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The developmental relations between spatial cognition and 

mathematics in primary school children 

Research Highlights 

• Spatial skills explained 5-14% of the variation across three mathematics performance 

measures (standardised mathematics skills, approximate number sense and number 

line estimation skills). 

• Spatial scaling (extrinsic-static thinking) was a significant predictor of all 

mathematics outcomes at all ages between 6-10 years. 

• Different spatial sub-domains were differentially associated with mathematics in a 

task and age dependent manner. 

• Spatial training is proposed as a means of improving both spatial and mathematical 

thinking.  

Abstract  

Spatial thinking is an important predictor of mathematics. However, existing data do not 

determine whether all spatial sub-domains are equally important for mathematics outcomes 

nor whether mathematics-spatial associations vary through development. This study 

addresses these questions by exploring the developmental relations between mathematics and 

spatial skills in children aged 6 -10 years (N = 155). We extend previous findings by 

assessing and comparing performance across Uttal et al.'s (2013), four spatial sub-domains. 

Overall spatial skills explained 5-14% of the variation across three mathematics performance 

measures (standardised mathematics skills, approximate number sense and number line 

estimation skills), beyond other known predictors of mathematics including vocabulary and 
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gender. Spatial scaling (extrinsic-static sub-domain) was a significant predictor of all 

mathematics outcomes, across all ages, highlighting its importance for mathematics in middle 

childhood. Other spatial sub-domains were differentially associated with mathematics in a 

task and age dependent manner. Mental rotation (intrinsic-dynamic skills) was a significant 

predictor of mathematics at 6 and 7 years only which suggests that at approximately 8 years 

of age there is a transition period regarding the spatial skills that are important for 

mathematics. Taken together, the results support the investigation of spatial training, 

particularly targeting spatial scaling, as a means of improving both spatial and mathematical 

thinking.  

Key Words 

Mathematics, Spatial Cognition, Development 

Introduction  

Spatial thinking has previously been identified as a significant predictor of Science, 

Technology, Engineering and Mathematics (STEM) success in adults (Shea, Lubinski, & 

Benbow, 2001; Wai, Lubinski, & Benbow, 2009). More recently, behavioural links between 

spatial and mathematical skills have also been reported in pre-school and primary school 

children (e.g., Gilligan, Flouri, & Farran, 2017; Verdine et al., 2014). Despite reported 

associations between spatial and mathematical skills at both behavioural and neural levels  

(Cutini, Scarpa, Scatturin, Dell’Acqua, & Zorzi, 2014; Hubbard, Piazza, Pinel, & Dehaene, 

2005; Winter, Matlock, Shaki, & Fischer, 2015) not all studies that have attempted transfer of 

spatial training gains to mathematics are successful (Cheng & Mix, 2014; (Hawes, Moss, 

Caswell, Naqvi, & MacKinnon, 2017; Hawes, Moss, Caswell, & Poliszczuk, 2015; Lowrie, 

Logan, & Ramful, 2017). This might be attributable to the fact that spatial and mathematical 
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thinking are often treated as unitary constructs. However, it is unlikely that all spatial and 

mathematical sub-domains are associated to the same degree. A precursor to effective 

training must involve more, fine grained evaluation of spatial skills and their relations to 

particular aspects of mathematics. This would enable effective selection of training targets, 

increasing the likelihood of developing successful training interventions.  

Defining spatial thinking 

As described by Newcombe (2018) “any kind of action in a spatial world is in some sense 

spatial functioning, and hence can sensibly be called spatial cognition”. Given the wide scope 

of spatial cognition, it is unsurprising that spatial research has been complicated by variations 

in both the terminology and typology used in the domain. For example, attempts at defining a 

typology for spatial thinking have been approached from an array of perspectives including 

psychometric, cognitive and theoretical approaches (Linn & Petersen, 1985). In this study, 

spatial thinking is explored in the context of Uttal et al.'s (2013) theoretical classification of 

spatial skills (also see Newcombe & Shipley, 2015). The selection of this model was based 

on the extensive neurological, behavioral and linguistic evidence supporting it (Chatterjee, 

2008; Hegarty, Montello, Richardson, Ishikawa, & Lovelace, 2006; Palmer, 1978; Talmy, 

2000).  

Using two fundamental distinctions between intrinsic and extrinsic, and static and dynamic 

representations respectively, Uttal et al. (2013) propose a two by two classification of spatial 

thinking. Intrinsic representations relate to the structure and size of individual objects, their 

parts and the relationship between these parts. Conversely, extrinsic representations are those 

pertaining to object locations, the relationship between different objects, and the position of 

objects relative to their reference frames. Within the second distinction, dynamic 
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representations require transformations or manipulations such as scaling, rotating, folding or 

bending. For static spatial representations, no movement or transformation is required. In 

combination, Uttal et al.'s (2013) two by two classification renders four spatial sub-domains 

including intrinsic-static, intrinsic-dynamic, extrinsic-static and extrinsic-dynamic sub-

domains (see Fig. 1). In the current study, developmental and individual differences in spatial 

thinking are measured across each of Uttal et al.'s (2013) spatial categories using a carefully-

selected task to target each individual sub-domain.  

Defining mathematical thinking 

Like spatial thinking, mathematics is not a unitary construct but requires a multitude of skills 

and competencies. This study uses von Aster and Shalev's (2007) model of numerical 

cognition which posits that individuals are equipped with an innate, core system for 

representing number, the approximate number system (ANS). The ANS stores approximate 

representations of numerical magnitude in the brain without symbols (Feigenson, Dehaene, & 

Spelke, 2004; Cordes, Gelman, Gallistel, & Whalen, 2001). These representations are 

proposed to be stored on a Mental Number Line (Dehaene, Bossini, & Giraux, 1993; de 

Hevia, Vallar, & Girelli, 2006; Le Corre & Carey, 2007). Evidence for an ANS includes 

findings that very young infants are capable of discriminating, representing, and 

remembering particular small numbers of items (von Aster & Shalev, 2007).  

Von Aster & Shalev's (2007) model states that the ANS provides a foundation from which 

the symbolic number system develops. The symbolic number system is the way in which 

symbolic numerals are represented in the brain (Carey, 2004; Dehaene, 2011; Le Corre & 

Carey, 2007; Mussolin, Nys, Content, & Leybaert, 2014) and symbolic number skills are 

often measured using symbolic number line estimation tasks (Geary, Hoard, Byrd-Craven, 
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Nugent, & Numtee, 2007; LeFevre et al., 2010; Siegler & Opfer, 2003). The exact process, 

by which the ANS might give rise to the symbolic number system, is unknown. The ANS 

Mapping Account, suggests that the ANS is the foundation onto which symbolic 

representations such as number symbols and number words are mapped (Ansari, 2008; 

Halberda & Feigenson, 2008; Feigenson et al., 2004; Mundy & Gilmore, 2009; Siegler & 

Booth, 2004; von Aster & Shalev, 2007). Alternatively, the Dual Representation View 

proposes that learning number words and symbols leads to new “exact” numerical 

representations with exact ordinal content, that are fundamentally distinct from the ANS 

(Carey, 2004; 2009; Lyons, Ansari, & Beilock, 2012; Piazza et al., 2010; Piazza, Pica, Izard, 

Spelke, & Dehaene, 2013; Rips, Bloomfield, & Asmuth, 2008). 

Regardless of their origins, the ANS and the symbolic number systems are proposed to act in 

combination as a platform for the development of more complex mathematical skills such as 

multi-digit calculation, word problem solving, algebra, measurement and data handling skills  

(Barth, La Mont, Lipton, & Spelke, 2005; Butterworth, 1999; Feigenson et al., 2004; Piazza, 

2010; Träff, 2013). In support of this, many studies have reported that both the ANS and 

symbolic number skills, are strong concurrent and longitudinal predictors of general 

mathematics performance (for examples see: Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; 

Clarke & Shinn, 2004; Halberda, Mazzocco, & Feigenson, 2008; Hannula, Lepola, & 

Lehtinen, 2010; Mazzocco, Feigenson, & Halberda, 2011). Based on this theory, this study 

includes a measure of both ANS and symbolic skills, in addition to a standardised 

mathematics measures that picks up on more complex mathematical skills including multi-

digit calculation, problem, fractions, etc. 
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The role of spatial thinking for mathematics 

Links between spatial skills (particularly intrinsic-dynamic skills) and mathematical thinking 

have been proposed in children as young as three years. For example, Verdine et al. (2014) 

reported that intrinsic-dynamic spatial skills at age 3 years (as measured using the Test of 

Spatial Assembly [TOSA]) uniquely predicted 27% of the variation in mathematical problem 

solving (measured using the Weshler Individual Achievement Test [WIAT]) at age 4 years. 

Similarly, in slightly older children aged 5 years, intrinsic-dynamic spatial skills, measured 

using the Pattern Construction subtest of the British Ability Scales III, were a significant 

predictor of standardised mathematics performance at age 7, explaining 8.8% of the variation 

(Gilligan et al., 2017). Similar findings have been reported in cross-sectional childhood 

studies of children from 6 to 8 years, where mental rotation (an intrinsic-dynamic skill) is 

significantly associated with performance on both verbal  (.50 < r < .63) and non-verbal 

calculation tasks (.40 < r < .45) (Hawes et al., 2015).  

The previous studies discussed above show a bias towards the use of intrinsic-dynamic 

spatial tasks to explore associations between mathematics and spatial skills in primary school 

children. From a historical perspective, this is unsurprising given that intrinsic-dynamic 

spatial skills have repeatedly been associated with STEM outcomes in adult populations (for 

examples see: Shea et al., 2001; Wai et al., 2009). Insights of the role of the other spatial sub-

domains can be gained from studies of older children. For example, there is evidence from 

children aged 10 and 11 years, that intrinsic-static spatial skills (measured using 

disembedding and matrix reasoning tasks respectively) are significantly correlated with 

mathematics outcomes (.37 < r < .42 ) (Markey, 2010; Tosto et al., 2014). Similarly, both 

intrinsic-static skills (age 3 years) and performance on composite spatial measures (requiring 

the use of a range of spatial sub-domains) at age 7 years, are significant longitudinal 
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predictors of mathematics at approximately 10 years ( .31 < r < .49) (Carr et al., 2017; Casey 

et al., 2015; Zhang et al., 2014). These findings suggest that associations between spatial 

thinking and mathematics in the primary school years may not be limited to the intrinsic-

dynamic spatial domain. However, there is a need to elucidate whether associations are 

consistent across all spatial and mathematical sub-domains. Refining the findings in this field 

would facilitate a better understanding of not just if, but why significant correlations are often 

reported between mathematics and spatial constructs. 

Recent findings from Mix et al. (2016; 2017) provide a first-step to this understanding, by 

investigating performance on an extensive range of spatial and mathematics sub-domains at 

6, 9 and 11 years. In both initial (2016) exploratory factor analysis (EFA) and follow up 

confirmatory factor analysis (CFA) (2017) studies, Mix et al. found that although spatial and 

mathematics tasks are highly correlated, they form distinct factors. Furthermore, by 

comparing children of differing ages on the same spatial and mathematics tasks, Mix and et 

al. (2016; 2017) provide important evidence that there are distinct relations between 

individual spatial sub-domains and mathematics performance, and that these relations vary 

with age. Intrinsic-dynamic spatial skills were a significant predictor of mathematics (a 

general mathematics factor derived from performance on a range of mathematics measures) 

at 6 years only, while Visuo-Spatial Working Memory (VSWM), measured using a spatial 

location memory task, was significant at 11 years only. Of note, some cross-factor loadings 

reported in the initial EFA were not replicated in the CFA and so these results should be 

interpreted cautiously (Mix et al., 2016; 2017). 
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Explaining mathematics-spatial associations 

The findings outlined above do not support a simple linear coupling between spatial and 

mathematical cognition. Instead it has been proposed that several different explanations 

underpin spatial-mathematical associations, depending on the mathematical and spatial sub-

domains assessed (Fias & Bonato, 2018). Historically the Mental Number Line, or the idea 

that numbers are represented spatially in the brain, was proposed to explain observed 

associations between spatial and mathematical constructs (Barsalou, 2008; Lakoff & Núñez, 

2000). The Spatial- Numerical Association of Response Codes (SNARC) effect, thought to 

reflect the presence of the Mental Number Line, has been demonstrated in a number of 

studies where individuals are faster to respond to small numbers with their left hand and 

larger numbers with their right hand,  suggesting that small numbers are spatially represented 

to the left and larger numbers are represented to the right in the brain (Dehaene et al., 1993). 

However, accepting the Mental Number Line as the driver of all spatial-mathematics 

relations is inconsistent with the differential associations observed between certain spatial 

and mathematical sub-domains, as shown by Mix et al., (2016; 2017). Instead, it is now 

considered that all associations between spatial and mathematical tasks cannot be explained 

in the same way, and a range of explanations have recently been proposed as theoretical 

accounts for specific mathematics-spatial relations, explained in detail below. 

First, it has been proposed that extrinsic-static spatial tasks, particularly spatial scaling tasks, 

rely on proportional reasoning (Newcombe, Möhring, & Frick, 2018).  This is explained with 

reference to two different quantification systems, an extensive system (using absolute 

amounts) or an intensive system (using proportions or ratios). Accurate spatial scaling 

between two different sized spaces requires the intensive coding strategy, with proportional 

mapping of relative, not absolute, distances. This is supported by evidence that spatial scaling 
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performance is correlated with proportional reasoning performance (identification of the 

strength of flavour of different combinations of cherry juice and water) in children aged 4 to 

5 years (Möhring, Newcombe, & Frick, 2015).  In mathematics, similar proportional mapping 

between discrete (extensive) representations of number to continuous (intensive) 

representations is required for number line estimation and reasoning about formal fractions 

(Möhring, Newcombe, Levine, & Frick, 2016; Rouder & Geary, 2014). Theoretically, ANS 

tasks may require proportional reasoning to facilitate ordinal comparisons between dot arrays 

(Szkudlarek & Brannon, 2017), while performance on some geometry, area and distance 

tasks also rely on proportional and not absolute judgements (Barth & Paladino, 2011; 

Dehaene, Piazza, Pinel, & Cohen, 2003; Slusser, Santiago, & Barth, 2013). Taken together, it 

is expected that extrinsic-static spatial task performance will correlate with mathematics tasks 

that rely on intensive quantity processing or proportional reasoning.   

Second, for intrinsic-dynamic (e.g., mental rotation) and extrinsic-dynamic spatial tasks (e.g., 

perspective taking), active processing, including mental visualisation and manipulation of 

objects in space, is thought to be required for successful task completion (Lourenco, Cheung, 

& Aulet, 2018; Mix et al., 2016). It is postulated that the generation of mental models allows 

individuals to visualise not only individual components of problems but also the relations 

between parts of problems (Lourenco et al., 2018). Theoretically, in mathematics, individuals 

may use mental visualisations to represent and solve complex mathematical word problems 

(e.g., by visualising problems in concrete terms, which would allow grouping of visualised 

constructs and structuring order of operations tasks), or to represent and organise complex 

mathematical relationships such as multi-digit numbers (Huttenlocher, Jordan, & Levine, 

1994; Laski et al., 2013; Thompson, Nuerk, Moeller, & Cohen Kadosh, 2013). Mental 

visualisations may also be used to ground abstract concepts, for example in missing term 
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problems of the format 4 + __ = 5, individuals may use visualisations of blocks or other 

concrete objects to balance the equation presented (Lourenco et al., 2018). Dynamic spatial 

tasks are thus expected to correlate with mathematical tasks requiring the mental 

manipulation or organisation of numbers.   

Third, intrinsic-static spatial tasks (e.g., embedded figures) are reliant on form perception, the 

ability to distinguish shapes from a more complex background or to break pictures that are 

more complex into parts (Mix et al., 2016). Form perception is theoretically useful for spatial 

tasks such as map reading and figure drawing (Newcombe & Shipley, 2015). It may also  

play a role in mathematics tasks such as distinguishing symbols such as + and × symbols, 

interpreting charts and graphs, and accurately completing multistep calculations which 

require an understanding of the spatial relations between symbols (Landy & Goldstone, 2007; 

2010; Mix and et al., 2016). As such intrinsic-static skills are predicted to relate to 

mathematics tasks that require identification and use of symbols or visual aids.  

Current Study  

This is the first study to explore associations between different aspects of spatial and 

mathematical thinking across 5 consecutive age groups in the primary school years (age 6, 7, 

8, 9 and 10 years). Based on the theoretical explanations for specific spatial-mathematics 

relations outlined above (proportional reasoning, mental visualisation and form perception), 

the apriori prediction for this study is that certain spatial sub-domains will be differentially 

associated with mathematics outcomes, across all age groups. It is also hypothesised that 

some spatial-mathematics associations are age-dependent. Previous studies suggest a 

developmental transition in the spatial skills that are important for mathematics, which is 
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proposed to occur in middle childhood (Mix et al., 2016; 2017). The inclusion of consecutive 

age groups in this study provides strong acuity of this developmental change.  

Materials and Methods 

Participants 

This study included 155 children across five age groups. Participants were drawn from a 

culturally diverse, London-based school with a 19% eligibility for free school meals (slightly 

above the national average of 11%, (Department of Education, 2017). The age and gender of 

participants in the study are shown in Table 1.  

Spatial Measures 

Intrinsic-static- Children’s Embedded Figures Task 

The Children’s Embedded Figures Task (CEFT) is a measure of intrinsic-static spatial ability 

and measures the ability to dis-embed information from a larger context (Witkin, Otman, 

Raskin, & Karp, 1971). The task was delivered as per the administration guidelines (Witkin 

et al., 1971). Participants were required to locate a target shape embedded within a more 

complex, meaningful picture. The task was presented as two blocks in a fixed order. Within 

each block, participants were introduced to a reference target shape (house and tent shape for 

Blocks A and B respectively). For each block, participants first completed 4 discrimination 

trials during which they were required to identify the target shape from a selection of other 

similar shapes. Discrimination trials were repeated until participants correctly answered two 

items in succession. Following this, participants completed two practice trials (Block A) or a 

single practice trial (Block B) in which they were required to locate the target shape within a 
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series of more complex pictures and to outline the target shape with their finger (Fig. 2). 

Performance feedback was given for practice trials. Participants repeated each practice trial 

until successfully locating the target shape. Practice trials were followed by 11 and 14 

experimental trials, for Block A and Block B respectively. As for practice trials, participants 

were required to locate the target shape within more complex pictures. No feedback was 

given for experimental trials. Only participants failing all trials in Block A, did not progress 

to Block B. The task finished when participants failed five consecutive trials within Block B. 

Performance was measured as percentage of correct trials.  

Intrinsic-dynamic- Mental Rotation Task  

The Mental Rotation Task was included as a measure of intrinsic-dynamic spatial ability. The 

protocol and stimuli were modified from Broadbent, Farran, and Tolmie (2014). In each trial 

participants were asked to identify which of two monkey images located above a horizontal 

line, matched the target monkey image below the line. As shown in Fig. 3, the images above 

the line included a mirror image of the target image, and a version of the target image rotated 

by a fixed degree from the target image. Participants completed four practice trials at 0° 

followed by 36 experimental trials. Only participants achieving at least 50% in the practice 

trials were deemed to understand the task instructions and continued to the experimental 

trials. Experimental trials were randomly presented and included equal numbers of clockwise 

and anti-clockwise rotations at 45°, 90° and 135° (eight trials for each degree of rotation), 8 

trials at 180° and 4 trials at 0°. Participants used labelled keys on the left and right of the 

computer keyboard to respond. Percentage accuracy was recorded.  
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Extrinsic-static- Scaling Task  

A spatial scaling discrimination task was included as an extrinsic-static task, for use in this 

study (Gilligan, Hodgkiss, Thomas, & Farran, 2018). As shown in Fig. 4, participants were 

required to use a model “Pirate map” with a target, to identify a corresponding on-screen 

referent map from four options (one correct and three distractor maps). Participants 

responded by manually pressing their answer on a touchscreen laptop. The scaling factor in 

each trial was determined as the difference in the relative size of the referent and model maps 

with respect to the participant. The task was presented as three blocks of six experimental 

trials preceded by 2 practice trials (scaling factor of 1). Feedback was given for practice 

trials. If incorrect, participants were asked to repeat the trial until the correct answer was 

selected. Only participants correctly answering at least one of the two practice items on their 

first attempt, continued to the experimental blocks. Scaling factor varied by experimental 

block and was set at 1, 0.5 and 0.25 (i.e. the referent maps were, the same size, one half the 

size, and one quarter the size of the model map, relative to the participant). Blocks were 

presented in order of increasing scaling factor. Visual acuity also differed across trials. 

Within each block, the overall area of the maps, and by extension the scaling factor, did not 

change. However, half of the trials in each block were presented using a 6 x 6 square grid 

(requiring gross level acuity) while half were presented using a 10 x 10 square grid (requiring 

fine level acuity). Percentage accuracy was recorded. 

Extrinsic-dynamic- Perspective Taking Task  

The Perspective Taking Task was included as a measure of extrinsic-dynamic spatial thinking 

and was taken from Frick, Mohring, and Newcombe (2014). Participants were required to 

identify which of four photographs had been taken from the perspective of a photographer, 
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based on a 3-D or pictorial representation of the photographer in an arrangement (Fig. 5). 

Participants completed four practice trials with real, 3-D objects and Playmobil characters 

holding cameras (to denote photographers). Feedback was given for practice trials and 

participants were required to successfully answer all practice trials before moving to the 18 

computer-based experimental trials. For experimental trials complexity was introduced by 

increasing the number of objects in the stimulus picture (one, two or four objects). Trials also 

differed in the angular difference between the participant and the photographer. Participants 

completed equal numbers of trials in which they were positioned at 0°, 90° and 180° from the 

photographer respectively. The order of presentation of trials was fixed such that the angular 

difference changed between adjacent trials. In addition, the character acting as a photographer 

and the objects (colour, shape, relative positions) were also changed between trials. 

Percentage accuracy was recorded.  

Mathematics Measures  

Mathematics Achievement- NFER Progress in Mathematics Test Series 

The National Foundation for Education Research (NFER), Progress in Mathematics (PiM) 

test series is a standardised measure of mathematics achievement, designed to address the 

National Mathematics Curriculum in England, Wales and Northern Ireland (National 

Foundation for Educational Research (NFER), 2004). The test series includes items 

assessing: number; algebra; shape, space and measures; and data handling. Specific, age-

appropriate tests were administered to each age group of participants, as per the test 

guidelines (NFER, 2004). Age-based standardised scores with a mean of 100 and a standard 

deviation of 15, were used in all analyses.  
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Approximate Number Sense Task 

The Approximate Number Sense (ANS) Task used in this study was taken from Gilmore, 

Attridge, De Smedt, and Inglis, (2014). In each trial, participants were required to compare 

and identify the more numerous of two dot arrays (shown in Fig.6). Each set of dot arrays 

was presented for 1500ms (or until a key press) and was followed by a fixation dot. 

Participants used labelled keys on the left and right of the computer keyboard to respond. 

Only participants who achieved at least 50% on the practice trials (eight trials) continued to 

the 64 randomly presented experimental trials. The quantity of dots in each comparison array 

ranged from 5 to 22. The ratio between the dots in each array varied between 0.5, 0.6, 0.7 and 

0.8, with approximately equal numbers of trials assessing each of these ratios. The colour of 

the more numerous array (red or blue) in addition to the size and the density of dot 

presentation were counterbalanced between trials. Task performance was measured as 

percentage accuracy.  

Number Line Estimation Task 

The Number-Line Estimation Task used to assess numerical representation in this study, was 

adapted from Siegler & Opfer, (2003).Two trial types were included, number estimation (NP) 

and position estimation (PN) trials. As shown in Fig. 7a, for NP trials, participants were 

presented with a target number and were asked to estimate its location on a number line by 

drawing a straight line (hatch mark) through the number line at their selected location. As 

shown in Fig. 7b, for PN trials participants were presented with a vertical hatch mark on a 

number line and were asked to estimate what number was represented by the mark. To reduce 

floor effects in younger children, and ceiling effects in older children, this task was 

comprised of three blocks. Within each block participants completed two practice trials (one 
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NP and one PN) followed by eight experimental trials (equal numbers of NP and PN trials 

presented alternately). Performance on NP and PN trials were collapsed across blocks. Blocks 

differed in the number line range presented. As per the Siegler & Opfer, (2003).method, the 

number line in Block B ranged from 0-100 and the number line in Block C ranged from 0-

1000. Block A with a range of 0-10 was added to reduce floor effects in younger children 

who may be less familiar with larger numbers.  

Trial order was fixed and increased in difficulty. The numbers included in each block were 

chosen to enhance the identification of children’s use of logarithmic and linear models and to 

minimize the impact of content knowledge (e.g., 25 is one quarter of 100). Similar to other 

studies there was over-sampling of numbers below 20 (Friso-van den Bos et al., 2015; Laski 

& Siegler, 2007). Participants were given the opportunity to complete all blocks. However, 

the 0-10 block was considered an age specific measure, and was analysed, at 6 and 7 years 

only. One measure of performance was Percentage Absolute Error (PAE). PAE is the 

numerical distance from a participant’s answer to the correct answer, divided by the length of 

the number line. This measure reflects the accuracy of participants’ estimates.  Linear 

response patterns (R2
LIN) were also calculated for each block by completing curve estimation 

for each participant, based on the correlation between participants’ estimates and the target 

numbers. Linear response patterns indicate the degree to which a participant’s estimates are 

linearly spread across the number line. PAE and linear response patterns for each block were 

subsequently used as the outcome variables in all analysis (six mathematics outcome 

variables), as both measures provide distinct information on numerical representations 

(Simms, Clayton, Cragg, Gilmore, & Johnson, 2016). 

Across all blocks where a participant’s mean percentage absolute error (PAE) scores for the 

practice trials in a block were greater than 15%, or where participants who failed to answer at 
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least 80% of items in a block, they were excluded from analysis for this block. For the 0-1000 

block, only four children aged 6 years were eligible for inclusion, hence this age group was 

excluded from analysis. For the Number Line Estimation Task, all results reported are based 

on R2 
LIN values. Similar patterns of performance, with smaller effects, were found for PAE 

scores (see supplementary material). 

Other measures 

British Picture Vocabulary Scale (BPVS) 

To control for verbal ability, the British Picture Vocabulary Scale (III), a measure of 

receptive vocabulary, was administered (Dunn, Dunn, Styles, & Sewell, 2009). Given that 

vocabulary is highly correlated with IQ (Sattler, 1988), the BPVS-III also acted as an 

estimate of general IQ. Asper the administration guidelines, participants were asked to select 

which of four coloured pictures best illustrated the meaning of a given word.  

Procedure   

Each participant completed the battery of mathematics, spatial and vocabulary measures, 

across three test sessions. Two further sessions included science measures not reported here 

(see Hodgkiss, Gilligan, Tolmie, Thomas & Farran, 2018). Within each session, mathematics 

tasks were completed prior to spatial tasks in order to avoid mathematics improvements due 

to spatial training effects (Cheng & Mix, 2014). Beyond this, task order within each session 

was randomised. During Session 1, a one-hour classroom-based session, a standardised 

measure of mathematics, the NFER PiM Test and (for children aged 8 years and older) the 

Number-Line Task, were completed. Session 2, a 35-minute session, was completed in the 

school’s computer suite in groups of 8 children, supervised by a minimum of two researchers. 



 

19 

 

For computerised tasks, Hewlett Packard (HP) computers with a screen size of 17 inches 

were used. Children completed mathematics tasks (the ANS Task, the CMAQ and the 

Number-Line Task [children aged 7 and younger]) and spatial measures (the Mental Rotation 

Task and a Folding task [not discussed here]). For session 3, participants were tested 

individually in a quiet room using a 13-inch HP touch-screen laptop. This session lasted 45 

minutes and included spatial tasks (the Perspective Taking Task, the CEFT and the Scaling 

Task) and the vocabulary measure (the BPVS).  

Analysis Strategy 

Due to school absences and technical errors, 10 participants had missing scores for a single 

task in the battery (the proportion of missing data was 0.7%). Missing data were distributed 

as follows: the CEFT (one participant); the Perspective Taking Task (two participants); the 

NFER PiM Test (two participants); the ANS Task (two participants); the Number Line Task 

(one participant); and the BPVS (two participants). As no individual participant was missing 

data for more than one task, and to optimise power, missing values were replaced by mean 

scores on that task for a participant’s age group. Parametric analyses were completed as tests 

of normality indicated that all measures were broadly normal. For all measures, performance 

across age groups was viewed graphically. For measures in which a ceiling (or floor effect) 

was suspected, one-sample t-tests were completed against ceiling (or floor) performance. For 

percentage accuracy scores, floor and ceiling were set at 0% and 100% respectively. For 

R2
LIN

 scores, floor and ceiling levels were set at 0 and 0.99 respectively. No significant floor 

or ceiling effects were found.  

Gender differences in spatial and mathematics performance were investigated using 

Bonferroni adjusted t-tests to account for multiple comparisons (alpha levels of .004 
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[.05/14]).  Where Levene’s test was violated, the results for unequal variances were reported.  

Correlations were completed to investigate the relative associations between measures and to 

inform regression models. Hierarchical regression models were completed for each 

mathematical outcome, to investigate the proportion of mathematical variation explained by 

spatial skills, after accounting for other known predictors of mathematical performance 

including language ability (the BPVS) and age. Gender was included as a control variable for 

mathematics tasks with which it was significantly correlated.  

For regression models, all predictors were converted to z-scores prior to entry. The 

collinearity statistics indicated appropriate Tolerance and VIF scores for all regression 

models, where a cut off of > 0.2 was used for Tolerance scores (Menard, 1995) and a cut off 

of < 10 was used for VIF scores (Myers, 1990). For all models, the control variables were 

added in Step 1. In Step 2, the spatial measures were entered together, as there was no strong 

evidence as to which skills might best predict different aspects of mathematical performance. 

In step 3 interaction terms between age and each spatial skill were added using forward 

stepwise entry. Only significant interactions were retained in the final models. These 

significant interactions were further explored using scatterplots. Based on changes in 

performance patterns across age groups (determined visually from the graphs) the sample was 

divided into younger and older age groups. Follow up regressions were completed with 

younger and older participants respectively. For all regression analyses, adjusted r2 values are 

reported. 

The sample size was determined using GPower. Based on previous studies on the role of 

spatial thinking as a predictor of mathematics, a medium to large effect size was expected 

(Gilligan et al., 2017: f2=.217). Power analysis was based on the largest possible regression 

model which included three control variables (age, vocabulary scores and gender), four 
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spatial predictors and four age*spatial task interaction terms. To achieve power of 0.8, 78 

participants were required. Due to missing data (described above) for some tasks, the desired 

participant numbers were not achieved for all models. Post-hoc power analysis was 

completed to determine the achieved power for each model. Except for the 0-10 Number Line 

Estimation Task, all models achieved a power level greater than .91, which is above the 

suggested power level of 0.8 (Cohen, 1988). The results for the 0-10 Number Line Estimation 

Task should be interpreted cautiously due to the relatively low power of this model (.754) 

(see supplementary material).  

Results  

Overall task performance 

Descriptive statistics across age groups are shown in Table 2. Variation in task performance 

was reported for all measures, with no floor or ceiling effects. Where possible to measure, 

task performance was above chance across age groups. The only exception to this was 6 year 

olds’ performance on the ANS task, t (29) = -1.89, p =.069, d = -0.35. Given that this might 

reflect poor ability rather than a poor understanding of the task aims, performance of this 

group on the ANS task was retained in the analyses. As shown in Table 3, there were no 

significant gender differences for any of the spatial measures or the BPVS (p > .05). For 

unadjusted p values, significant differences favouring males were reported for both the 0-100 

(p =.025, d= 0.38) and the 0-1000 (p =.007, d = 0.52) block of the Number Line Estimation 

Task. These differences were not significant when the results were adjusted for multiple 

comparisons (alpha level = .004). However, to ensure that the influence of gender was not 

overlooked, gender was included as a control variable in subsequent regression analysis for 

the 0-100 and 0-1000 blocks of the Number Line Estimation Task.  
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Associations between task performance on different measures   

The results of bivariate correlations between all measures are outlined in Table 4. Significant 

correlations at the p < .001 level were reported between the performance accuracy scores for 

all spatial measures. For mathematics measures, the NFER PiM test and the ANS Task were 

significantly correlated with all spatial measures and the BPVS (p < .001). The 0-100 and 0-

1000 blocks of the Number Line Estimation Task were significantly correlated with the 

spatial measures and the BPVS, with the exception that the 0-1000 task was not correlated 

with mental rotation (p =.080). For the 0-10 block of the Number Line Estimation Task 

significant associations were found for spatial scaling (p = .034) and the 0-100 block of the 

Number Line Estimation Task (p < .001) only.  

Identifying predictors of mathematics outcomes 

Hierarchical regression models were completed for each mathematical outcome to investigate 

the proportion of mathematical variation accounted for by spatial skills, after controlling for 

other known predictors of mathematics. The results reported in Tables 5 to 9 reflect the 

regression statistics (b, SE, ß, t and p) for the final models (i.e. when all predictors had been 

entered).  

Model 1: Identifying predictors of standardised mathematics performance  

Model 1 sought to determine the contribution of different spatial skills to the variation in 

standardised mathematics performance, as measured using the NFER PiM test. As shown in 

Table 5, the final model accounted for 42.6% of the variation in mathematical achievement. 
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In step 1, the control variables including age1 and language ability were added to the model 

accounting for 28.2% of the variation in standardised mathematics performance. In step 2, the 

spatial measures were added to the model, uniquely predicting an additional 12.4% of the 

variation. Finally, in step 3 interaction terms between each spatial skill and age were entered 

into the model. Only the interaction between mental rotation and age was retained. It 

accounted for an additional 2.0% of the variation in standardised mathematics performance. 

Taken together, age, language ability, spatial scaling, disembedding and the interaction term 

between mental rotation and age, were all significant predictors of mathematics achievement 

in the final model.  

The interaction was explored graphically by plotting standardised mathematics scores against 

mental rotation scores for each age group (Fig. 8). The graph indicated a difference in the 

relationship between measures at 6 and 7 years compared to 8,9 and 10 years. The sample 

was divided accordingly, and the regression analysis was re-run using younger (6 and 7 

years; n = 60) and older groups (8, 9 and 10 years; n = 93) respectively. As shown in Table 5, 

the patterns reported for both age groups were broadly similar to the overall model, with 

spatial scaling and disembedding identified as significant predictors in both models. 

However, for younger participants mental rotation approached significance (p =.057) and the 

ß values were similar for mental rotation (ß = .20) compared to disembedding (ß = .22) and 

                                                

1 Although year-group based standardised scores were used for the NFER PiM task, these 

scores were standardised across an entire academic year group. As such, exact age (in 

months) on day one of testing was also included as a predictor, to account for age-based 

variability within each year group 
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spatial scaling (ß = .27). This pattern was not present for the older group, and a non-

significant ß value was reported for mental rotation (ß = -.13). 

Model 2: Identifying predictors of ANS performance   

Model 2 investigated the role of spatial skills in explaining ANS performance. The final 

model explained 40.4% of the variation in ANS skills. As before, the control variables were 

entered in step 1 and explained 32.0% of ANS variation. The four spatial measures were 

added in step 2, accounting for an additional 8.4% of the variation. Interaction terms between 

each spatial skill and age were entered in step 3. No interactions with age were retained in the 

final model. As shown in Table 6, spatial scaling and age were significant predictors in the 

final model.  

Model 3: Identifying predictors of 0-10 number line estimation performance  

In model 3 the role of spatial skills as a predictor of R2 
LIN values on the 0-10 Number Line 

Estimation Task was explored. The control variables including gender were added in step 1 

led to a negative adjusted R 2 value (-3.6%). Hence, these variables were removed, and the 

regression was re-run. In the revised model, the spatial tasks were added to the model in step 

1, explaining 12.6% of the variation. Interaction terms between each spatial skill and age 

were entered in step 3, however none were retained in the final model. The final model 

accounted for 12.6% of the variation. Spatial scaling and rotation were the only significant 

predictors (see Table 7).  

Model 4: Identifying predictors of 0-100 number line estimation performance  

Model 4 explored the role of spatial skills in explaining R2 
LIN performance on the 0-100 

Number Line Estimation Task. The control variables were added in step 1 and accounted for 
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32.9% of the variation. In step 2 the spatial skills added accounted for an additional 5.6% of 

the variation. None of the interaction terms added in step 3 were retained in the model. As 

shown in Table 8, the final model accounted for 38.5% of the variation. Disembedding and 

spatial scaling were significant predictors in the final model.  

Model 5: Identifying predictors of 0-1000 number line estimation performance  

Model 5 explored the contribution of spatial skills to R2 
LIN scores on the 0-1000 Number Line 

Estimation Task. The control variables including gender added in step 1 explained 28.3% of 

the variance in task performance. The spatial skills added in step 2 accounted for an 

additional 8.6% of the variation. In step 3 interaction terms between each spatial skill and age 

were added. The interactions between age and spatial scaling, and between age and 

disembedding were retained, explaining an additional 6.6 % and 2.4% of the variation 

respectively. The final model outlined in Table 9 explained 45.9% of the variation on the 0-

1000 block of the Number Line Estimation Task. Age, language ability, gender, spatial 

scaling, disembedding and the interaction terms (between spatial scaling and age, and 

disembedding and age) were significant predictors in the final model. 

The interaction was explored graphically (Fig. 8). For both spatial scaling and disembedding, 

the figure indicated a linear relationship with number line estimation performance at 7,8 and 

9 years. However, there was no linear relationship between these spatial skills and number 

line performance at 10 years. The figure indicated that for this task, performance at 10 years 

approached ceiling levels, lacked variability and was significantly negatively skewed. Thus, it 

was concluded that the age-based interactions reported were likely due to a lack of variability 

in performance scores at 10 years and not a true age-based effect. The interaction was not 

explored further.   
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Discussion  

Spatial skills were identified as significant predictors of several mathematics outcomes, even 

after controlling for other known predictors of mathematics. This study was founded on a 

population of primary school children aged 6 to 10 years. For some spatial sub-domains their 

role in predicting mathematical outcomes, was consistent across age groups. Spatial skills 

explained 12.4% of general mathematics performance with disembedding (intrinsic-static 

sub-domain) and spatial scaling (extrinsic static sub-domain) identified as significant 

predictors. For the ANS task, although spatial skills predicted 8.4% of the variation in 

performance, spatial scaling (extrinsic-static sub-domain) was the only significant spatial 

predictor. In contrast, spatial skills explained 12.6%, 5.6% and 8.6% of the variation on the 0-

10, 0-100 and 0-1000 blocks of task respectively. Spatial scaling (extrinsic-static sub-

domain) was a significant predictor for all three blocks of the Number Line Estimation Task.  

Some spatial sub-domains had age-dependent relations with mathematical outcomes. The role 

of mental rotation (intrinsic-dynamic sub-domain) in predicting standardised mathematics 

outcomes was significant at 6 and 7 years only. At 6 and 7 years, mental rotation was also a 

significant predictor of 0-10 number line estimation. For the 0-100 and 0-1000 blocks of the 

Number Line Estimation Task, mental rotation was not a significant predictor for any age 

groups. These findings are consistent with Mix et al., (2016; 2017) and suggest a transition in 

the spatial skills that are important for mathematics, which occurs in middle childhood at 

approximately 7 to 8 years (Mix et al., 2016; 2017). Here, this transition is defined by a 

reduction in the role of mental rotation for mathematics performance. As discussed below, 

successful performance on mental rotation tasks requires mental visualisation. Therefore, 

these performance patterns may reflect a reduction in the use of mental visualisation 

strategies in the completion of certain mathematics tasks at approximately 8 years.  Overall, 
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this study reports some age dependent effects and indicates that for some spatial skills, their 

role in predicting mathematics changes through development. 

These results support multi-dimensional models of spatial thinking (Buckley et al., 2018). 

The four spatial predictors included in this study (measuring each of Uttal et al.’s [2013] and 

Newcombe and Shipley’s [2015] four theoretically motivated spatial sub-domains) were 

found to have varying roles in explaining mathematics outcomes. Previous studies of primary 

school children have typically explored associations between intrinsic-dynamic spatial tasks 

and mathematics. The results of this study highlight the importance of other spatial sub-

domains in explaining mathematics outcomes, particularly spatial scaling (extrinsic-static 

sub-domain). Thus failures to find significant spatial-mathematical associations in some 

previous studies may reflect the limited spatial sub-domains assessed or the age of the 

participants tested (Carr, Steiner, Kyser, & Biddlecomb, 2008).  

Mechanisms underpinning spatial-mathematics associations 

Spatial scaling was a significant predictor of all mathematics measures in this study. In line 

with (Möhring et al., 2015) shared proportional reasoning requirements are highlighted here, 

as a likely underlying mechanism explaining these findings. For the Number Line Estimation 

Task, there is a clear role for proportional reasoning. For example, 28 can be positioned on a 

0-100 number line with relatively high accuracy by dividing the line into 4 portions. For 

standardised mathematics performance, there are a range of mathematics topics that may 

require proportional reasoning such as reasoning about fractions or completing area and 

distance questions. For the ANS Task, proportional reasoning can be used to compare the 

ratios of the dot arrays presented. The relations between spatial scaling and ANS performance 

suggest that associations between scaling and mathematics are not caused by a symbolic 
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number mechanism such as the Mental Number Line, as symbolic number representations are 

not required for dot comparison in the ANS Task. Taken together, these findings support the 

concept that proportional reasoning may be the underlying shared cognitive mechanism 

between spatial scaling and mathematics skills.  

Disembedding was a significant predictor of both number line estimation and standardised 

mathematics performance. These associations may be attributable to shared form perception 

demands of these tasks. Form perception is the ability to distinguish shapes and symbols 

(Mix et al., 2016).  As outlined in the introduction, for standardised mathematics, form 

perception is theoretically useful for distinguishing symbols and digits such as + and × 

symbols, interpreting charts, and completing multistep calculations (Mix and et al., 2016; 

Landy & Goldstone, 2007; 2010). For the Number Line Estimation Task, form perception is 

required for the identification of numeric symbols and use of symbols and for interpreting 

and using the visual diagrams presented. 

Finally, mental rotation was a significant predictor of mathematics outcomes for younger 

participants only. For both standardised mathematics and the 0-10 block of the Number Line 

Estimation Task, mental rotation was a significant predictor at 6 and 7 years. It is proposed 

that mental rotation requires active processing including mental visualisation (Mix et al., 

2016; (Lourenco et al., 2018). The findings reported here suggest that younger children may 

use mental models to visualise problems, including mathematics problems. Mental 

visualisations may be used to represent and organise complex word problems or 

mathematical relationships (Huttenlocher et al., 1994; Laski et al., 2013; Thompson et al., 

2013). The results reported in this study also suggest that the use of mental visualisation 

strategies in mathematics is less common in older age groups. That is not to say that mental 

models do not play a role in the completion of more abstract mathematical tasks encountered 
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in later schooling, e.g., visualising graphs in 3-D, plotting vectors, graphing functions from 

equations. However, for the specific mathematics tasks included in this study, an age effect of 

mental model use was found.  

As outlined in the introduction, the Perspective Taking Task was also hypothesised to recruit 

mental visualisations. However, this task was not a significant predictor of any of the 

mathematics outcomes. These findings highlight an important distinction between different 

types of mental visualisations based on the frame of reference being transformed. Hegarty 

and Waller (2004) found that object transformation ability and viewer/perspective 

transformation ability are two distinct spatial factors. Here we suggest that these two mental 

transformation abilities are differentially associated with mathematics in children.  Egocentric 

object-based transformations (required for mental rotation and other intrinsic-dynamic tasks) 

are important for mathematics, however allocentric viewer transformations (as required for 

perspective taking and other extrinsic-dynamic tasks) are not (at least for the age-range 

measured). This is an important distinction, particularly for the design of training studies 

targeting mental visualisation skills. These findings are consistent with Mix et al., (2016; 

2017) who did not find that perspective taking loaded significantly onto mathematics at 6, 9 

or 11 years. However, there was a significant cross factor loading of mental rotation onto 

mathematics at 6 years (not age 9 or 11 years).   

Taken together, the findings in this study provide evidence for the proposal that there are 

different explanations underpinning spatial-mathematical associations, depending on the 

mathematical and spatial sub-domains assessed (Fias & Bonato, 2018). 
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The role of control variables  

This study highlights associations between vocabulary and mathematics performance. 

Accounting for spatial ability and the other control variables, vocabulary remained a 

significant predictor of standardised mathematics performance, and the most difficult 0-1000 

Number Line Estimation Task only. These findings are consistent with previous evidence that 

language skills are a significant longitudinal predictor of general mathematics achievement, 

controlling for spatial ability, in the early primary and pre-school school years (Gilligan et al.,  

2017; LeFevre et al., 2010). The results are also consistent with findings that language is a 

significant predictor of science achievement in the primary school years, controlling for 

spatial thinking (Hodgkiss et al., 2018). Taken together the evidence suggests that language 

and spatial skills have distinct relations to mathematics (and science).  

No significant performance differences were found between males and females on any of the 

spatial tasks included in the study. Historically, other studies have reported a male advantage 

in spatial task performance in childhood (e.g., Carr et al., 2008; Casey et al., 2008). However, 

the results of this study add to the growing body of literature arguing that the spatial 

performance of girls and boys is equivalent (e.g., Gilligan et al., 2017; Halpern et al., 2007; 

LeFevre et al., 2010). In the domain of mathematical cognition, a significant male advantage 

was found for 0-100 (d = .38) and 0-1000 (d = .52) number line estimation performance only. 

This is consistent with previous mixed findings in this domain, such that some studies argue 

for (Gilligan et al., 2017;  Halpern et al., 2007; Penner & Paret, 2008) and others argue 

against (Lindberg, Hyde, Petersen, & Linn, 2010) gender differences in mathematics 

performance. The findings reported in this study suggest that gender differences in 

mathematics performance are task specific. Differences in the mathematics outcomes used 

across previous studies may account for the variable results reported.   
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Future directions and limitations  

In summary, spatial skills were significant predictors of performance across all mathematics 

measures, explaining approximately 5-14% of the individual variation in performance. These 

results suggest that training spatial thinking would confer benefits for both spatial and 

mathematics outcomes. There are mixed findings on the transfer of training gains (to 

untrained domains) in other cognitive domains such as working memory (for a review see 

(Melby-Lervåg, Redick, & Hulme, 2016). However, we suggest that far transfer of training 

gains is constrained by an understanding of the underlying cognitive mechanisms of training 

targets. Thus, the proposed task and age dependent explanations for spatial-mathematics 

associations, strengthen the likelihood of far transfer of gains. For example, the findings of 

this study suggest that spatial scaling training would lead to improvements in ANS 

performance given the proposed proportional reasoning requirements of both tasks. However, 

there is no evidence to suggest that mental rotation training would render ANS performance 

gains. As such, this study highlights the importance of choosing theoretically motivated, task 

and age sensitive targets for spatial training. 

This study does not offer insight into the causal relationship between spatial and 

mathematical thinking. Although mathematics skills may play a causal role in spatial 

performance, given the educational importance of mathematics, this study proposes that 

future training studies explore a possible causal role of spatial skills for mathematical 

thinking. To understand the causal relationship between specific spatial and mathematical 

skills, training on specific spatial tasks is required. There is evidence that spatial training, in 

which spatial thinking is embedded into mathematical instruction, leads to gains in spatial 

and mathematics outcomes (geometry performance) in children aged 6 (Hawes et al., 2017) 

and 11 years (Lowrie et al., 2017). However, while these findings have useful classroom 
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applications, they cannot offer insights into the causal relationship between spatial and 

mathematical skills, as the mathematical and spatial aspects of training cannot be 

disentangled.  

This study highlights spatial scaling as a particularly useful target for spatial skill training 

(.23 < β < .55, across mathematics outcomes). We propose two reasons for these findings. 

First, there is a proposed underlying mechanism (proportional reasoning) linking each of the 

mathematics tasks in this study to spatial scaling. There is no theoretical reason to predict that 

spatial scaling would be associated with all mathematics tasks, particularly those with no 

proportional reasoning requirement e.g., multi-digit calculation. Second, in spatial scaling 

tasks, participants are required to compare two differently scaled spaces (i.e., it is an 

extrinsic-static task). However, in the context of an individual object, scaling can also be 

viewed as an object transformation i.e., expanding or contracting an object (Newcombe & 

Shipley, 2015). Object transformations like this are required in intrinsic-dynamic tasks. In 

this way spatial scaling tasks may elicit both proportional reasoning and mental 

transformation, two processes that are required for different mathematics tasks. The results 

also highlight mental rotation and disembedding as potential spatial training targets, for some 

but not all aspects of mathematics, at certain ages. In support of this, gains in calculation 

performance have been reported following mental rotation training (intrinsic-dynamic spatial 

skills) in young children (Cheng & Mix, 2014). However, in another study, mental rotation 

training was unsuccessful in eliciting mathematical gains in children (Hawes et al., 2015). 

While the findings reported here suggest that, theoretically, mental rotation training should 

render gains in some mathematics tasks (such as missing term problems, balancing equations 

and word problems), future research is required to explore the features of training that might 

lead to such gains. 
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This study is the first to explicitly compare the role of Uttal et al.’s (2013) four sub-domains 

of spatial thinking in explaining mathematics outcomes. Despite including all of Uttal et al’s 

(2013) sub-domains, this study focuses on small scale spatial thinking only. This involves 

table-top tasks, where there is no need for whole-body movement or for changing location 

(Broadbent, 2014). Future work might extend these findings to include large scale spatial 

processes which require movement and observations from a number of vantage points, e.g., 

using real world or virtual navigation tasks (Kuipers, 1978;1982). Similarly, while this study 

is the first to explore associations between spatial and mathematics skills in children aged 6 

to 10 years using a cross-sectional approach, the findings could be strengthened by 

longitudinal research following a single cohort of participants through development from 6 to 

10 years.  

Unfortunately, as outlined by Davis, Drefs, and Francis, (2015) mathematics curricula do not 

typically focus on spatial thinking. Indeed, the current UK mathematics curriculum at Key 

stage 2 explicitly refers to spatial thinking only once, in reference to the representations of 

large numbers (Department of Education, 2013). Hence, our findings suggest that there is a 

need for  “spatialisation” of the primary school classroom such that children are: taught how 

to read diagrams and graphs; encouraged to sketch and draw; and given hands on 

opportunities to manipulate and explore with 3D materials, among others (Newcombe, 2013). 

Enhancing spatial thinking in children may have both direct and indirect benefits for 

attainment. This study highlights spatial scaling, mental rotation (specifically for younger 

students) and disembedding (for some mathematics measures only) as possible targets for 

spatial training. Beyond direct benefits to spatial thinking, spatial training may lead to 

mathematical achievement gains, and have indirect economic benefits for STEM industries. 

As many employer’s report difficulties recruiting suitably qualified STEM graduates 
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(Confederation of British Industry [CBI], 2013), improving STEM skills is a pressing 

economic priority (Centre for Economics and Business Research [CEBR], 2015). 

Engagement with and improvement of spatial thinking may offer a novel means of improving 

STEM outcomes and better equipping the STEM workforce.    
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Figures and tables 

	

Figure 1. Uttal et al.’s (2013) classification of spatial skills (Newcombe, 2018).  
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Figure 2. Example stimulus from the Children’s Embedded Figures Task (CEFT) 
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Figure 3. Example stimulus from the Mental Rotation Task  
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Figure 4. Relative position of the model (left) and referent (right) maps relative to the 

participant, for the Spatial Scaling Task 
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Figure 5. Example stimulus from the Perspective Taking Task  
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Figure 6. Sample dot arrays from ANS Task  
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Figure 7a & b. Number to Position (7a) and Position to Number (7b) trials of the 

Number Line Estimation Task  

7 b) 

7 a) 
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Figure 8. Significant interactions viewed graphically  
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Table 1.  

Demographic features of the study sample 

 

  

Age group Sample size % Male Age years (mean ± SD) 

6 years 30 53.3 6.0 ± 0.34 
7 years 31 41.9 7.0 ± 0.29 

8 years 32 56.3 8.0 ± 0.28 

9 years 31 45.2 9.0 ± 0.33 
10 years 31 51.6 10.0 ± 0.33 
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Table 2. 

Descriptive statistics for task performance across age groups 

Task Metric 6 Years 7 Years 8 Years 9 Years 10 Years 

Spatial Measures       

Disembedding Mean ± SE 30.62 ± 2.28 35.87 ± 2.40 50.88 ± 2.91 50.71 ± 2.86 56.52 ± 3.22 

 Max 56.00 64.00 88.00 92.00 84.00 

 Min 4.00 16.00 20.00 20.00 20.00 

Mental Rotation Mean ± SE 52.40 ± 2.89 66.43 ± 3.31 78.52 ± 2.86 80.85 ± 2.39 77.42 ± 3.73 

 Max 87.50 100.00 100.00 100.00 100.00 

 Min 12.50 31.25 46.88 50.00 6.25 

Spatial Scaling Mean ± SE 37.78 ± 2.55 46.24 ± 3.51 56.77 ± 3.48 64.34 ± 2.85 68.46 ± 2.66 

 Max 83.33 94.44 94.44 88.89 94.44 

 Min 11.11 16.67 27.48 38.89 38.89 

Perspective Taking Mean ± SE 43.68 ± 2.52 48.75 ± 2.93 57.99 ± 3.14 66.48 ± 3.76 71.15 ± 3.66 

 Max 77.78 88.89 94.44 100.00 100.00 

 Min 16.67 22.22 27.78 27.78 38.89 

       

Mathematics Measures      

NFER PiM Standard 
Score 

Mean ± SE 89.23 ± 2.45 99.61 ± 2.45 95.65 ± 1.88 104.42 ± 3.35 97.77 ± 2.53 

Max 114 124 112 141 121 

 Min 69 69 73 70 74 

ANS Task Mean ± SE 47.85 ± 1.14 56.55 ± 1.76 64.31 ± 2.24 69.05 ± 2.45 69.10 ± 2.22 

 Max 57.81 78.69 89.06 89.06 92.19 

 Min 34.38 43.75 43.75 40.63 45.31 

No. Line 10 R2 
LIN Mean ± SE 0.88 ± .03 0.89 ± .02    

 Max 0.99 0.99 NA NA NA 

 Min 0.32 0.56    

No. Line 100 R2 
LIN Mean ± SE 0.66 ± .04 0.79 ± .03 0.90 ± .03 0.91 ± .03 0.96 ± .01 

 Max 0.95 0.97 1.00 1.00 1.00 

 Min 0.23 0.34 0.39 0.30 0.72 

No. Line 1000 R2 
LIN Mean ± SE  0.57 ± .07 0.82 ± .04 0.83 ± .04 0.94 ± .02 

 Max NA 1.00 1.00 1.00 1.00 

 Min  0.11 0.20 0.28 0.28 

       

Language measure       

BPVS Mean ± SE 75.27 ± 2.76 85.45 ± 2.99 96.61 ± 2.66 106.16 ± 3.75 115.20 ± 2.94 

 Max 102 129 126 139 147 

 Min 42 35 61 64 73 
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NFER, National Foundation for Educational Research, ANS, Approximate Number System, , 

BPVS, British Picture Vocabulary Scale, ACC Percentage Accuracy, Standard Score, 

standardised score based on a mean of 100 and standard deviation of 10, R2 
LIN, linear 

response pattern.   
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Table 3.  

Gender differences in performance on spatial, mathematics and language measures 

Test Measure Gender Statistics 

 Male 
 (n=78) 

Female 
 (n=78) Test statistic Significance Effect size 

 Mean SD Mean SD T value P value 
(unadjusted) Cohen’s D 

Spatial Measures        

Disembedding 47.48 18.43 42.65 17.60 1.67 .097 0.27 

Mental Rotation  72.65 17.80 69.95 21.82 0.84 .401 0.14 

Spatial Scaling  57.07 20.10 52.64 20.22 1.37 .173 0.22 

Perspective Taking 56.99 20.47 58.40 20.80 0.43 .671 0.07 

Mathematics Measures        

NFER PiM Standard Score 97.57 14.75 97.19 15.28 0.16 .875 0.03 

ANS Task  60.97 13.39 61.98 14.25 0.45 .650 0.07 

No. Line 10a R2 
LIN .88 .16 0.89 0.11 0.35 .725 0.07 

No. Line 100 b R2 
LIN .89 .15 0.82 0.20 2.27 .025 0.38 

No. Line 1000 
c R2 

LIN .87 .17 0.74 0.31 2.64 .007 0.52 

Language measure        

BPVS Raw Score 95.85 21.91 95.91 22.09 0.02 .987 0.00 

NFER, National Foundation for Educational Research, ANS, Approximate Number System, 

BPVS, British Picture Vocabulary Scale a Males n:20; Females n:28, b Males n:66; Females 

n:70, c Males n:50; Females n:58. 


