conversely, under condi-
tions of a radical change in training environment, will
the effects of catastrophic interference outweigh those
of the critical period?

Training sets

The training patterns were 185 exemplars derived from
41 prototypical concepts that spanned eight semantic
categories: vehicles, tools, utensils, fruit, vegetables, dairy
produce, animals and humans (adapted from the set used
by Small et al., 1996). Each training pattern was encoded
according to the presence or absence of 154 meaningful
semantic features (such as ‘is_green’ and ‘is_food’),
where the presence or absence of a particular feature was
indicated by an activation value of 1 or 0 respectively.
Exemplars were generated as semantically meaningful
variations upon each prototype. For example, the proto-
type of ‘apple’ was green, whereas exemplars varied in
properties such as colour (‘is_red’ rather than ‘is_green’)
size, and shape. Vector-based representations then per-
mitted evaluation of the similarity structure. For any
pairs of vectors of length 7, the similarity between them
can be measured by the angle between the vectors in n-
dimensional space. Table 1 shows the mean angle between
prototypes and between each prototype and its accom-
panying exemplars, where 0° indicates complete similarity
and 90° indicates entirely dissimilar or ‘orthogonal’
representations. The maximum angle between categories
was 85° and the minimum 31°, with an average of 67°
(individual values are shown in Table 2). Within each
category, prototypes differed by an overall mean angle
of 46°. The distance between prototypes and their
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accompanying exemplars was smaller, with a mean
angle of 25°.

Four training sets were constructed from these 185
exemplars, arranged as two pairs. There were no repeti-
tions of exemplars across pairs and each set consisted of
a similar quantity of items. Similar training sets A and
B consisted of 92 and 93 exemplars, respectively, and
comprised half the exemplars of each category. Average
vectors were calculated for the two sets. The angle between
these mean vectors was 10°, indicating that the items
within these two category sets were indeed highly similar.
Different training sets A and B consisted of 98 and 87
exemplars, respectively. Set A consisted of exemplars from
living and natural categories (humans, animals, fruit, and
vegetables) while set B consisted of exemplars mainly
from non-living categories (tools, utensils, vehicles, and
dairy produce). We classified fruit and vegetables as living
in this case since it enabled us to create two broadly
internally consistent training sets which were neverthe-
less fairly dissimilar to each other: the angle between the
mean vectors for the two different sets was 83°.

Architecture and algorithm

We employed two-dimensional SOFMs with a hexagon-
ally arranged topology and 154 input units. The input
layer was fully connected to the output layer. The output
layer for resource-rich maps consisted of 196 units
arranged in a 14 x 14 array. The output layer for limited-
resource maps consisted of 49 units arranged in a 7 x 7
array. In these networks, during training, each input
pattern produces a most-activated or winning output
unit on the map. The activation u,; of each unit on the
output layer is calculated via the summed product of the
activations g; of the input units that are connected to this
unit and the strengths w; of those connections:
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(b) Dynamic parameters
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Profile of parameter changes over learning that control functional plasticity in the SOFM for the (a) fixed parameters

and (b) dynamic parameters conditions. It should be noted that the initial neighbourhood distance was set at the maximum distance
value given the map size, and is shown in the figure for resource-rich (14 x 14) maps.

U = Z aw; [1]
The winning output unit for a given input pattern is the
unit with the highest summed product. Some algorithms
implement the selection of the winning output unit via
a competitive process in the output layer, involving
mutually excitatory short-range intra-layer connections,
inhibitory long-range intra-layer connections, and cycling
activation. In the current implementation, for simplicity
the most active output unit is nominated as the winner.
The winning unit updates its weights to the input layer,
as do the units that surround the winner as a function
of their distance from it. The distance is calculated using
the Euclidean distance measure. Weights w,, between
input units / and winning unit u are updated via the
following equation:
wi(t + 1) = w, (1) + oD)[afr) — wi(1)] [2]
where ¢ denotes time, o(¢) is the learning rate at time ¢
(see below) and [a(f) — w,(?)] is the difference between
the activation of the input unit 7 and the current weight
value (Kohonen, 1995). Output units » that fall within
the neighbourhood of winning output unit u, as deter-
mined by the neighbourhood function (see below), also
update their weights but now modified by a factor of 0.5
(Kohonen, 1995) so that:
wi(t + 1) = w,, (1) + 0.5 x a(d)falt) - w,(0]  [3]
The learning rate and neighbourhood size were deter-
mined as follows. For the fixed parameters condition, the
neighbourhood size was set to 2 and the learning rate to
0.7. This learning rate was selected following a para-
meter search, which found that maps of this type with a
higher learning rate were more successful in developing
representations, whereas maps with a lower learning rate
produced very limited representations. These values were
held constant throughout training. For the dynamic para-
meters condition, the two parameters decreased as a func-
tion of the number of training patterns presented. During
the organizational phase of the map, which ran from
the onset of training for 250 epochs (where 1 epoch cor-
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responds to a single presentation of all the patterns in
the training set), the learning rate was set at an initial
value of 0.8 and decreased to a level of 0.2 by the start of
the tuning phase (after 250 epochs). The exact formula
for computing o(¢) is shown in the Appendix. The neigh-
bourhood distance was initially set to be the maximum
neighbourhood distance for the map given its size, so
that initially all units were neighbours (initial value of 18
for 14 x 14 maps, and 8 for 7 x 7 maps). This value then
decreased to a level of 1 (immediate neighbours only) by
the start of the tuning phase. The exact function deter-
mining the neighbourhood size is included in the Appendix.
The parameter profiles for fixed and dynamic conditions
are shown in Figure 1.

Map evaluation

Maps were evaluated using two methods. For visualiza-
tion, colour-coded maps were created reflecting the cate-
gory exemplars that activated each output unit. In order
to generate these plots, we initially employed a cluster
analysis upon all training patterns in order to gauge
their relative similarity. The results of this analysis pro-
duced a vector indicating a sequence for the exemplars
in the training set in terms of their relative similarity.
Exemplars were then ordered according to this vector
and an rgb (red green blue) colour value was then assigned
to each exemplar from a series of graded colour values,
with similar exemplars possessing a similar colour value.
This colour value was then allocated to the winning out-
put unit for that pattern. If the same unit was activated
by more than one pattern, the colour values for that
unit were averaged and the size of the unit plotted was
increased (Thomas & Richardson, 2006).

Three quantitative metrics were used to assess map
quality, based on those used by Oliver et al. (2000) in their
simulations of typical and atypical SOFM development.
The metrics were: unit activity, discrimination, and organiza-
tion. First, unit activity was used as a basic indicator of
the proportion of map space being used to represent the
training set. This metric was calculated by summing
the total number of winning units for the current training
set and dividing by the map size. As a unit may categorize



one or more patterns in map space, the discrimination
metric was used to determine the granularity of categor-
ization in map space. This metric calculated the mean
proportion (between 0 and 1) of active units being used
to represent each category in the current training set. Low
values indicate coarse granularity and poor discrimination,
with many different exemplars activating the same output
unit. Higher values indicate fine-grained granularity
and a good level of discrimination between exemplars. This
measure was conceptually independent of the topographic
layout of the clustering in map space. Topographic layout
was evaluated using an organization metric. Under the
hexagonal scheme, output units in map space were typi-
cally surrounded by a total of six immediate neighbours
(units located in areas such as on the edge of map space
had fewer immediate neighbours). For each active unit
in map space representing one or more exemplars, this
metric calculated the proportion of immediate neighbours
that categorized exemplars of the same category. More
specifically a neighbouring unit representing an exemplar
from the same category generated a score of 1, whereas
any inactive units or units representing another category
contributed no score. Where a neighbouring unit responded
to exemplars from more than one category, the unit was
classified according to the category for which it was
maximally active. The sum total of same neighbours was
then calculated and then divided by the total number of
immediate neighbours for the given unit. The output for
this metric was the mean proportion between 0 and 1 of
same neighbours over all active units in map space. Maps
initialized with random weights typically have an organ-
izational metric value of zero or near zero, indicating that
no or very few neighbouring units represent exemplars
from the same category. These maps therefore have none
or almost no topographic organization. Conversely, a
value near 1 indicates that the majority of neighbours
classify exemplars from the same category and that there
is good topographic organization.

Together, these three metrics provide the opportunity to
identify map quality over several dimensions and they allow
for the possibility that map characteristics may dissociate.
Thus a map could, in principle, show good discrimination
between exemplars but poor organization, or it could
show good organization but poor discrimination between
exemplars.

Training and testing regimes

Three sets of simulations were run. The first established
the baseline development of maps for the split pattern
sets when trained in isolation, against which the effects
of interference or reduced plasticity could be assessed.
The second set evaluated catastrophic interference effects
and the third critical period effects. In each case, simula-
tions followed a 2 x 2 x 2 design, with factors of para-
meters (fixed vs. dynamic), resources (resource rich vs.
limited resources), and early-late training set similarity
(similar vs. different). Simulations were counter-balanced
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across the split training sets, with A serving as the early
set and B the late set or B as the early set and A as the late
set. Illustrated data are collapsed and averaged over six
replications with different random seeds determining
initial weight randomization and random order of
pattern presentation. All figures include standard errors
of these means.

(i) Baseline development for single training sets

The developmental profile of fixed parameter and dynamic
parameter maps was established by training maps on
each of the four training sets (A and B similar; A and B
different). Performance was assessed at 5, 50, 100, 250,
400, 550, 700, 850 and 1000 epochs. For the dynamic para-
meters condition, the organization phase ran from 0 to
250 epochs and the tuning phase from 250 to 1000 epochs.

(ii) Catastrophic interference effects

The network was initially trained on the early set. Train-
ing was then switched to the late set. Performance on the
early set was assessed at the end of training. Switches
took place at 5, 50, 250, 400, 550, 700, or 850 epochs of
training. Note that two methods could be used to deter-
mine the ‘end’ of training. One could assess early set
performance at 1000 epochs, so using a fixed total amount
of training. However, this means that for switches occur-
ring later in training, there is less opportunity for cata-
strophic interference to take place (i.e. only 150 epochs
for a switch occurring at 850 epochs, compared to 995
epochs for a switch occurring after 5 epochs). Alterna-
tively, one could assess early set performance following
a fixed period of 1000 epochs following the switch, so for
a switch at 850 epochs, network performance would be
assessed at 1850 epochs. In practice, however, the effects
of a switch stabilized relatively quickly, and therefore even
the latest switch provided time for the effects of cata-
strophic interference to stabilize. Although we ran all
simulations using both methods, we report here only the
data for performance after 1000 epochs (first method),
since the results are the same for both.

(iii) Critical period effects

The same method was used as in (ii) but performance
was instead assessed at the end of training for the late
set. Switches once more occurred after 5, 50, 250, 400,
550, 700 or 850 epochs of training on the early set.

Results

(i) Normal development of fixed and dynamic
parameter maps

The typical developmental profiles of fixed parameter
(FP) and dynamic parameter (DP) maps are displayed
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Figure 2 SOFM plots illustrating the development of semantic categories for non-living categories for (a) fixed and (b) dynamic
parameter maps. Maps with reducing learning rate and neighbourhood settings establish representations in map space more slowly
than fixed parameter maps but produce maps with superior final organization and discrimination.

with SOFM plots in Figure 2. These illustrate the emerg-
ing classification for one of the training sets (different set
B: non-living categories). Both FP and DP maps developed
topographically organized representations, marked by
segregated areas of colour. Figure 2 indicates that the FP
maps developed their representations more quickly but
produced both fewer activated units and a lower level of
exemplar discrimination in the endstate. By contrast, the
DP maps developed more slowly but ultimately recruited
more units and reached a higher level of discrimination.
The quantitative metrics in Figure 3 confirm this impres-
sion. Note that the faster development of the FP map
actually occurred when the DP map had higher plasticity
(in terms of the learning rate and neighbourhood
parameters). This is because the high plasticity of the
DP map initially makes it unstable.

A reduction in map resources naturally resulted in fewer
active units and therefore worse discrimination (see
Thomas & Richardson, 2006). However, the relationship
between FP and DP maps remained the same.

For the unit activity and discrimination metrics, the
results were almost identical whether the similar and
different subsets were used. This is despite the fact that
the different subsets contained only four categories com-
pared to the eight categories of similar subsets. In both
cases, map resources were used to optimize discrimina-
tion between the exemplars present in the training set. The
results were the same because for the different subsets,
discrimination between exemplars increased, making use
of the available resources. By contrast, the organization
metric was affected by the choice of subset. This is because,

by definition, the metric assesses how many neighbouring
units represent exemplars from the same category. Different
subsets possessed fewer categories than similar subsets, thus
making any two units more likely to represent exemplars
from the same category, resulting in a higher metric value
for different subsets. However, the similarity effect was
dependent both on parameter condition and resource level.
For the DP network with plentiful resources, exemplar
discrimination eventually became sufficiently fine-grained
to reach the same level of organization for both similar
and different subsets.

We now turn to consider the effects of a non-stationary
training environment.

(ii) Catastrophic interference effects

Figure 4 depicts endstate performance on the early train-
ing set for conditions in which training switches to the
late set after a certain number of epochs, compared with
endstate performance when no switch took place (NS).
Interference effects will be evidenced by poor endstate
performance on the early set. The FP networks with rich
resources demonstrated a drop in early set performance
across all three metrics, irrespective of how late the shift
occurred during training. These networks exhibited inter-
ference effects consistent with their continued level of
plasticity. The interference effects were greater between
different subsets than similar subsets, in line with equi-
valent findings from error-driven networks. In terms of
unit activity and discrimination, the limited-resource FP
networks showed interference effects only for switches
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(b) Limited-resource map
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Figure 3 Normal development: Metric results track changes in map quality over learning for (a) resource-rich maps and (b) limited-

resource maps, for both fixed and dynamic parameter conditions.

between different subsets. The map solution of the early
set adequately generalized to the late set for the level of
discrimination achievable and so no reorganization was
necessary. Similarity effects were particularly evident in
the organization metric for the limited-resources network,
in which the competition for representational resources
was maximized. The outcome of this competition depended
to some extent on chance patterns of map organization,
thereby increasing the variability of these data. In contrast,
rich resources mitigated the effect of similarity on organiza-
tion. Spare resources were now available to accommodate
the new knowledge.

Consistent with their shift in emphasis from plasticity
to stability across training, the DP networks exhibited
interference predominantly for switches that occurred in
the earlier parts of training. Once more the different sub-
sets produced maximal interference. Similar subsets mini-
mized the effects of the interference for early switches,
since the organization fashioned by the new knowledge
generalizes to the consistent old knowledge. Two further
points are of note. First, the DP network’s ability to
preserve its old knowledge after a late occurring switch
between different subsets was sensitive to map resources:
the S-shaped curves in unit activity and discrimination
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Figure 4

Interference effects for the no-longer trained pattern set. Metric results show performance at the end of the normal period

of training, for switches occurring at different points in training. Map quality was stable by 1000 epochs of training even for late
occurring switches (NS = no-switch, i.e. for training on the early set in isolation).

are present only in the resource-rich maps; for limited-
resource maps, such a switch between different subsets
always caused interference. Second, the rich-resource maps
always experienced some interference irrespective of how
late the switch occurred. Unless learning is deactivated,
these systems cannot ensure complete stability in the
face of a non-stationary environment.

In sum, conditions that maximized the necessity of
change (a switch between different subsets), the oppor-
tunity for change (elevated intrinsic plasticity) or the
impact of change (competition for limited resources) all

led to interference effects in SOFMs. Where old know-
ledge generalized to new knowledge or where plasticity
was sacrificed, stability prevailed. Could the interference
be termed ‘catastrophic’? To explore this question more
fully we calculated an index of interference (I1ol) based
on the unit activity of normally developing maps minus
the unit activity (tested using the early training set) of
equivalent maps that underwent a switch. The scale of this
index was —1/+1, where —1 indicates that the maps that
underwent a switch during training out-performed those
from during the normal condition, a value of zero indicated
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(b) Limited-resource map
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Figure 5

Index of interference (lol), which is the proportional change in unit activity compared to normally developing models.

The figure shows lol for switches occurring at different points in training for (a) resource-rich and (b) limited-resource maps. The
level of interference is indicated by a positive value on the y-axis (with a maximum value of 1). No interference is represented by
a value of zero, and negative values indicate where switched networks are more active than normally developing models. The
dashed line indicates 50% interference, for which values above might be termed ‘catastrophic’.

no interference, and +1 indicates that prior knowledge
has been completely overwritten. These results are shown
in Figure 5 for both resource-rich and limited-resource
conditions. Although interference is high for early switches
in resource-rich dynamic parameter maps, if we define
‘catastrophic’ as losing more than 50% accuracy, in the
majority of cases the level of interference is not catastrophic.

(iii) Critical period effects

Figure 6 depicts endstate performance on the late set for
conditions in which training switched to this set increas-
ingly further into the network’s development. These data
are compared with endstate performance when the net-
work was trained on the same set from the beginning. A
sensitive period would be demonstrated by increasingly
poorer performance the later into the network’s develop-
ment that the training on this set begins; a critical period
would be demonstrated by a point in the network’s
development after which the late set could not be
learned at all.

For the FP networks, the point at which training com-
menced on the late set had no effect at all on endstate
levels of unit activity or discrimination. Resource levels
and similarity did not modulate this pattern. In contrast,
the DP networks produced a sensitive period in line with
the shift between organizational and tuning phases, that
is, driven by the internal parameters of the system. Shifts
to the late set occurring up until 100 epochs predicted
an outcome similar to training on the late set from the
beginning (e.g. around 75% discrimination in the resource-
rich network). For shifts from 250 epochs onwards, the
prognosis was much poorer, but importantly this pattern
was strongly modulated by similarity. For the similar

subsets, the latest switches only produced a decline to
62% discrimination. For the different subsets, the decline
was much larger, to 25%.

Some degree of learning was always possible on the late
set, suggesting that use of the strong sense of ‘critical
period’ is not warranted for these networks. Nevertheless,
the important finding is that the age-of-acquisition effects
depended as much on similarity between old and new
knowledge as intrinsic parameter settings. For unit acti-
vation and discrimination, the same kind of pattern was
found in limited-resource networks. However, for both
resource-rich and limited-resource networks, the sensi-
tive period profile was not replicated in the organization
metric, which was noisy but remained approximately
level for switches at different epochs.

These results capture the outcome of a non-stationary
environment at the end of the fixed training period, but
they do not reveal the dynamics of change when a switch
occurs. Figure 7 illustrates the process of reorganization
triggered by a change in training set for two conditions.
Figure 7(i) depicts a representative map for a late switch
between similar subsets occurring at 700 epochs in the
DP network with rich resources. By this point, the learning
rate and neighbourhood parameters are at a level that
limits subsequent change. Although the early and late
subsets share no common training patterns, each never-
theless contains different exemplars from the same cate-
gories. The map produced by the early set is therefore
likely to be useful for the late set. Figure 7(i) shows that
following the switch there is a drop in discrimination
(indicated by an increase in the size of the coloured dots).
This is because distinctions between the exemplars of new
knowledge are not captured. For example, taking the cate-
gory ‘vegetables’, while the old knowledge may have included
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Figure 6 Critical/sensitive period effects for the newly introduced pattern set. Metric results show performance at the end of the
normal period of training, for switches occurring at different points in training. Map quality was stable by 1000 epochs of training

(NS = no-switch, i.e. for training on the late set in isolation).

the distinction between lettuce, carrot, and potato by activat-
ing separate output units for each, the new knowledge now
contains celery, parsnip, and turnip, and these are initially
conflated into a single output unit. However, it only takes
fine-tuning over subsequent exemplars to learn these
distinctions. Such cases are circled in Figure 7(1).
Figure 7(ii) illustrates the case of a late switch between
different subsets (from non-living to living categories),
again for a DP network with rich resources. Given that there
is such limited overlap between old and new knowledge,
one might question whether the representations developed
by the early training set will be of any use in discri-

minating between patterns in the late training set.
Figure 7(ii) shows that, without any further training,
some discrimination is immediately available, albeit at a
very coarse level. This is because the different subsets are
not fully orthogonal, so that a single overlapping feature
(such as size) used in discriminating the non-living cate-
gories of tools, utensils, dairy produce, and vehicles can
then be employed to generate rough distinctions between
the living categories of vegetables, fruit, animals, and
humans. However, in line with the reduced plasticity of
the DP network, few further distinctions can then be
learned by the residual fine-tuning capacity of the system.
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Discussion

Both self-organizing and error-driven connectionist net-
works have been widely used to study mechanisms of
cognitive development (Elman, Bates, Johnson, Karmiloff-
Smith, Parisi & Plunkett, 1996; Mareschal, Johnson,
Sirios, Spratling, Thomas & Westermann, 2007). While
self-organizing networks have been linked to explana-
tions of critical or sensitive periods in development (Li
et al., 2004; McClelland et al., 1999; O’Reilly & Johnson,
1994), error-driven networks have more often been asso-
ciated with catastrophic interference effects where late-
learned knowledge overwrites early-learned knowledge
(French, 1999). In the current paper, we took a standard
implementation of self-organized feature maps (Kohonen,
1995) and trained networks on a pattern set drawn from
research into semantic deficits in cognitive neuropsy-
chology (Small et al., 1996), with the aim of evaluating
the factors that mediate critical/sensitive period and inter-
ference effects in these systems. Our results demonstrated
the following.

Two variations of the SOFM produced topographically
organized representations of the categories in the train-
ing set. In the more traditional variation, the parameters
of learning rate and neighbourhood size were reduced
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across training.” In this variation, learning was initially
slow but eventually produced a high level of discrimina-
tion and organization. These networks demonstrated
sensitive periods in development favouring the influence
of early learning, with limited interference effects for changes
in training occurring beyond this period. If a switch
occurred within the sensitive period, the new knowledge
was able to replace the old. However, after this replacement
there was residual evidence that an early switch had taken
place. This took the form of a lowering in the level of unit
activity and discrimination that was ultimately attainable.
These results are perhaps analogous to functional imaging
data from Pallier ez al (2003) where Korean-born children
who were adopted into French families at an early age and
who showed loss of Korean when tested as adults never-
theless still exhibited depressed activation levels when
listening to French when compared to native French speakers.

2 This implementation does not necessarily imply a reduction in plasti-
city simply as a function of age (maturation). In the algorithm, the
parameters reduce as a function of the number of training patterns
encountered, that is, the level of experience (see Appendix). If the rate
of experience can vary, the implementation is consistent with the idea
that experience itself causes the closing of sensitive periods (Johnson,
2005). If experiences occur at a constant rate, the function is equivalent
to a maturational reduction in plasticity.
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In the second SOFM variation, the parameters of
learning rate and neighbourhood size were fixed across
training. The network learned very quickly but its final
levels of discrimination and organization were poorer than
the first variation. However, there was no indication of
critical or sensitive periods in these networks; instead, inter-
ference effects were the salient characteristic. The clear
inference is that the presence of topographic organiza-
tion does not necessarily imply a system that will show
critical/sensitive periods across development. The intrinsic
properties of the learning device (i.e. its parameteriza-
tion) are crucial in determining the trade-off between
stability and plasticity. The simulations suggest a further
trade-off: fast settling systems may retain plasticity at
the expense of detail; higher performing systems may
take longer to develop and involve sensitive periods. It is
possible that different brain systems use the developing
maps with different settings — fast, approximate and
permanently plastic, versus slow, detailed and losing
plasticity.

Research on catastrophic interference effects in error-
driven connectionist networks pointed to the importance
of the similarity between old and new knowledge (e.g.
McCrae & Hetherington, 1993). The current simulations
extended this work to self-organizing systems with
comparable results: where a high degree of consistency
existed between old and new knowledge, both the effects
of critical periods and interference were attenuated; where
the old and new knowledge were very different, critical
period effects were maximized in the dynamic parameters
network and interference effects were maximized in the
fixed parameters network. The issue of similarity between
old and new knowledge has been highlighted as one of
the factors in the success of adults learning a second
language beyond the sensitive period (see Hernandez,
Li & MacWhinney, 2005, for a discussion of relevant
literature in the context of SOFM models of bilingual
acquisition).

Since both critical period effects and interference effects
relate to a competition for representational resources, we
also investigated whether such effects would be sensitive
to the overall level of resources. A self-organizing network
with fewer resources resulted in poorer discrimination
between exemplars (see Thomas & Richardson, 2006, for
further work). Reduced resources had no implications
for critical period effects in discrimination. However,
resources did exaggerate the effects of similarity on inter-
ference effects. With limited resources, a late switch to a
different training set caused reduced unit activity and
loss of discrimination for previously acquired knowledge
— even in the dynamic parameters network where plasti-
city should have been attenuated. The implications of
individual variation in neural resources for forming topo-
graphically organized systems are as yet unclear. For
example, human studies have confirmed the presence of
variation in the size of cortical areas without finding
correlations in behavioural performance (Finlay, Cheung
& Darlington, 2005). Studies of brain damage hint at a
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minimal level of resources necessary for cognitive develop-
ment through the presence of ‘crowding effects’ after
unilateral damage in childhood, in which there is a
general lowering of IQ without marked specificity of
behavioural deficits (e.g. Huttenlocher, 2002). And animal
studies indicate that at the neural level, the result of
reducing cortical resources prenatally without disrupting
cortical input is the emergence of the same broad regions
of functional specialization (visual, motor, somatosensory)
but with reduced discrimination, i.e. more neurons respond-
ing to more than one modality (Huffman, Molnar, Van
Dellen, Kahn, Blakemore & Krubitzer, 1999). The current
simulations point to a further implication of resources
for the stability of representations under conditions of a
non-stationary environment.

We finish by briefly addressing two further issues. First,
we consider the results from a more analytic perspective.
Second, we consider why it should be important to develop
good topographically organized representations, over and
above representations that simply offer good discrimination.

Algorithmic determinants of plasticity

One limitation of the current findings is the extent to
which they will generalize across different problem sets
and self-organizing models. To address this question, we
need to consider the details of the learning algorithms and
how they contribute to changes in plasticity across train-
ing. The learning algorithm captures the opportunities
for plasticity that a system will provide, while the simi-
larity structure of the training set indicates whether these
opportunities will be exploited. For example, in a review
of computational models of sensitive periods in develop-
ment, Thomas and Johnson (2006) pointed out that the
Hebbian learning algorithm (from which most neural
network learning algorithms are derived) includes a
learning rate parameter € that determines the size of the
weight change Aw; between two neurons i and j when
their activity (a,, a,) is correlated:

Aw; = eaa; (4]

The learning rate parameter is clearly a way to modulate
the plasticity of the system. However, the weight change
is also proportional to ¢; and a;. According to the algo-
rithm, simply by being more active, a Hebbian system will
become more plastic (see Thomas & Johnson, 2006, for
discussion). When we consider the weight change algo-
rithm for the Kohonen SOFM (equations 1 to 3), it is
apparent that there are two modes by which a weight
can change: either when it connects an input unit to the
most active (winning) output unit (equation 2) or when
it connects an input to an output unit within the neigh-
bourhood of the winning output unit (equation 3).
From the perspective of a single input pattern, the size
of the weight change in both these cases is proportional
to the learning rate parameter and to the difference
between the activation of the input unit and the current



size of the weight. Weight change is small if both the
input unit activation and existing weight are large, or if
both the activation and weight are small. Conversely,
maximum weight change occurs when the activation is
large and the weight small (positive change) or the activa-
tion is small and the weight is large (negative weight
change). The weight change that is triggered by a single
pattern, then, will depend on whether the existing net-
work is already behaving in the way that the pattern
requires, conditioned by the two externally determined
parameters of neighbourhood size and learning rate.

However, a pattern is part of a training set. The final
factor influencing plasticity is whether, between presenta-
tions of a single pattern, other patterns have attempted
to alter the value of a target weight. The nature of this
influence depends on the relative similarity of a given
pattern and the rest of the training set. Will other patterns
use the same input and output units, and will they have
altered the connecting weight in the same direction? The
same output unit will be employed if it is the winner in
both cases, implying some similarity between our single
pattern and the patterns in the rest of the training set. It
will also be employed if the output unit is in the neigh-
bourhood of the winner. In this case, the single pattern
and other training patterns may be dissimilar, which is
more likely when the neighbourhood size is large and the
map size small. The weight will be moved in the right
direction by other patterns only if they have the same
setting of the input unit as a target pattern, i.e. they
share some degree of input similarity.

The parameters of the algorithm and the similarity
structure of the training set therefore interact to deter-
mine plasticity. In the classical SOFM, the learning rate
and neighbourhood size are initially set high. There is
large weight change but much of it is between input units
and neighbours rather than winners. This process acts as
a smoothing function to produce widespread changes
that reflect the broad similarity structure of the input set.
In later learning, the smaller neighbourhood size focuses
weight changes towards the properties of individual
patterns, while a smaller learning rate decreases the
instability caused by competition between patterns. In
the reported simulations, we employed a relatively rich
training set drawn from work on the modelling of neuro-
psychological deficits. Some self-organizing cognitive
models have employed much simpler representations,
such as a small number of bars or blobs falling across an
input retina. These input sets place a weaker requirement
on the algorithm to develop a richly structured topo-
graphic organization, but they do allow for more extreme
manipulations of similarity, including completely orthogonal
input patterns (e.g. Oliver et al., 2000; O’Reilly & Johnson,
1994; McClelland et al., 1999). For reasons of practicality,
we took the exaggerated case of a sudden and absolute
change in training set. Additional work would be necessary
to assess the extent to which interleaving old and new
knowledge might alleviate interference effects, in line
with the findings from work on error-driven networks.
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Implementations of self-organizing feature maps differ
in the details of their algorithms. Some models employ
weight decay or normalization in their learning algo-
rithms to keep the total weight size constant; other models
provide the units of the output layer with threshold
functions; other models implement a competitive pro-
cess to select the winning output unit for each input
pattern via intra-layer connections, and include adaptive
changes to the intra-layer weights as part of learning,
thereby altering neighbourhood effects; other models
allow the recruitment of new output units across train-
ing for very novel inputs and include bi-directional
connections between input and output layers that can
change the similarity structure of the input (see, e.g.
Grossberg, 1987; Li et al, 2004; Miller et al., 1989,
Oliver et al., 2000; O’Reilly & Johnson, 1994). Notably,
not all models use dynamic parameter changes across
training, instead achieving their topographic organiza-
tion with fixed parameters. However, these fixed para-
meter networks also tend to be the models with less
richly structured training sets, thereby placing weaker
demands on global organization. The motivation for
reducing neighbourhood size and learning rate across
training in the Kohonen net is specifically to achieve
good map organization for a training set with rich
similarity structure.

What significance would the difference have for learning
algorithms in terms of the balance between critical period
and interference effects? Further simulation work is required
to answer this question definitively, but we can anticipate
at least two differences that would increase the probability
of critical period effects and attenuate interference effects.
First, if the decay of unused weights between input and
output layers ever permitted weight sizes to drop to zero
(effectively pruning unused connections), then initially
unused areas of the input space would lose the ability to
activate the output layer. Relatedly, if output units had
fixed thresholds and weights decayed (or were weakened
by normalization as other weights strengthened), unused
areas of the input space might no longer be able to
propagate enough activation to push output units above
threshold. Second, intra-layer competitive processes on
the output layer might result in assimilation effects,
whereby novel inputs that are highly similar to existing
exemplars simply serve to activate the output unit for
that existing exemplar and therefore fail to trigger adap-
tation in the network. That is, the system does not adapt
because it has failed to perceive anything different in the
world that might require the generation of new representa-
tions (see McClelland et al, 1999, for simulation work
related to adult Japanese learners of English and the /I/~/r/
contrast). These two cases are illustrated in Figure 8.

How important is it to have good topographic maps?

Turning to the second issue, Figures 4 and 6 indicated
that switches in training set played a stronger role in modul-
ating the unit activation and discrimination metrics
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Figure 8 Additional algorithmic assumptions that could affect the ongoing functional plasticity of a SOFM: (i) Loss of signal via

weight normalization/decay or via fixed output unit thresholds. After

training on category A, there is loss of signal for novel category

B. (ii) Assimilation of novel inputs into existing categories via intra-layer competition. After training on category A, novel category
B (but not novel category C) is assimilated into category A and so does not trigger reorganization.

than the organization metric, especially for critical periods.
This led us to consider what might be the importance
of good topographic organization for driving behaviour,
over and above developing a highly activated map with
good discrimination between exemplars in the training
set. While there may be metabolic and signalling advan-
tages of having units that represent the same information
close together on a neural sheet, are there necessarily
computational advantages of good topographic organ-
ization? It has certainly been argued in the literature that
the development of self-organizing feature maps with
poor topology may result in developmental disorders
(Oliver et al., 2000) and even that maps that are malformed
in a certain way could lead to symptoms of autism
(Gustaffson, 1997).

The impact of disruptions of topology (independent
of discrimination) would seem to depend on certain
assumptions about the downstream system that the map
is driving. In particular, bad topology will disrupt behav-
iour if (a) the downstream system also has a topographic
organization and (b) units in the downstream system
have receptive fields that cover only a limited region of
the map. Such an architecture would mean that a given
downstream unit could not be driven by map units with
widely disparate locations. The second assumption of
receptive fields is problematic, however. Unless the map
locations of relevant categories could be anticipated in
advance, how would the downstream units know where
to position their receptive fields on the map? In our
simulations, while the relative organization of categories
was predictable (e.g. animals would fall next to humans),

© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

the absolute location was not (e.g. whether animals were
represented top-left or bottom-right).

The implication of such unpredictability if it is repli-
cated in brain development is that the receptive fields of
the downstream system could not be pre-specified but
would have to be learned. Downstream systems must co-
develop with upstream systems. Under a simple version
of this process, the SOFM and the downstream system
would begin by being fully connected. As the topology of
each was established, receptive fields would emerge as the
outcome of a regressive developmental process (illustrated
in Figure 9). If this is correct, whether or not a map with
non-optimal topology manifests in a disorder would
depend on the severity of the disruption to the upstream
map and the point during development at which the
disruption took place. As importantly, it would also
depend on the degree of compensation available in the
downstream map and the connectivity between the two
maps, requiring us also to consider the developmental
trajectory and plasticity conditions of that downstream
system.’

3 Similar arguments could be made regarding the optimal setting of the
discrimination metric. Coarse representations may be better for extracting
broad categories, while exemplar-based representations offer better old—
new discrimination. A downstream system with wide receptive fields
would conflate neighbouring units into a single categorical response,
while one with narrow receptive fields could be exemplar driven. (If the
width of the receptive fields were modulated by attention, both responses
would be available.) The discrimination metric therefore has to be
considered both in the context of the downstream system and the
demands of the task.
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Figure 9 Why should poor map organization impair function? Two developmental assumptions are necessary: (i) the downstream
output system is also topographically organized; (ii) the output system has emergent receptive fields with restricted coverage of
the input layer. Points X and Y can drive the same downstream unit before the emergence of receptive fields but not afterwards

(see text for further details).

In sum, although we can evaluate the quality of SOFMs
in isolation, the relevance of the metrics is ultimately
dependent on the systems to which the map is connected
and the processes it is driving. We have demonstrated
that the impact of a non-stationary environment on a
SOFM is contingent on its plasticity conditions, as well
as factors such as similarity and resources. But the
impact on behaviour of a non-stationary environment is
additionally contingent on the plasticity conditions that
prevail in the other systems to which it is connected, as
well as the nature of the connectivity between them.

Conclusion

For a self-organizing feature map in a non-stationary
environment, internal parameter settings, available rep-
resentational resources, and the similarity between old
and new knowledge all influence the stability of acquired
knowledge and the sensitivity of the system to change.
Topographically organized systems are possible in net-
works that do not exhibit critical or sensitive periods,
but maps optimized for high discrimination, and indeed
those most widely used in models of cognitive develop-
ment, do necessitate reducing sensitivity to change with
increasing experience.

Appendix

Dynamic parameter changes over learning in the SOFM
(Kohonen, 1982, 1995)

Organization phase

The learning rate is given by

Ir = (proportion X (max_[r — min_[r)) + min_Ilr  [5]

© 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

where Ir is the learning rate, max_/r is the highest learn-
ing rate at the start of the organization phase and min_/r
is the tuning phase learning rate. Proportion is given
by

(curptot — 1)

(6]

proportion =1 —
orgpats

where curptot is the current total of pattern presenta-
tions and orgpats is the total number of pattern presen-
tations in the organization phase.

The neighbourhood distance is given by

nd = (proportion X (max_nd — 1)) + min_nd [7]

where min_nd is minimum neighbourhood distance and
max_nd is maximum neighbourhood distance.

Tuning phase

The learning rate and neighbourhood distance in the
tuning phase are given by

_ (min_Ir x orgpats)

Ir = 8]
(curptot — 1)
nd = min_nd 9]
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