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One key issue in bilingualism is how bilinguals control production, particularly to produce words in the less dominant
language. Language switching is one method to investigate control processes. Language switching has been much studied in
comprehension, e.g., in lexical decision task, but less so in production. Here we first present a study of language switching in
Italian–English adult bilinguals in a naming task for visually presented words. We demonstrate an asymmetric pattern of time
costs to switch language, where participants incurred a greater time cost to switch into naming in their dominant language
(Italian). In addition, costs were greater where the stimuli were interlingual cognates or homographs than words existing in
only one language, implicating lexical competition as a source of the cost. To clarify the operation of control processes, we
then present two connectionist models of bilingual naming, based on the previous models of Seidenberg and McClelland
(1989), Cohen, Dunbar and McClelland (1990), Gilbert and Shallice (2002), and Karaminis and Thomas (2010). Crucially,
both models acquired their differential language dominance via an experience-dependent learning process. The models
embody different assumptions about the language control processes that produce the switch cost. We consider which
processing assumptions are sufficient to explain asymmetric language switch costs and word class effects on language
switching in individual word reading, as well as generating novel predictions for future testing.
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1. Introduction

One of the most remarkable abilities that characterisesQ2

bilingual speakers is that they can switch between their two
languages without apparent effort. However, experimental
studies have shown that switching between languages can
incur a cost in terms of speed and accuracy. The cost
has been observed in both speech comprehension (e.g.,
Thomas & Allport, 2000) and in speech production (e.g.,
Costa & Santebastan, 2004; Finkbeiner, Almeida, Janssen
& Caramazza, 2006; Meuter & Allport, 1999). This has
generated a debate over whether there are input and output
“switches” in the bilingual language system, as well as
more detailed discussion on the nature of the control
processes in operation. Due to their differing demands,
the control processes may be different for comprehension
and production.

With respect to comprehension, a number of
researchers have argued that access is non-selective and
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lexical alternatives in both languages are activated in
parallel even when words are presented in only one
language (e.g., Kroll, Bobb & Wodniecka, 2006, but
see Costa, 2005, for an alternative view). An empirical
demonstration of this phenomenon was provided using
a visual lexical decision paradigm in which participants
are asked to decide whether a letter string appearing on
a computer screen is a real word or not. The adaptation
of this paradigm to bilingual research has exploited cross-
language similarity between words (see Dijkstra, 2005, for
review). For example, words from different languages may
have the same orthography and same meaning; others may
have the same orthography but a different meaning. The
former are called INTERLINGUAL COGNATES and the latter
INTERLINGUAL HOMOGRAPHS. An example of a cognate
is the word idea, which has the same spelling and meaning
in both Italian and English, but different phonology.
An example of homograph is the word cane, which in
Italian means “dog”. Researchers using this paradigm
have compared the reaction times and accuracy for these
ambiguous words with those that are not ambiguous, that
is, words that are unique in each language, which we will
refer to as SINGLES (e.g., Thomas & Allport, 2000). In
a typical lexical decision setting, real words (cognates,
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homographs and singles) are mixed with plausible non-
words, that is, strings respecting the spelling rules of the
language, and participants are asked to respond whether
the presented stimuli are real words in a given language
or not. When bilingual participants perform the lexical
decision task in a monolingual setting, the principal
question is whether their performance is affected by the
status of the letter strings in the other language. A number
of studies have shown that bilinguals performing the task
in their native language are faster to respond when the
real word is a cognate (e.g., Van Hell & Dijkstra, 2002),
and slower to respond when it is a homograph (e.g., Von
Studnitz & Green, 2002). This suggests parallel activation
of both languages.

Speech production has a greater requirement for a
control mechanism, since only one language can be output
at once. In the case of unbalanced bilinguals, control
mechanisms must enable a less practised L2 phonological
form to be output in the face of competition from a
more practised L1 form that shares the same semantic
representation. Control processes must, therefore, be able
to inhibit L1 forms while outputting L2 forms. One of
the most influential cognitive models that characterises
this process is the Inhibitory Control Model (ICM –
Green, 1986, 1998). The model was designed to explain
issues such as how a bilingual translating a word from
L2 to L1 avoids naming the word in L2 and vice versa.
The model proposes that during the phase of message
planning, a general mechanism is in charge of controlling
the speaker’s communicative intentions. This mechanism
is inspired by Norman and Shallice’s (1986) model of
action selection. According to the ICM, language can be
viewed as a form of communicative action. In order to
carry out the action, voluntary control is required. Green
explained this concept borrowing the term SCHEMA, a
mental device that individuals construct or adapt on the
occasion in order to achieve a specific goal or task.
In the ICM, the task schemas (e.g., producing speech
or translating from L1 to L2) in turn work together
with the lexico-semantic system to determine the output.
It is the task schema that modulates the amount of
activation of the different lexical entries and controls
the language output by inhibiting or activating different
representations. Thus, the ICM predicts the existence
of an inhibitory system that suppresses the activation
of the language that is not currently in use. Inhibition
can occur either at the schema level or at a lexical
level, where specific language tags may be suppressed.
The model proposes that language activation is non-
selective, that is, the conceptual/semantic components
activate lexical entries in both languages. Once activation
in the target language is in place, the non-target language
is inhibited. Finally, the model stipulates that inhibition
is reactive, that is, the amount of time needed to switch
increases if the level of inhibition increases. Thus, the

more activation there is of words in both languages, the
greater the inhibition will be for the non-target language.
Individual levels of proficiency modulate switch costs:
competition is expected to be greater for highly proficient
bilinguals, who will in turn show more inhibition than
less proficient bilinguals (Green, 1998). However, less
proficient bilinguals will experience longer latencies when
switching back into their dominant language (L1) as it is
predicted that L1 requires more inhibition than L2 (Green,
1998).

Evidence in support of the ICM was obtained with
various paradigms involving speech production (e.g., Lee
& Williams, 2001; Levy, McVeigh, Marful & Anderson,
2007). However, Meuter and Allport (1999) provided
perhaps the first empirical evidence in favour of inhibitory
processes in bilingual speech production. They used a
digit-naming switching paradigm to measure the latencies
for trials preceded by a same-language response (non-
switch) or by a different language response (switch).
Bilingual participants speaking a variety of European
languages at different degrees of proficiency were asked
to name digits appearing singly on a computer screen.
The numbers, from 1 to 9, were enclosed in a coloured
rectangle functioning as a language cue. For example,
if the colour was BLUE the number was to be named in
English; if RED, in French. The languages were alternated
in such a way that participants could not fully predict
when a switch could occur (an unpredictable switching
paradigm). Meuter and Allport (1999) compared the
latency to name the numerals on non-switch versus
switch trials to determine the size of the switching cost.
They found that the switching cost was higher when
participants switched from the less dominant (L2) to
the more dominant (L1) language than vice versa. This
result was interpreted in support of the ICM: the non-
target language is suppressed when speaking in the target
language. However, the observed asymmetry in switching
cost also supports the notion that REACTIVE inhibition
is proportional to the level of activation of the non-
target language. In this case, a dominant L1 may require
a stronger inhibition, which in turn may result in a
higher cognitive effort for its reactivation. Conversely,
when switching from L1 to L2, the switching cost is
reduced because when speaking in the more dominant
language there is no need to inhibit an already weak
L2. Meuter and Allport (1999) measured the participants’
relative language proficiency in terms of speed at naming
numerals in L1 versus L2. On the basis of the results
obtained, they arbitrarily split the participants in two
groups: (i) Group A were participants with a larger mean
difference between L1 and L2 (90 ms); and (ii) Group
B were those who had a smaller difference (15 ms).
Results showed that Group A, that is, those with a larger
difference in language proficiency (less proficient in L2),
exhibited a greater switch cost asymmetry than those who



Bilingual switching in speech production 3

showed a smaller difference in relative proficiency (highly
proficient bilinguals). These findings are in line with the
ICM account, which predicts that when the difference
between L1 and L2 proficiency is small, then a similar
degree of inhibition should be applied to both languages.
Thus, the magnitude of switching cost should be similar
in both directions.

Costa and Santebastan (2004) further contrasted the
performance of high and low proficiency bilinguals
in a picture-naming switching task. In their first two
experiments involving L2 learners and native bilingual
speakers of Spanish and Catalan, they replicated Meuter
and Allport’s (1999) findings, that is, the magnitude
of switching cost was larger for low than highly
proficient bilinguals. However, in subsequent experiments
they showed that highly proficient bilinguals who were
acquiring a third language (L3), did not show a switching
cost asymmetry when performing the task in their stronger
L1 and weaker L3. The authors concluded that these
findings questioned the prediction of the ICM: if switching
cost asymmetry is the difference in the amount of
inhibition applied to L1 and L2, this asymmetry should
also be observed when highly proficient bilinguals switch
into a third weaker language. The switch cost asymmetry,
and the origin of switch cost effects, remain controversial.

One challenge lies in the fact that current proposals
are formulated as verbal theories. The adequacy of verbal
theories to account for specific patterns of empirical data
can be undermined by lack of detail and unarticulated
assumptions. For example, as we have seen, the ICM
explains the switch cost asymmetry in terms of the greater
cognitive effort required to reactivate the inhibited L1
during an L1 switch. This assumes that the performance
cost arises from the REACTIVATION of L1. However, why
shouldn’t the initial INHIBITION of L1 require a similar
cognitive effort, during a switch into L2? If it did, the
requirement to differentially inhibit L1 would contribute
equally to performance decrements on switches into L1
and switches L2, thereby rendering the account unable
to explain the switch cost asymmetry. It is evident,
here, that the devil is in the detail: of how inhibition
and reactivation of languages take place, of how these
processes affect naming performance, and how they differ
in the control processes acting over language systems
with different degrees of proficiency. One response to
this challenge is to complement empirical work with
computational modelling (Li, 2013). The requisite detail
is added to theoretical proposals by implementation,
and the adequacy of the proposal to produce particular
patterns of empirical data can be directly evaluated via
simulation. Models also have the virtue that different sets
of assumptions can be compared, and novel predictions
generated.

In the first half of the paper, we present an empirical
study that extends the language-switching production

paradigm to the naming of visually presented words. In
addition, this study introduces the use of word class (i.e.,
cognates, homographs and singles) to investigate whether
lexical-level variables interact with control processes
during production. In the second half of the paper, we
present a computational modelling study. Two neural
network models were applied to simulate the results of
our empirical study and investigate which implemented
control processes would be sufficient to explain the switch
costs and word class effects revealed in our data.

1.1 The computational modelling of bilingualism, task
switching and word reading

As discussed in Thomas and Van Heuven (2005), a
general aim for computational models of bilingualism is
to identify circumstances in which there is interference
between languages and the way that such interference
affects linguistic performance. These models can be
divided in two categories, which differ with respect to
two criteria: the way in which competition between words
belonging to different languages is resolved, and whether
the model includes a learning process (Thomas & Van
Heuven, 2005). The majority of implemented models
have employed connectionist methods. Models within the
so-called “localist” approach (the Bilingual Interactive
Activation (BIA): Dijkstra & Van Heuven, 1998; Van
Heuven, Dijkstra & Grainger, 1998; the Bilingual Model
of Lexical Access (BIMOLA): Grosjean, 2008; and the
Semantic, Ortographic, and Phonological Interaractive
Activation (SOPHIA): Van Heuven & Dijkstra, 2001)
employ architectures in which individual representational
units encode linguistic items such as words, letters or
phonemes. No learning occurs, and connectivity is set by
hand. Such models resolve competition between words
from different languages at a lemma level and focus on
adult language processing. On the other hand, the so-
called “distributed” models (the Bilingual Single Network
(BSN): Thomas, 1997a, b; the Bilingual Simple Recurrent
Network (BSRN): French, 1998; the Self-Organising
Model of Bilingual Processing (SOMBIP): Li & Farkas,
2002; a self-organising connectionist model of early word
production (DevLex–II): Zhao & Li, 2010, 2013; and the
reading model: Yang, Shu, McCandliss & Zevin, 2013)
are based on trainable architectures including internal
layers which develop their own representations or self-
organising feature maps. These architectures, which can
potentially address developmental phenomena, account
for intra-language competition at the level of distributed
activation patterns, developed in the network through
experience-dependent weight changes.

Although prior computational models of bilingualism
have made great advances in addressing phenomena in
bilingual language processing, they were not particularly
useful in our current computational investigation. These
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models have mostly focused on language comprehension,
in particular, visual word recognition and speech percep-
tion. Those that have addressed production (e.g., Li &
Farkas, 2002; Zhao & Li, 2010, 2013) have not yet consid-
ered the phenomenon of language switching and context-
driven control dynamics, which would have allowed us to
simulate switch and non-switch trials in production.

In our computational investigation, we developed
two computational models that combined elements of
two classes of existing computational models. The
first class was models of word naming. The most
representative neural network model within this class
is the Seidenberg and McClelland (1989) “triangle”
architecture, including learning of mappings between
orthography, semantics, and phonology. The second class
were models of controlled processes and task switching, in
particular the models of Cohen, Dunbar and McClelland
(1990), and Gilbert and Shallice (2002). Ideally, a
computational model of language switching should
establish control processes over representations developed
by an experience-dependent process. The Cohen et al.
(1990) model of the Stroop task was our starting point for
how this might be achieved: by implementing attentional
control over separate and competing processing channels
with different strengths, where strength is determined by
experience-dependent learning. However, this model was
limited, since its control processes operated over highly
simplified outputs, rather than generating phonological
forms, while it did not account for task switching (Gilbert
& Shallice, 2002; Kanne, Balota, Spieler, & Faust, 1998).
The Gilbert and Shallice (2002) model addressed some
of these limitations and simulated switch costs based on
the TASK CARRYOVER account (Allport, Styles & Hsieh,
1994; Allport & Wylie, 2000), which posits that costs in
switching depend heavily on the nature of the previous
task. However, the Gilbert and Shallice (2002) model
was not developmental, and once more relied on a highly
simplified task environment related to Stroop tasks.

Our aim in the modelling section was to extend
these models into a developmental model of bilingual
naming with implemented control processes. Within this
framework, we evaluated the conditions under which
switch cost asymmetries and word class effects might
emerge.

2. Empirical methods

2.1 Overview

Adult Italian–English bilinguals named visually presented
words appearing on either a blue or red background.
Participants were instructed to name words on a blue
background in Italian and those on a red background
in English. Language switched probabilistically, with
same language sequences of between two and five trials.

Accuracy and naming time were recorded for switch and
non-switch trials.

2.2 Participants

Twenty healthy late Italian–English bilingual adults (9
females, mean age 34.0, SD = 6.6, range 21.2–46.2) took
part in this study. They were all residents in the UK at the
time of testing and recruited from different professional
environments. Their native language (L1) was Italian;
their second language, English (L2), was acquired on
average after the age of 10.0 (SD = 4.6). All participants
signed an informed consent and did not report any visual,
speech or neurological impairment.

2.3 Materials and procedure

All participants were tested by the same experimenter
and on the same equipment, a MacBook computer, in a
soundproof booth at the Centre for Brain and Cognitive
Development, Birkbeck College, London. Participants
completed the Language History Questionnaire adapted
from Li, Sepanski and Zhao (2006) and were also
administered the Bilingual Verbal Ability Tests (BVAT;
Muñoz-Sandoval, Cummins, Alvarado & Ruef, 1998)
to assess their language proficiency in English (Filippi,
Leech, Thomas, Green & Dick, 2012; Filippi, Richardson,
Dick, Leech, Green, Thomas & Price, 2011). Biographical
and L2 proficiency information is reported in Table 1.

Switching in production task
Bilingual participants were presented a total of 360 words
on a computer screen, 180 in English and 180 in Italian.
Words appeared one by one in sequence at the centre of the
screen, with a 1.5-second interval between each other. A
schematic illustration of the task is provided in Figure 1.

Stimuli comprised three classes: target words with
same spelling and same meaning in both languages
(cognates, n = 30), target words with same spelling but
different meaning (homographs, n = 30), and unique
words in both languages (singles, n = 30). Examples
of experimental words are shown in Table 2. Within
each class, words were split into two matched groups,
half of which were presented on switch trials, half of
which were presented on non-switch trials, with the
groups counterbalanced across participants. This was
implemented by arranging the target words pseudo-
randomly in two presentation orders, and alternately
assigning participants to one of the two orders. Target
words of the three classes were matched within
language by their length, frequency and concreteness (see
Appendix I, available as supplementary materials online,
accompanying the electronic version of the present paper
at http://journals.cambridge.org/BIL; this appendix also
includes the split between matched groups). For English
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Table 1. Participants’ biographical data (sex: female, male; age-in-years, and level of proficiency in
English). Proficiency was either assessed categorically, according to the categories included in the
BVAT (Muñoz-Sandoval et al., 1998), or using a continuous score of L2 ability provided by the test,
where higher numbers represent greater proficiency.

Participant Sex Age Proficiency in L2 BVAT-L2 ability scores

1 F 21.9 Limited 74
2 F 39.6 Limited 83
3 M 30.6 Limited 84
4 M 38.4 Limited 87
5 M 29.7 Limited 87
6 M 21.2 Limited to fluent 93
7 M 32.3 Limited to fluent 97
8 M 38.5 Limited to fluent 95
9 F 35.3 Limited to fluent 96
10 F 26.5 Limited to fluent 95
11 F 41.6 Limited to fluent 95
12 M 31.9 Fluent 105
13 F 40.5 Fluent 105
14 F 25.6 Fluent 103
15 F 38.5 Fluent 105
16 M 35.3 Fluent 103
17 F 35.2 Very Fluent/Advanced 117
18 M 36.5 Very Fluent/Advanced 116
19 M 35.4 Very Fluent/Advanced 117
20 M 46.2 Very Fluent/Advanced 118

Figure 1. Example of an experimental run. Each run
consisted of 12 words divided in 4 same-language
sequences of different length (2, 3 or 4 words), alternating
between languages.

words, values were taken from the MRC Psycholinguistic
Database (Coltheart, 1981) using the indices of word
frequency (Kucera & Francis, 1967) and concreteness
(Coltheart, 1981). For Italian words, values were taken
from the Corpus e Lessico di Frequenza dell’Italiano
Scritto – CoLFIS (Laudanna, Thornton, Brown, Burani
& Marconi, 1995). Italian words had a median frequency
of 74 occurrences per million words for homographs, 34
occurrences for cognates and 31 occurrences for singles.
English words had a median frequency of 44 occurrences
per million words for homographs, 25 occurrences for
cognates and 66 occurrences for singles. In proportion,
Italian singles were less frequent than English singles
and Italian homographs were more frequent than English
homographs. Interlingual cognates were approximately
equally frequent in both languages. Ninety English and
90 Italian filler words were also included. All fillers were
unique words of each language

Words were presented in runs of 12 words. Each run
started with a filler word and contained three switch
trials for target words (cognates, homographs and singles).
Words were presented individually with a 1.5-second
interval. Participants were required to name each word
aloud as fast and as accurately as possible. Words
surrounded by a BLUE rectangle had to be read in Italian
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Table 2. An example of interlingual cognates,
homographs and singles used in this study. Singles were
orthographically legal in both English and Italian.

Language Cognates Homographs Singles

Italian Orchestra Cute

(Italian meaning = Skin)
Canzone

English Base Male

(Italian meaning = Bad)
Challenge

and words surrounded by a RED rectangle in English. We
did not counterbalance colour of rectangle used to cue
each language across participants but did not expect any
particular language-specific influence of colour cue given
the work of Meuter and Allport (1999). Both rectangles
were sized 5.6 cm × 2.8 cm. Stimuli were written in
white Helvetica 24, uppercase. Trial runs were either
of two, three or four words within each language, and
were fully counterbalanced for unpredictable presentation
in two randomly allotted orders. If x was the first trial
following a switch of language, there was a 64% chance
that trial x + 1 would be a switch back into the other
language. If not, x + 2 had a chance of 91%, and x + 3 =
100%. There were 30 runs of 12 words. At each run
completion, a fixation-cross appeared on the screen and
the task was paused to allow the participants to have a
short break before continuing to the next run at their own
pace by pressing the space-bar on the computer keyboard.
A glass of water was also provided.

Participants’ responses were recorded into .wav files
through the Macbook built-in microphone. Reaction
times were analysed using Praat phonetic software
(Boersma & Weenink, 2010). An internally developed
script automatically calculated the time latency between
stimulus presentation and the participant’s utterance
onset (Figure 2). This operated by detecting a change
in intensity of the auditory signal greater than 25 dB
that lasted for more than 0.1 second. All trials were
subsequently checked manually and speech errors were
flagged and labelled for separate analysis.

At task completion, all participants were given the
list of target words (cognates, homographs and singles)
on paper and asked to indicate the ones for which they
did not know the meaning, the correct pronunciation, or

both. These words were subsequently excluded from the
analysis.

2.4 Results and discussion

Start trials and filler trials were discarded from the
analysis. Median reaction times for each stimulus class for
valid switch and non-switch trials were computed for each
participant to reduce the influence of outliers. The switch
cost for the three word classes (cognates, homographs
and singles) was computed by subtracting the switch from
the non-switch individual mean score. The means of the
median response times, error rates and switch costs by
word class and type of trial are displayed in Table 3.

First, we report the analyses of response times. As
expected, Italian–English bilinguals were 19 ms faster
in naming words in their native language (Italian) than
in their second language (English) but this difference
was not reliable, F(1,19) = 2.421, p = .136. However,
this comparison combines switch trials and homograph
stimuli, both of which may reduce the difference between
the languages. An analysis of responses to singles on non-
switch trials revealed reliably slower naming in L2 than
L1, in line with the overall language dominance of the
group, with a mean difference of 50 ms, F(1,19) = 10.054,
p = .005, η2 = .346. Turning to word class, and grouping
switch and non-switch trials together, cognates and
homographs were named on average 73 ms more slowly
than singles, F(2,38) = 65.307, p < .001, η2 = .775.

Switch costs were computed for each participant, for
each language and word class. The results are illustrated
in Figure 3. A 3 × 2 repeated-measure ANOVA for word
class (cognates, homographs and singles) and switch cost
(Italian, English) revealed a highly significant switch cost
asymmetry, F(1,19) = 8.514, p = .009, η2 = .31, whereby
Italian–English bilinguals were faster to switch into their
less dominant L2 (English) than their more dominant L1
(Italian). In addition, the switch cost was modulated by
word class: regardless of the language in which they were
naming words, Italian–English bilinguals incurred a larger
switch cost when naming cognates and homographs than
singles, F(2,38) = 5.760, p = .007, η2 = .23. Analysis
of variance failed to detect the interaction between the
switch cost asymmetry and word class, F(2,38) = 1.458,
p = .245, η2 = .07. As shown in Figure 3, this was due to

Figure 2. An example of response time analysis. The solid vertical lines indicate the time of stimulus onset and the dotted
vertical lines the time when the participant started to utter the words. A software script automatically calculated the latencies.
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Table 3. Mean reaction times (RTs, milliseconds), correct responses (%) and standard deviations
(SDs) for switch and non-switch trials by word class and language context. Costs are shown
positively for an increase in reaction time and a decrease in accuracy. SwCost = Switch cost.

English context Italian context

RT SD %CR SD RT SD %CR SD

Cognates Switch 820 90 89 9 820 80 88 11
Non-switch 710 90 91 7 640 90 91 7

Homographs Switch 820 90 91 10 870 130 83 19
Non-switch 710 90 90 12 720 100 88 10

Singles Switch 760 80 99 3 710 60 98 5
Non-switch 670 80 97 5 620 90 99 3

Figure 3. Switch cost asymmetry between English and Italian for cognates, homographs and singles. Switch cost is defined
as the difference between switch and non-switch trials, here expressed in milliseconds.

greater variability in the switching cost for homographs. A
further investigation including only cognates and singles
revealed a significant interaction, F(1,19) = 6.794, p =
.017, η2 = .26, such that cognate status exaggerated
the switch cost asymmetry (t(19), 2.952, p = .008). No
asymmetry was observed for singles alone.

Correlation between measures of language competence
and switching cost
The switching cost asymmetry was calculated by subtract-
ing the mean switch cost for L2 from that for L1, such that
positive values would represent a larger asymmetry. These
values were correlated with the individual ability scores

of L2 language competence derived from the standardised
tests (BVAT – Muñoz-Sandoval et al., 1998). As shown
in Figure 4, levels of L2 proficiency were negatively
associated to the cost asymmetry. Regression analysis,
including a check for outliers (Cook & Dennis, 1977),
showed that the correlation was significant, R2 = .235,
F(1,18) = 4.875, p = .040. Less L2-proficient bilinguals
exhibited a more asymmetric pattern of switching costs
than more L2-proficient bilinguals.

Errors
The same quantitative analyses were performed for error
rates. Overall, bilingual participants made fewer errors
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Figure 4. Relation of each participant’s L2 proficiency with his or her switch cost asymmetry. The x-axis presents L2
proficiency according to the BVAT (higher scores = more proficient), while the y-axis presents the switch cost asymmetry
(L1–L2) in milliseconds.

in naming English words (7%) than Italian words (9%).
However, this difference was not reliable, F(1,19) =
1.299, p = .270, η2 = .064. Turning to switch costs,
numerical differences in accuracy rates were in the
expected direction, with Italian words showing larger
accuracy costs than English words, and Italian cognates
and homographs the highest accuracy costs of switching
language. However, unlike the response time data, these
differences were not reliable (interaction of switch cost
and language: F(1,19) = 2.451, p = .134, η2 = .114;
interaction between word class and language switch: F <

1). For comparison, in their bilingual numeral-naming
study, Meuter and Allport (1999) did not carry out
analyses of error data because accuracy levels were close
to ceiling, but remarked that twice as many errors occurred
in switches into L1 than switches into L2.

Interestingly, amongst the errors, Meuter and Allport
(1999) reported the presence of phonological blends
between the two languages. We carried out a qualitative
analysis on our word-naming data to investigate where in
the speech production system control processes appeared
to be operating. Overall, participants made only 4% errors.
The majority of these errors, 74%, were approximately
equally distributed between two main categories: (i)
LEXICAL, in which participants named the word using
the non-target language; and (ii) SUBLEXICAL, in which
participants started to articulate the word using the non-
target language and switched to the target language before
completing the word. This occurred in two ways: (i)

starting with the wrong phonology, then pausing when
mistake was detected, and finally producing the word in
the target language starting from scratch; and (ii) starting
with the wrong phonology, then correcting to the right
articulation without interruption (an example of this type
of error is displayed in Figure 5). The remaining errors
were those in which participants either mispronounced
the word, particularly when it was an English word, or
failed to name the word at all.

Errors were divided into those occurring on switch
versus non-switch trials, either in English or Italian
(Table 4). The errors were overwhelmingly driven by
the existence of a word form in both languages: 50%
were made with interlingual homographs, 42% with
cognates and only 8% with singles, χ2(1) = 70.56, p <

.001. With both languages combined, lexical errors
occurred more frequently on switch (59/99) than non-
switch (40/99) trials. Pearson’s chi-square indicated that
this trend was approaching significance, χ2(1) = 3.65, p =
.056. However, sub-lexical errors occurred equally often
on switch (51/90) and non-switch (49/90) trials. When this
analysis was split by language, for English, both lexical
and sublexical errors occurred with comparable frequency
on switch and non-switch trials. For Italian, the same was
true of sublexical errors, but with lexical errors, there was
a trend of greater frequency on switch (39/63) than non-
switch trials (24/63), χ2(1) = 3.57, p = .058. The control
processes that led to a greater switch cost for Italian cog-
nate responses also seemed to lead to more lexical errors.
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Figure 5. An example of a Sublexical mixed-language error. Here the participant was required to name the cognate word
“Scene” in English [sēn]. However the participant started with the articulation in Italian [ʃʃɛne] and continued after the
dashed line with the correct articulation in English. The word produced is a mix of Italian ʃʃ and English ēn, which formed a
“novel” word [ʃʃ ēn].

Table 4. Type of errors by language and trial type.

English Italian

Non-Switch Switch Non-Switch Switch

Lexical 16 20 24 39
Sublexical 23 20 26 31
Others 36 29 16 18

We summarise the principal empirical results below,
as we consider a computational investigation of language
switching in bilingual naming.

3. Computational methods

3.1 Overview

We investigated the control processes that underlie
switching in bilingual naming using two computational
models. We began by extending Cohen et al.’s (1990)
model of the Stroop task (henceforth CDM). This model
has task control structures to mediate the competition
between two experience-dependent processing pathways.
We took the view that our initial assumptions about
processes of control should be constrained by a model
targeted to that phenomenon. We extended the model
by increasing the representational capacity of the
processing pathways so that they might acquire the
mapping between orthographic, lexical-semantics, and
phonological representations of words, thereby combining
the CDM dual-pathway architecture with elements of
Seidenberg and McClelland’s (1989) developmental
model of word naming. One disadvantage of our first
model was that allegiance to the assumptions of the
CDM yielded an architecture with independent processing
structures and representational resources for each of
the bilingual’s languages. The issue of the relationship
between the representations of the bilingual’s two
languages has long been a point of debate, and the effects

of employing shared resources have been the focus of
computational work (e.g., Thomas, 1997b; Zhao & Li,
2010).

In the event, our first model proved unable to capture
the target empirical phenomena. In our second model, we
combined a language-switching mechanism similar to that
of Gilbert and Shallice’s (2002) model of task switching
with a multiple-cues architecture for word naming
(Karaminis & Thomas, 2010; Thomas & Karmiloff-
Smith, 2003). Consistent with a view of bilingual word
naming as a multiple constraint satisfaction process
(Seidenberg & MacDonald, 1999), the multiple-cues
architecture supported the flexible integration of multiple
types of information that were relevant to the task. This
model also allowed us to utilise a shared representational
resource for the two languages, which in other work has
been shown to provide grounds to explain cross-language
interference effects (Thomas, 1997b; Zhao & Li, 2010,
2013).

Our models were evaluated against their ability to
simulate six phenomena observed in our empirical
study, summarised below. These focused on response
time data. Importantly, we required that the relevant
behaviours appear as EMERGENT EFFECTS, rather than
directly as a result of model assumptions. For example,
it is relatively straightforward and uninteresting to
recover an asymmetry in switch costs if this is built
in the assumptions of the model (see Appendix II,
in supplementary materials online). The only model
assumption that we allowed with respect to L1 and L2
was that the model could receive different amounts of
experience in acquiring its two languages.

3.2 Target data, modelling assumptions, and relation
to previous modelling work

Target empirical phenomena
The computational investigation of language switching
aimed to simulate six key phenomena from the preceding
empirical task:
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were faster for L1 than for L2.! Target empirical phenomenon 2: Response times
were faster for non-switch than for switch trials, i.e.,
switch costs were observed.! Target empirical phenomenon 3: Switch costs were
larger for L1 than for L2.! Target empirical phenomenon 4: The differences in
response times and switch costs for L1 and L2 were
more pronounced when the imbalance between the
two languages was greater.! Target empirical phenomenon 5: There was an
effect of word class on switch costs. Switch costs
were greater for cognates and homographs than for
singles.! Target empirical phenomenon 6: There was an effect
of word class on the asymmetry of switch costs for
the two languages. Asymmetric switch costs (greater
for L1 than L2) were observed for cognates, but not
for singles, however.

Main assumptions and simplifications of modelling
approach
Our modelling approach assumed that to account for the
target empirical phenomena a system should exhibit four
key properties:

1. It should learn mappings between orthography,
meaning and phonology from two languages.

2. It should employ control structures that determine the
output language.

3. It should learn the mappings from the two languages
to different strengths based on different levels of
experience with each language, in order to capture
different degrees of bilingualism.

4. It should be able to simulate both accuracy and
response times.

Of course, this view of bilingual speech production
simplifies the bilingual acquisition and speech production
processes in a number of ways. First, it is neutral on
whether the acquisition of L1 and L2 is sequential or
simultaneous. This means the model is not required
to address possible issues of catastrophic interference
should a common representational resource be used to
process both languages (Thomas & Plunkett, 1995).
Further, our approach does not consider a rich scheme of
semantics, but instead simplifies semantics to the lemma
level (lexical-semantics). This is because in the target
data, the key distinction for the word class manipulation
is only whether the input forms have the same or
different meanings in the two languages. However, this
reduces one major source of possible naming errors,
competition within the semantic space, and therefore

potentially rendered the model more accurate than human
speech production. The output of the system is an
articulatory feature-based phonological code, rather than
motor commands. Finally, we do not include interactivity
(e.g., from phonology back to the lemma level) though
this is a topic of much debate in the monolingual naming
literature.

Relation to prior models
The first of our two models was based on Cohen
et al.’s (1990) model of the Stroop task. These authors
implemented a feed-forward architecture with two
processing pathways, one dedicated to the processing of
colour and one to the processing of words. An analogue
of response time was implemented through a cascading
mechanism that allowed activation to build up gradually
in the network. In the CDM model, control processes
were implemented as follows. Processing pathways had
a default status of being inhibited (implemented by a
negative bias of –4 applied to the units of the hidden
layer of each pathway), rendering the channel relatively
unresponsive. A positive input of +4 from the so-called
TASK DEMAND units was used to select one of the two
pathways, setting their input to the most responsive
state. The network was trained more extensively on
the word naming than colour naming, implementing an
assumed dominance of one task over the other. The
result was stronger weights in the word-naming pathway,
an ultimately greater interference of word naming on
colour naming than vice versa. This model incorporated
the required properties of experience-dependent learning,
simulation of response time and accuracy, differential
task dominance, and dynamics control structures. The
principal aim of our first model was to evaluate whether
the switch cost asymmetry could emerge from a model
using the simplest implementation of control processes in
an experience-based learning system.

Our second model was based on that of Gilbert and
Shallice (2002). This was itself an extension of CDM
designed to address task switching. A key modification
was the implementation of an analogue of the task
carryover account for task switching (Allport et al., 1994;
Allport & Wylie, 2000), according to which control states
persist in successive trials. In particular, at the beginning
of a given trial the initial values of the task demand
units were squashed copies of their values in the previous
trial. The Gilbert and Shallice model offered a method to
simulate switch cost asymmetries. Our goal was to extend
it to the language production domain, since the original
model did not incorporate any experience-dependent
processes. The principal aim of our second model was
to evaluate what additional assumptions about the task
switch itself needed to be added to model dynamics in
order to capture the switch cost asymmetry.
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Figure 6. The architecture of the model 1. Dotted lines indicate constant weights implementing the control structure at the
output stage. L1 = dominant language cue, L2 = non-dominant language cue, OS = orthography to semantics, SP =
semantics to phonology.

3.3 A developmental model of bilingual naming based
on the Cohen, Dunbar and McClelland Stroop model

Training set and architecture
The architecture of the first model is shown in Figure 6.
Similar to the original Stroop model, it employs two
pathways and a control structure for their selective
operation. In the current model, each pathway was
dedicated to word production in a given language. For
this purpose, the model was configured to map from
orthography to lexical-semantics (lemma) and then to
phonology, with the control structure operating primarily
at the output stage, reflecting the view that comprehension
is less selective than production. The architecture was
trained as a regular feed-forward network, but tested
using the cascade rule, enabling it to simulate response
times. The details of the testing procedure are discussed
in further detail later in this section.

In the original Stroop model, the control structure was
implemented by giving the hidden units in each route a
resting activation state (sometimes called threshold, or
bias) of –4. Task units were able to selectively activate
these units, using fixed connection weights of +4, which
cancelled out the normal inhibition acting on a non-
selected processing route. Automaticity emerged in a
route when training produced increases in the weights
from input to hidden units strong enough to overcome the
resting state inhibition. The current model employed the
same control structure as the original Stroop model, using
the same values of –4 and +4. However, two key changes
were applied. First, the hidden layer was increased in size,
to give it the power to acquire the mappings between
lemmas and phonological forms. Second, hidden units
were given a separate, trainable resting activation state

(threshold, bias), because trainable thresholds are required
to learn complex mappings.

The control structure was configured to operate
primarily in the output stage, in the sense that a constant
bias of –4 applied only at the output stage. The input stage
had no default inhibitory input to processing channels.
Lexical-semantics codes of the two languages were,
however, fed into different pathways. We did explore
conditions in which a constant bias of –4 applied also to
the input stage, but it did not produce markedly different
results in the behaviour of the model.

Training set and representations
A training set was constructed using 120 Italian and
120 English words, split between cognates (30 English,
30 Italian), interlingual homographs (30 English, 30
Italian), and singles (60 English, 60 Italian). We were
also interested in the role of orthographic cues, and
therefore split the singles into two groups: non-specific
singles (forms existing in only one language, and with
orthographic cues which would be legal in both English
and Italian), and specific singles (forms existing in only
one language and with orthographic cues which are legal
only in that language). This additional dimension allowed
the model to produce novel testable predictions about
whether orthographic cues should affect switching costs
in naming. The words are shown in Appendix III, in
supplementary materials online.

Orthographic representations
The orthographic form of words varied from four to six
letters. Orthography was encoded in a slot-based scheme
with left alignment. Twenty-six localist units were used
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in each letter position, each representing a letter of the
alphabet. There were thus 6 × 26 = 156 orthographic
input units.

Phonological representations
The phonological form of words varied from three to seven
phonemes and was encoded in a slot-based scheme with
left alignment. Each phoneme was encoded on the basis of
a distributed code of 28 articulatory features. There were
thus 7 × 28 = 196 phonological output units.

The 28-bit distributed phonological code extended
the 19-bit articulatory code for English phonemes of
Thomas & Karmiloff-Smith (2003) to accommodate
Italian phonology (as described in Rogers & D’Arcangeli,
2004). The phonological features are shown in Appendix
IV, in supplementary materials online.

The bilingual phonological code distinguished 49
phonemes, 19 vowels and 30 consonants. Of the 49
phonemes, one vowel and six consonants applied only
to Italian, 12 vowels and seven consonants applied only to
English, while the remaining six vowels and 17 consonants
were shared between the two languages. Of course, the
distributed scheme meant that vowels and consonants
unique to each language shared articulatory similarities
to vowels and consonants in the other language. The
language-specificity of phonology was therefore a matter
of degree.

Lexical-semantics representations
The empirical data did not manipulate degrees of semantic
similarity or the effect of semantic similarity on switch
cost. The only semantic dimension manipulated was
whether a word had the same or different meaning in each
language. We therefore simplified the semantic level of the
model to a lemma representation, using a single unit to
represent the existence of a word meaning in the language.
Cognates in the two languages shared the same unit, but
interlingual homographs and singles employed different
units. There were thus 210 lemma units, corresponding to
the 210 word meanings in the training set.

Targeted-language representations
The task paradigm provided language information to the
participant as a (colour) cue along with the orthographic
form. This cue was represented by two further input units,
one signifying each language. The desired language of
output involved two further units, one for each language
(analogous to the task units in the CDM model). These
were connected to separate processing channels.

Training and testing procedures
Training regime
The training time was divided into epochs, and each
epoch was dedicated either to the training of the input
stage (orthography to lexical-semantics) or the output

stage (lexical-semantics to phonology) of the network.
The two types of training were selected equiprobably.
During each epoch, the network was presented with
240 mappings, selected probabilistically with replacement
from the training corpus.

Language imbalance
We wished to simulate different degrees of bilingual
imbalance. This was implemented by altering the degree
to which the network was exposed to mappings from L1
and L2. Three levels of balance of the two languages were
considered: 1:1, 2:1 and 4:1. For the reported simulation
results, as with the empirical data, Italian was L1 and
English was L2. We also considered simulations in which
English was L1 and Italian was L2, to verify that this gave
the same pattern of results with respect to switch costs,
which it did.

Token frequency
An additional dimension of word frequency was included,
with half the words having high frequency and half
low frequency within each language and word class.
High-frequency words appeared twice as frequently as
low-frequency words during training. Frequency effects
were not our central concern in this work, and we used
them simply to verify expected patterns of accuracy and
response speed, i.e., that high-frequency words should be
named more accurately and quickly than low-frequency
words within each language.

Parameter settings
Models were trained for 1000 epochs using a learning
rate of 0.01, a momentum value of 0.0, and a random
presentation order with replacement for the mappings.
There were 100 hidden units (50 for the Italian and
50 for the English channel) in the input stage (i.e.,
orthography to lexical-semantics) and 200 hidden units
(100 for the Italian and 100 for the English channel) in the
output stage (i.e., lexical-semantics to phonology). These
parameter settings were determined on the basis of pilot
simulations, as they allowed the network to achieve ceiling
levels of accuracy in the mappings of the training set
within a reasonable number of presentations. Variations
of the parameter settings beyond these levels did not have
marked effects on the results.

Replications
There were 10 replications with different random seeds.
The figures displaying model results incorporate mean
and standard error over these replications in order to
demonstrate the robustness of the model’s behaviour to
starting conditions. While variability is reported in the
results, we do not report the statistical significance of
differences. This is because any sized difference, however
small, can be rendered significant by increasing the
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number of replications. We only discuss differences that
were robust to starting conditions.

Cascaded testing
While training was carried out in a single feed-forward
pass, testing was carried out in a temporally extended
manner using the cascading rule. Activation was allowed
to build up gradually and in successive time-steps through
the network (see the equation in (2) below, Cohen et al.,
1990, p. 337; Thomas, 1997a, p. 76). The rate at which
activation built up through the network was one of the
free parameters of the model (tau), which varied between
0 and 1. The cascade rule allows activation to build up in
a feedforward network so that it asymptotes at the value
it would have reached in a single pass of calculations
using the standard network processing algorithm. For a
small value of tau the rate of build-up is slow, while for
a large value it is fast. If tau is set to 1, the formula
becomes equivalent to calculating hidden and output unit
activations in a single processing step. Activation built
up in all levels of the network until the activation of the
output layer converged to a set level. At a given time-
step, the output activation of the network was considered
to converge if the Euclidean distance between the output
activation in the current and the previous time-step was
less than 0.0001% of the size of the current output
activation treated as a vector. When the output layer
converged, the response was recorded (whether correct
or incorrect), as well as the number of time-steps to
reach the convergence criterion. For both human and
simulation data, reaction times are only reported for
correct responses.

Switch trials
Language switching was not included in the training
phase, as during training, mappings from L1 or L2 were
presented without providing information on the previous
status of the language (in the same way that the Stroop
model was trained on colour naming or word naming).
Switch trials were included in testing and were simulated
in the following way. Taking the example of a switch
into L1, at the beginning of the trial, the L2 task unit
was activated (with value 1) and the L1 task unit was
inactive (value 0). Thus, at the beginning of a switch trial,
activation began to build up through the network from the
orthographic input with the targeted-language units set to
indicate L2, instead, of L1 as the target language.

As the trial proceeded, however, the activation pattern
of the targeted-language units was altered gradually to
indicate L1 as the target language. In particular, the
activation on the L2 task unit declined and that on the
L1 unit increased according to the following exponential
equations (correspondingly):

(1) y(x) = 1 − 1/(1 + e−0.5x)

(2) y(x) = 1/(1 + e−0.5x)

We viewed an exponential change, symmetrical for
activation and deactivation, as the simplest function
consistent with neural dynamics (McClelland, 1979), but
there is no specific empirical data constraining this choice.
The decline of the L2 task unit to zero was performed over
Ndecline time-steps by sampling Ndecline values from the
equation in (1) above. In a similar manner, the increase
of the L1 task unit to one was performed over Nincrease
time-steps. Ndecline and Nincrease were free parameters
in the model. Figure 7 displays the activation of L1 and L2
task units on an L1 switch, for different values of Ndecline
and Nincrease.

Because the input was processed for a number of time
slices with the inappropriate task output unit compared to
non-switch trials, on switch trials we expected there to be a
cost in response time and potentially accuracy (depending
on details of the response criterion). The number of
time-steps depended on the relative speed of build-up of
activation from the input compared to the speed at which
the activation on the targeted-language units changed, both
of which were necessarily free parameters of the model.

Output evaluation
The output of the network consisted of the
activation pattern corresponding to the targeted-language
information and the activation pattern corresponding to
the output phonological form. The former pattern was
taken to be correct when the activation of the L1 unit
was above (below) 0.5 and the activation of the L2 unit
was below (above) 0.5 in L1 (L2) mappings trials. The
phonological pattern was compared to the target after
the activation in each slot was converted to a phoneme
rounding all activation values less than or equal to 0.2 to
0, and all activation values greater than or equal to 0.8
to 1. If a given output pattern included activation values
between 0.2 and 0.8 (not sufficiently close to the target
phoneme representation), the response was taken to be
incorrect.

Results
The model learned the training set. In all three conditions
for the imbalance between L1 and L2 (1:1, 2:1 and 4:1),
the network achieved ceiling levels of accuracy in the
mappings of the two languages at the end of training.
Figure 8 shows averaged naming times across different
word classes for L1 and L2 in switch and non-switch trials.
These come from a simulation where the activation build-
up parameter tau was 0.25 and the Ndecline and Nincrease
parameters were both 50. This condition yielded notable
similarities with the empirical switch cost data, though as
we shall see, there were also notable differences.

In the remainder of this section we examine the output
of this simulation together with the target empirical
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Figure 7. The values of the targeted-language units during switch trials for different combinations of the Ndecline and the
Nincrease parameters.

Figure 8. Comparison of empirical data and simulation data from model 1. First column: Response times (RTs) in the
experimental task on switch and non-switch trials, for L1 (Italian), L2 (English) and switch costs. Second column:
Simulation data for condition with balanced languages. Third column: simulation data for condition with imbalanced
languages (L1:L2 = 2:1). Fourth column: simulation data for condition with imbalanced languages (L1:L2 = 4:1). Plots
include error bars showing standard error over 10 replications with different random seeds. However, variability was small
and thus error bars are not always visible.

phenomena and discuss possible reasons for which the
network succeeded or failed to capture aspects of human
behaviour. The comparison focuses on naming times as,
unlike the empirical data, accuracy rates were at ceiling
for all mappings. Accuracy differences (e.g., between
mappings of L1 and L2, different word classes, switch
and non-switch trials) could be obtained if the response

from the output layer was recorded before activation had
reached an asymptote or if the performance of the network
was measured at earlier epochs of training.

Imbalance between languages
When the ratio L1:L2 was 1:1, no difference was observed
in the response times for naming L1 and L2 words.
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However, the network simulated faster naming for L1
than for L2 mappings when the imbalance between
the two languages was 2:1 and 4:1, and the difference
increased with the degree of the imbalance between the
two languages.

The model therefore simulated target empirical
phenomena 1 and 4. The differences in response times
for L1 and L2 mappings stemmed from the differential
degree of exposure of the network to these mappings.
The weights of the network in the pathway supporting
the production of L1 mappings were stronger than the
weights of the L2 pathway. As a result, output activation
for L1 mappings built up and reached asymptote earlier
for L1 than for L2. Indeed, the network achieved ceiling
accuracy rates for L1 mappings earlier in training time
than for L2 mappings. Within each language, naming was
faster and more accurate for high-frequency words than
low-frequency words, confirming the role of experience-
dependent changes in modulating the behaviour of the
model.

Language switching
Switch costs were determined by presenting the full
training set first on a non-switch trial and then on a switch
trial. Switch and non-switch trials were distinguished by
the dynamics of the task units, i.e., according to Figure 7.
As shown in Figure 8 (model output plots of the first and
second row), response times were higher for switch trials
(dashed lines) than non-switch trials (continuous lines).
In common with the empirical data (target phenomenon
2) the model reproduced a switch cost in response times.
This result demonstrates the viability of the proposal that
switch costs in naming result from target-language units
being set to inappropriate values at the beginning of switch
trials.

Switch cost asymmetry (L1 > L2)
The bottom row of Figure 8 presents switch costs for
L1 naming (blue) and L2 naming (red) for the empirical
data and the model. As shown in these plots, the model
exhibited a difference in switch costs between L1 and
L2 that increased in line with the degree of imbalance
between L1 and L2, and was absent when the ratio
L1:L2 was 1:1. However, the direction of this difference
(L2 > L1) was OPPOSITE to the empirical data (L1 >

L2), signifying the inability of the network to capture
asymmetric switch costs as reported in target empirical
phenomenon 3 (and therefore necessarily phenomenon
4, variations in the imbalance due to differential relative
L1:L2 proficiency). L2 switch costs were higher in
the model because during L2 switch trials, there was
greater interference on the common phonological output
layer from the still-active (but becoming less active) L1
pathway. On L1 switches, the deactivating L2 pathway
caused less interference.

Effect of word class on naming times and switch costs
Effects of word class on naming times were also observed.
As shown in Figure 8, times were generally lower for
singles than cognates and homographs. This pattern was
consistent with the empirical data and reflected whether
orthographical and lexical-semantics representations were
“meaningful” in both pathways of the network, thereby
allowing interference between the two languages and
increased naming times; or whether they were learnt in a
single pathway of the network, thereby resulting in shorter
naming times. The effects of word class on responses
were more pronounced in switch trials than non-switch
trials, as the dynamics of the task demand units served to
exaggerate the interference between the two pathways.

More specifically, with respect to the switch trials,
the performance costs were greater for cognates and
homographs than for singles (similar to the empirical
data), while the difference between switch costs in L1 and
L2 was more pronounced for singles than for cognates
and homographs (unlike the empirical data; note also
the opposite direction of the effect, discussed above in
the Switch cost asymmetry subsection). These effects
were again related to the extent to which orthographic
and lexical-semantics representations were meaningful in
one or both processing pathways in the model. Singles
employed representations which were not shared. Switch
trials involving this word type yielded less interference
between language and therefore reduced switch costs.
Language had a pronounced effect on switch costs within
this class because as a single belonged to either L1
or L2, language membership and language imbalance
determined the frequency under which the network was
exposed to the corresponding orthographic and lexical-
semantics representations.

Summary
Based on comparisons between the model and empirical
response time data, the results in Figure 8 represent
a decent match to the empirical data: the model was
successful in simulating the effect of language imbalance
in response times, as a result of the asymmetric exposure
of the network to L1 and L2 mappings, and switch costs,
as a result of the setting of the targeted-language units to
inappropriate values. Crucially, however, the model was
unsuccessful in simulating larger switch costs into L1
than into L2, and therefore the influence of word class
on this pattern. The former limitation was due to the
increased interference from L1 in L2 switch trials. The
latter limitation was due to the interaction between the
presence of two distinct pathways for the processing of
L1 and L2 mappings and the overlap of representations
across word classes.

Were there any settings of the model’s free parameters
that would permit simulation of the switch cost asymmetry
and its modulation by word class? The main free
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Figure 9. The architecture of the model 2. Dashed lines indicate copies of the targeted-language units in the previous trial.

parameters were the rate of build-up of activation (tau)
and the rate of increasing (Nincrease) or decreasing
(Ndecline) the activation of language units during a
switch. If Nincrease and Ndecline were equal for the
change in activation of L1 and L2 language units during
a switch, the answer is no. However, if Nincrease and
Ndecline were allowed to differ between the language
units, the model was able to simulate a larger switch
cost for L1. Specifically, when Ndecline(L1) was greater
than the other parameters (50 vs. 25), the asymmetric
costs were in the right direction. This does not make for
a persuasive explanation of the switch cost asymmetry,
however, because at this point, the asymmetry would
be independent of the relative proficiency levels of L1
and L2. That is, it would arise even if L1 and L2 had
equal training. In short, the model cannot produce the
switch cost asymmetry as an emergent consequence of
the differential proficiency of the two languages in an
experience-dependent learning system, combined with the
simple control processes drawn from the CDM model.

3.4 A developmental multiple-cues model of bilingual
naming based on Gilbert and Shallice (2002)

Architecture
The architecture of the second model of language switch-
ing is shown in Figure 9. Similarly to the first model, the
network was trained on mappings between orthographic,
lexical-semantics, and phonological information, and
employed task demand units to determine the output
language. However, in the current model the following
four modifications were introduced:

1. The use of distinct processing pathways for the two
languages was eliminated, and therefore all mappings
were learnt in the same (single) route. This property
was introduced to ensure that the representations at
the hidden layer between orthography and lexical-
semantics of two words corresponding to the Italian
and the English version of a homograph would overlap.
In a similar manner, the representations at the hidden
layer between lexical-semantics and phonology of two
words corresponding to the Italian and the English
version of a cognate would also overlap. This allowed
word class effects on switching costs to arise through
partial overlap of representations.

2. There were connections between the orthographic
input and the phonological layer. This manipulation
aimed to make the pattern of partial overlap between
representations of different word classes even more
explicit, and reflected the direct naming route included
in the Seidenberg and McClelland (1989) reading
model.

3. As with the first model, control structures were
implemented using task demand units that provided
a cue on the language that the model should output.
However, on the basis of the model of Gilbert and
Shallice (2002), the values of the task demand units
were conditioned by their values in the previous trial.
Gilbert and Shallice implemented this “carryover”
effect by setting the values of the task units to some
proportion of their value in the previous trial. This
manipulation was also used for implementing switch
trials. In the current model we duplicated the task
demand units layer; the additional task demands unit
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kept a copy of the task demand units activation in the
previous trial.

4. As the presence of connections between orthography
and phonology was combined with the use of a copy
of the activation pattern of the task demand units in
the previous cycle, the output stage of the network
presented a multiple-cues architecture (Karaminis &
Thomas, 2010; Thomas & Karmiloff-Smith, 2003).
Different types of information, i.e., orthography,
lexical-semantics, and targeted language in the current
and the previous training cycle were presented as input
to the hidden units of the output stage. The network’s
task was to learn how to weight these cues together to
produce the appropriate response.

Training set and representations
The training set and the representational schemes for the
different types of information were identical to those of
the first model. As in the previous model, there was no
explicit training on switch trials, although for this model,
the training set included (within language) task carryover
effects.

Training and testing procedures
Models were trained for 1000 epochs with a learning rate
of 0.01, a momentum of 0.0, and a random presentation
order with replacement for the mappings. The training and
testing procedures were similar to that of the first model,
apart from minor modifications applied to accommodate
the changes introduced in the second model. The most
important of those changes concerned the implementation
of switch trials. These were

implemented by combining the language switching
mechanism of the previous model (Figure 7) with the use
of two pairs of task demand units. In particular, a switch
trial was implemented as follows. Taking the example
of an L2 switch, the network was initially set to an L1
non-switch mode, i.e., both the L1–L2 units and the L1–
L2 copy units of Figure 9 were set to denote L1 as the
target language. Thus, the L1–L2 units were set to the
value [1 0], while the L1–L2 copy units were given the
value [0.5 0]. As the trial proceeded, the activation of
the L1–L2 task demand units was reversed exponentially
(recall equations in (1) and (2) above), so that the network
progressed gradually to an L2 switched state. The copy
units, however, retained their value throughout the trial,
since they represented information from the previous
control state.

Results
Figure 10 shows response times in the network in a
simulation where the activation build- up parameter was
0.25, while the Ndecline and the Nincrease parameters of
switch trials were set to 50.

In the remainder of this section, we identify and discuss
similarities and differences of the output of this model in
relation to the previous model and the target empirical
phenomena. The section concludes with a prediction of
the model with regard to the effect of orthographic cues
on naming switch costs.

Imbalance between languages
Similarly to the model presented in the previous section,
the current model learned the training set and exhibited
faster response times for L1 than for L2, with this
difference increasing as the imbalance between the two
languages increased. Thus, the model simulated the target
empirical phenomena 1 and 4. Again, the difference in
L1 and L2 response times was a result of the asymmetric
exposure of the network to L1 and L2 mappings, i.e., it was
a frequency effect. A difference in naming high-frequency
and low-frequency words was also observed within each
language. Thus the use of a common representational
resource did not alter the model’s ability to capture these
patterns.

Language switching and switch cost asymmetry
As with the first model, the control dynamics once more
simulated a cost of switching between naming in each of
the languages. In contrast to the first model, the second
model was also able to simulate increased switch costs for
L1 compared to L2 when the languages were imbalanced.
These are shown in the third row of Figure 10. The
degree of language imbalance determined the degree of
asymmetry.

An inspection of Figure 10 suggests that the simulated
asymmetry reflected primarily a drop of L2 switch costs
as language imbalance increased. It was the result of an
increase in naming times in non-switch L2 trials, which
was more pronounced than a similar increase in naming
times of switch L2 trials, as well as decreases in times
related to L1 switch and non-switch trials. The main
reason for the presence and the size of this increase for
L2 non-switch trials was the extremely low frequency of
L2 non-switch mappings in the training set. For example,
when the language imbalance was 4:1, L2 non-switch
trials corresponded to only 4% of the mappings. This
protracted the rate at which activation built up in these
mappings, resulting in naming times that were closer to
those of switch trials, i.e., reduced L2 switch costs.

More generally, the switch cost asymmetry arose in the
model because of the presence of carryover activation on
the task demand units. The cues to language input were
less salient on L1 switches (since they held a carryover
of weaker L2 information) than on L2 switches, and
therefore less able to reduce the competition arising on
a switch trial. The second model contained two changes
compared to the first model, with respect to switch trial
dynamics, and with respect to architecture, in the form of
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Figure 10. Comparison of empirical data and simulation data from model 2. First column: Response times (RTs) in the
experimental task on switch and non-switch trials, for L1 (Italian), L2 (English) and switch costs. Second column:
Simulation data for condition with balanced languages. Third column: simulation data for condition with imbalanced
languages (L1:L2 = 2:1). Fourth column: simulation data for condition with imbalanced languages (L1:L2 = 4:1). Plots
include error bars showing standard error over 10 replications with different random seeds. However, variability was small
and thus error bars are not always visible.

direct orthography–phonology connections. We ensured
that the switch cost arose from the former assumption
by omitting the carryover activation on the language
units. The asymmetric switch costs disappeared. When
the contribution of the orthography–phonology route was
eliminated, there was no alteration in the switch cost
pattern.

Word class effects
Model 2 was also able to simulate effects of word class.
As shown in the first and second rows of Figure 10,
the model simulated faster response times for naming
singles than cognates and homographs. These effects
arose due to the shared representational resources for
the languages, in which competition for the correct
phonological output had to be resolved for cognates
and homographs but not for singles. Importantly, this
model also simulated the interaction of the asymmetry
with word class, whereby cognates and homographs
showed exaggerated asymmetries compared to singles.
This is because the more ambiguous language information
on L1 switch trials compared to L2 switch trials
(see above, section “Language switching and switch

cost asymmetry”) additionally delayed resolution of the
competition. Notably, however, the model still predicted
a switch cost asymmetry for singles, whereas none was
observed in the empirical study.

Prediction on the role of orthographic cues in language
switching
It is important for computational models to go beyond
simulating existing empirical data and make novel testable
predictions. The prediction of the model on the effect
of orthographic cues on switch cost asymmetry is
summarised in Figure 11. This figure shows the output
of the simulation with a language imbalance ratio of
4:1 including the distinction between specific and non-
specific singles. Although the differences are small,
the model generated the following two predictions: (i)
response times will be faster for non-specific singles, due
to the higher degree of exposure of the network to patterns
that are orthotactically legal in both languages – this was
a greater influence on performance than any phonological
inconsistency; and (ii) specific singles will have reduced
switch costs, because, as the target word has orthographic
cues of only the target language, there is less competition
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Figure 11. Novel predictions from model 2. Panels show response times for switch and non-switch trials, where Singles have
been split between those without and with language-specific orthographic cues, for the balanced condition and the
imbalanced condition with L1:L2 of 2:1 and 4:1 respectively. The model predicts faster response times for non-specific than
for specific Singles and slightly lower switch costs for specific Singles. (Cog = cognates, Hom = homographs, Nonspec =
singles with no language-specific orthographic cues, Spec = singles with language-specific orthographic cues).

to be resolved from the non-target language during the
switch trial. These (to our knowledge) unique predictions
remain to be tested empirically.

4. Discussion

Our studies focused on the control of the bilingual’s
languages during a production task using a language-
switching paradigm. Language switching has mostly been
studied in the context of comprehension tasks, where time
and accuracy costs of switching have been observed. In
production, studies have been confined to numeral naming
(Meuter & Allport, 1999) and picture naming (Costa &
Santesteban, 2004). The principal observation of these
studies was that there was a time cost in cued switching
between languages, and an asymmetry of switch costs,
where a larger cost was observed for the bilingual to switch
into their more dominant language. In the current study,
we extended this method to word naming. Italian–English
bilinguals were required to switch between naming words
in their two languages, cued by the colour of the
background on which the words were presented. We addi-
tionally introduced the variable of word class, where words
could exist in both languages (either having the same
meaning, i.e., cognates, or different meanings, i.e., homo-
graphs), or exist in just one (singles). The manipulation of
word class was intended to modulate competition effects
between the languages, and our interest was whether this
interacted with the time costs of switching language.

Our results replicated those of Meuter and Allport
(1999) and Costa and Santesteban (2004), with a larger

time cost observed to switch into naming in the bilinguals’
more dominant language (Italian). This asymmetry de-
pended on L2 proficiency and was larger when the imbal-
ance between the languages was greater. Overall, cognates
and homographs were named more slowly than singles
despite being matched within language on psycholinguis-
tic variables of length, frequency, and concreteness. This
suggests that, at least within this experimental paradigm,
a competition had to be resolved to produce the language-
appropriate form. In addition, the interaction between
switch cost asymmetry and word class indicated that cog-
nate status exaggerated the switch cost asymmetry. There
was no asymmetry, however, for singles. The interaction
of cognate words with the asymmetry implicates between-
language competition as a cause of the switch cost.

A qualitative analysis of error types was then carried
out, with errors forming 4% of all responses. Errors
mainly arose for cognates and homographs (92%). The
analysis revealed a trend for more lexical errors (i.e.,
the language of utterance in the non-target language)
when there was a switch, and particularly when the
switch was into L1. These errors are consistent with
stronger inhibition of L1 when performing the task in
the weaker L2, an inhibition that carries over during a
switch into L2. As far as sublexical errors were concerned
(i.e., mixed-language utterances), they occurred randomly
across trials and languages. Errors of this type have been
previously reported in the literature of code-switching
(e.g., de Bot, 1992; Poulisse & Bongaerts, 1994). Their
occurrence is attributed to a single mechanism, the
articulator, which is involved in the selection of phonemes.
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It is therefore hypothesised that L1 and L2 phonological
representations are stored in a single network and tagged
for language, as with lexical items (Poulisse, 1999;
Poulisse & Bongaerts, 1994). However, it should be noted
that Grosjean and Miller (1994) did not find any specific
phonological intrusion of one language when switching
into the other using a more naturalistic experimental
setting. Participants asked to read English and French
passages with controlled language switches did not show
any phonetic carryover effect when switching between
languages. Sublexical errors may to some extent be the
result of less naturalistic experimental designs where the
tight pace of the task is the principal cause for slip-of-the-
tongue effects, as it may occur to a monolingual speaker.

We then turned to computational modelling as a
means to clarify what assumptions about control processes
would be sufficient to explain the empirical data. The
key requirements of our model were that it should
be able to simulate word-naming (i.e., a mapping
between orthography and phonology); it should include
lexical-semantics representations that could distinguish
between words existing in both languages that did or
did not share the same meaning (i.e., between cognates
and homographs); it should acquire its abilities – and
especially its relative language dominance – through an
experience-dependent learning process; it should have
control structures that modulate the language of output
and thus permit switching between languages; and that
it should simulate asymmetries in language switching as
emergent effects, rather than through asymmetries built
into the assumptions of the control processes within the
model (see Appendix II).

We began with what we believed was the simplest
model that incorporated these requirements. This was an
extension of the Cohen et al. (1990) model of the Stroop
task. The CDM model employed separate, experience-
dependent processing channels for word-naming and
colour-naming, and task units to modulate their activity.
Minimal changes were made to this model, to allow it to
learn mappings between orthography, lexical-semantics,
and phonology for a set of Italian and English words, and
to permit the dynamic changes of control involved in a
language switch. This model was successful in learning
to name words in two languages via separate channels,
and name words more quickly in L1 than L2 where
the language dominance was imbalanced. Switching
language also incurred a time cost. However, the model did
not successfully simulate the direction of the asymmetry
in switch costs, because (in line with the Stroop effect),
interference was greater from dominant to non-dominant
task, impacting L2 switches more than L1. And the
model exhibited relatively weak word class effects, since
the impact of cross-language similarity was attenuated
by separating the languages into separate processing
channels, an assumption inherited from the CDM model.

Further or different assumptions were evidently required
to simulate our empirical data.

We then drew inspiration from two further models.
First, the Gilbert and Shallice (2002) model of task
switching incorporated assumptions that enabled it to
simulate the task switching asymmetry as it appears in
a switching version of the Stroop task (a greater cost
to switch into word-naming than colour-naming). Their
model implemented the “carryover” account of switching
costs, i.e., that switch costs represent interference from a
carryover of the previous task set into switch trials (Allport
et al., 1994; Allport & Wylie, 2000). Second, the multiple-
cues approach to language acquisition argues that, in line
with the interactivity of language systems, all information
potentially relevant for driving the output should be
provided to a common representational resource, and the
network should be allowed to utilise whatever information
it needs via an experience-dependent learning processing
(Karaminis & Thomas, 2010). The model now reproduced
the correct asymmetry in switch costs (greater in L1
than L2), which depended on the degree of language
imbalance, word class effects, and the interaction between
these factors. The switch asymmetry arose because the
cues to language input were less salient on L1 switches
(since they were a carryover of weaker L2 information)
than on L2 switches, and therefore less able to reduce
the competition arising on a switch trial. The word
class effects arose due to the common representational
resources used for naming in each language (Thomas,
1997b; Zhao & Li, 2010), and the fact that greater
competition had to be resolved in these shared resources
for cognates and homographs than for singles. The factors
interacted since they both modulated competition effects
in naming.

The results of the empirical and computational studies
support the idea that switching effects and word class
effects in naming arise from competition effects between
the bilingual’s two languages during production, and
the resolution of this competition, per Green’s (1998)
Inhibitory Control Model. However, the error analysis
of the empirical study suggests that competition effects
can occur (or be resolved) at both lexical-semantics and
phonological levels, leading to, respectively, lexical and
sub-lexical errors. The modelling work was designed to
capture reaction time data at ceiling accuracy levels, rather
than error patterns, and so did not investigate the locus of
different possible error types.

It should be noted that some authors argue against the
presence of competition between the bilingual’s languages
during production beyond the conceptual level, with
apparent interference effects from the non-target language
reflecting only the natural flow of activation (Costa,
2005; Costa, Miozzo & Caramazza, 1999; Finkbeiner,
Gollan & Caramazza, 2006; see Wu & Thierry, 2011, for
discussion). Second, the carryover account of switching
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costs is not the only account. Some authors argue
that the performance cost of switching arises from the
operation of an exogenous control processing, that is,
a resetting of a task set triggered by the stimulus itself
(e.g., Monsell, Yeung & Azuma, 2000). Last, Finkbeiner,
Almeida, Janssen and Caramazza (2006) found that switch
costs (and asymmetries) in naming may have some task
specificity – if while switching between naming numerals
in each language, participants were asked to name pictures
always in L1, no switch costs were observed, even if they
had just been naming a numeral in L2. The task schema
controlling L1 versus L2 competition may therefore
involve specifics of the task set-up, whereby in the
aforementioned paradigm, L2 was never in competition
to respond to pictures and so no switch costs arose (but
see also Abutalebi & Green, 2008, for a different view).

Our use of computational modelling to complement the
empirical study illustrates how implementation can clarify
theoretical proposals and test their sufficiency to explain
empirical data (Li, 2013; Thomas & Van Heuven, 2005).
Implemented models can also generate novel predictions,
as they did here. In this case, our second model predicted
that, for bilinguals switching between naming words with
language-specific orthographic cues, word naming should
be slower compared to words with orthographic cues
common to both languages; however, switch costs should
be smaller, as language-specific cues reduce competition
effects. This novel prediction remains to be empirically
tested.
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