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Abstract 

Genetic syndrome groups at high risk of autism comorbidity, like Down syndrome and 

fragile X syndrome, have been presented as useful models for understanding risk and 

protective factors involved in the emergence of autistic traits. Yet despite reaching clinical 

thresholds, these ‘syndromic’ forms of autism appear to differ in significant ways from the 

idiopathic or ‘non-syndromic’ autism profile. We explore alternative mechanistic 

explanations for these differences and propose a developmental interpretation of syndromic 

autism that takes into account the character of the genetic disorder. This interpretation 

anticipates syndrome-specific autism phenotypes, since the neurocognitive and behavioural 

expression of the autism is coloured by syndromically defined atypicalities. To uncover the 

true nature of comorbidities and of autism per se, we argue that it is key to extend definitions 

of autism to include the perceptual and neurocognitive characteristics of the disorder and then 

apply this multilevel conceptualization to the study of syndromic autism profiles.  
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Abstract 

Genetic syndrome groups at high risk of autism comorbidity, like Down syndrome and 

fragile X syndrome, have been presented as useful models for understanding risk and 

protective factors involved in the emergence of autistic traits. Yet despite reaching clinical 

thresholds, these ‘syndromic’ forms of autism appear to differ in significant ways from the 

idiopathic or ‘non-syndromic’ autism profile. We explore alternative mechanistic 

explanations for these differences and propose a developmental interpretation of syndromic 

autism that takes into account the character of the genetic disorder. This interpretation 

anticipates syndrome-specific autism phenotypes, since the neurocognitive and behavioural 

expression of the autism is coloured by syndromically defined atypicalities. To uncover the 
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of autism to include the perceptual and neurocognitive characteristics of the disorder and then 

apply this multilevel conceptualisation to the study of syndromic autism profiles.  
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Syndromic Autism: Progressing Beyond Current Levels of Description 

Autism Spectrum Disorders (henceforth autism) is a diagnostic umbrella term used to 

describe a heterogeneous collection of complex neurological disorders characterised by 

socio-communicative impairment and restricted, repetitive patterns of behaviour (DSM-5, 

American Psychiatric Association [APA], 2013; ICD-10, World Health Organization 

[WHO], 1994). Autism occurs in approximately 1% of the general population and is 

predominantly ‘non-syndromic’ or ‘idiopathic’, meaning it arises from unknown causes 

(Baio, 2012; Baird et al., 2006; Brugha et al., 2012). However, in 10% of cases, autism 

coincides with a genetic syndrome of known aetiology (Abrahams & Geschwind, 2008). 

These ‘syndromic’ forms of autism are so-called on account of their well-defined genetic 

cause and are considered by many to offer unique insights into the early risk factors that 

contribute to the emergence of the autism phenotype. Yet the precise nature of these 

comorbidities remains poorly understood.  

Genetic disorders characterised by high rates of autistic symptomology include 

Tuberous Sclerosis complex, fragile X syndrome (FXS), Down syndrome (DS), Angelman 

syndrome, Rett syndrome and William syndrome (for review, see Caglayan, 2010). The most 

frequently occurring of these disorders, DS and FXS, receive particular attention from 

researchers as they offer a large empirical database in terms of neurocognitive profile and 

associations with autism (Moss & Howlin, 2009). 

Drawing on the existing literature, we explore a number of key issues concerning 

syndromic autism phenotypes, with specific reference to DS and FXS populations. First, we 

consider current perspectives on why these two genetic syndrome groups are associated with 

elevated risk of autism. Second, we review what is presently known about the nature of these 
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syndromic forms of autism and on this basis, propose a developmental interpretation of what 

research would suggest are syndrome-specific autism phenotypes. Finally, we advocate for 

fine-grained analyses to be applied to the study of syndromic autism, with reference to 

clinical implications.  

Towards an Understanding of Syndromic Autism Risk 

Fragile X syndrome (FXS) is the leading known genetic cause of autism, with 

comorbidity rates estimated to fall between 20-50% (Hagerman & Harris, 2008; Hatton et al., 

2006; Philofsky, Hepburn, Hayes, Hagerman, & Rogers, 2004). This single-gene disorder is 

caused by a CGG repeat polymorphism that represses the expression of the Fragile X mental 

retardation 1 (FMR1) gene on the X chromosome (Jin & Warren, 2000; Verterk et al., 1991). 

Subsequent deficient levels of Fragile X mental retardation protein (FMRP) yield 

irregularities in protein synthesis and dendritic morphology, with negative implications for 

synaptic functioning, regulation and overall neural connectivity (e.g., Irwin et al., 2001; 

Weiler et al., 2004; also for review, see Santoro, Bray, & Warren, 2012). 

Similarly, Down syndrome (DS) offers an interesting association with autism, with 

approximately 19% of individuals exhibiting socio-communicative deficits that warrant a 

secondary autism diagnosis (DiGuiseppi et al., 2010; Lowenthal, Paula, Schwartzman, 

Brunoni, & Mercadante, 2007; Warner, Moss, Smith, & Howlin, 2014). Caused by the 

presence of a full or partial trisomy of chromosome 21, DS is associated with widespread 

neuropsychological dysfunction and subsequently high rates of intellectual disability (ID; 

Beacher et al., 2005; Belichenko et al., 2015; Galdzicki & Siarey, 2003; Yu et al., 2010).  

It is not yet known why these genetic syndrome groups are at elevated risk of autism 

relative to the general population and other neurodevelopmental disorders. Skuse (2007) 

postulates that syndromic autism risk is largely a matter of ID, as it diminishes the brains 
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capacity to compensate for the presence of independently inherited autistic-like traits. Indeed, 

individuals with DS and autism are reported to have a greater intellectual impairment than 

those with DS in isolation (DiGuiseppi et al., 2010; Molloy et al., 2009). Similarly, autism in 

FXS is more likely to be identified in individuals with a greater degree of ID (Lewis et al., 

2006; Loesch et al., 2007). However, while ID plays a clear role in the development and 

presentation of autistic-like traits in individuals at high syndromic risk, research has shown 

that it cannot account in full for the heightened prevalence of autistic characteristics in such 

genetic syndrome groups (Capone, Grados, Kaufmann, Bernad-Ripoll, & Jewell, 2005; Lee, 

Martin, Berry-Kravis, & Losh, 2016; for review, see Moss & Howlin, 2009).  

Despite high heritability estimates, the precise genetic architecture of autism remains 

unclear, with each idiopathic or ‘non-syndromic’ presentation representing a complex collage 

of multiple genetic risk factors (Betancur, 2011; Robinson, Neale, & Hyman, 2015). Johnson 

(in press) accounts for this aetiological complexity by proposing that autism is the product of 

an adaptive brain response to early synaptic dysfunction, in which a wide variety of genes are 

implicated. This conceptualisation may be applied to syndromic forms of autism also. 

Despite their distinct genetic origins, both FXS and DS phenotypes are characterised by 

neural irregularity at the level of the synapse (Huber, Gallagher, Warren & Bear, 2002; 

Weick et al., 2013; Weiler & Greenough, 1999; Weitzdoerfer, Dierssen, Fountoulakis, & 

Lubec, 2001). It may be the case, then, that regardless of aetiology, sub-optimal signal 

processing in early life triggers compensatory or adaptive brain processes, the developmental 

consequence of which is an autism-like phenotype. 

Still the question remains: what differentiates individuals with syndromic autism from 

those with FXS or DS in isolation? Additional genetic risk factors are likely to play a role. In 

the case of DS, a number of genes implicated in autism are located on chromosome 21 
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(Molloy, Keddache, & Martin, 2005). Thus, individual variability in the overexpression of 

these genes may account for syndromic autism presentations in some individuals with DS 

(Reeves et al., 1995; Reymond et al., 2002). Moreover, the severity of neurocognitive 

impairment that accompanies a FXS or DS diagnosis may influence the development and 

expression of autistic symptomology. For instance, auditory inattention has been found to 

shape subsequent socio-communicative outcomes in boys with FXS (Cornish, Cole, Longhi, 

Karmiloff-Smith, & Scerif, 2012). Attentional impairment in the auditory modality may 

therefore be an important risk factor for autism in this clinical population. 

Finally, syndromic autism risk may be mediated to some extent by environmental 

factors. For instance, in typical development, early parent interaction style has been found to 

influence the rate at which infants reach cognitive milestones (Karmiloff-Smith et al., 2010). 

Sensitive and responsive parenting is considered optimal as it promotes self-directed learning 

behaviour. Critically, infants with a diagnosed genetic syndrome are less likely to encounter 

this optimal interaction style. Rather, they tend to experience a more directive and less 

responsive parenting style, as caregivers endeavour to compensate for the child’s cognitive 

and behavioural difficulties (Soukup-Ascençaoa, D’Souza, D’Souza, & Karmiloff-Smith, 

2016). The potential size of this environmental mediation is as yet unknown. Nevertheless, it 

is clear that understanding why certain individuals at syndromic risk of autism proceed to a 

secondary diagnosis and others do not demands consideration of environmental factors 

including, but not limited to, early parenting style.  

Syndrome-Specific Autism Phenotypes 

Phenotypic heterogeneity is a key feature of autism. Formal diagnostic systems are 

designed to allow for this variability in that only a proportion of the behaviours implicated in 

the phenotype are necessary for a diagnosis to be given (DSM-5, APA, 2013; ICD-10, WHO, 
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1994). Still, it is becoming increasingly apparent in the literature that despite reaching clinical 

diagnostic thresholds, individuals with syndromic forms of autism present with distinct 

patterns or profiles of autistic symptomology in comparison to non-syndromic reference 

groups. Autism profiles in individuals with DS, for instance, are associated with less 

environmental withdrawal, greater social reciprocity, and reduced impairment in several 

aspects of non-verbal communication including use of gesture and imitation (DiGuiseppi et 

al., 2010; Moss et al., 2013). Interpretations of these findings include the possibility that 

relative strengths in terms of sociability in DS provide protection against some of the social 

deficits associated with non-syndromic autism (DiGuiseppi et al., 2010; Rosner, Hodapp, 

Fidler, Sagun, & Dykens, 2004).  

Comparative behavioural analyses support a distinct profile of autistic symptomology 

in individuals with FXS also, with increased social responsivity, greater emotional sensitivity 

and less idiosyncratic speech (e.g., pronoun reversal) differentiating this form of autism from 

the non-syndromic phenotype (Hall, Lightbody, Hirt, Rezvani, & Reiss, 2010; McDuffie, 

Thurman, Hagerman, & Abbeduto, 2015; Turk & Cornish, 1998). Of note, these profile 

differences continue to hold when autism symptom severity and intellectual ability are 

accounted for (McDuffie et al., 2015). Moreover, an atypical trajectory of symptomatic 

expression has been documented in FXS, with socially avoidant behaviours becoming 

progressively more severe over time (Hatton et al., 2006; Roberts et al., 2007). Non-

syndromic autism, conversely, is generally associated with improvements in core 

symptomatology with age (Charman et al., 2005; Moss, Magiati, Charman, & Howlin, 2008).  

In terms of interpreting these symptomatic profile differences, disparate mechanistic 

explanations warrant consideration. First, autistic-like traits may arise as a consequence of 

the phenotypic expression of the genetic syndrome. For instance, empirical support has been 
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found for the claim that autism symptoms in FXS arise on account of anxiety, as opposed to 

diminished social motivation, with Thurman and colleagues documenting a significant 

positive correlation between general anxiety scores and autism symptom severity in boys 

with FXS (Thurman, McDuffie, Hagerman, & Abbeduto, 2014). According to the authors, 

these children struggle to partake in, and subsequently acquire knowledge from, social 

interactions due to an inattentive, hyperactive and anxious predisposition, with these 

psychiatric factors playing a cumulative role over developmental time in the emergence of 

the social impairments that lead to a comorbid autism diagnosis. For example, eye gaze 

avoidance in children with FXS has been hypothesised to occur as a direct result of these 

behaviours (Cohen, Vietze, Sudhalter, Jenkins, & Brown, 1989). In non-syndromic ASD, 

conversely, diminished eye gaze is considered an expression of reduced interest and 

motivation in attending to social stimuli. Thus, the evidence appears to be consistent with the 

possibility that different neurocognitive processes underlie autism diagnoses in this 

syndromic population (for review, see Cornish, Turk, & Levitas, 2007).  

Alternatively, it may be that the genes for autism are present in a proportion of 

individuals with DS and FXS but their expression is altered in some way by the 

neurophysiological and cognitive properties of the genetic syndrome itself. Inherent in this 

assumption are neuroconstructivist principles of progressive neural specialisation and 

emergent cognitive outcomes (Karmiloff-Smith, 2009). From this dynamic developmental 

perspective, autism is considered an emergent phenotype vulnerable to the impact of 

syndromic factors, as opposed to a predetermined phenotype immune to the character of the 

genetic syndrome. As such, it is intuitive to anticipate that syndrome-specific autism profiles, 

in terms of the neurocognitive and behavioural expression of the ‘classic’ autism phenotype, 

will be coloured by the nature of the genetic disorder.   
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This notion of syndrome-specific autism phenotypes gives rise to novel hypotheses. 

First, it is important to note that beyond formal diagnostic classification, non-syndromic 

autism is associated with a unique visuo-attentional and perceptual profile.  This includes a 

local or featural processing bias, on account of which individuals with autism have difficulty 

processing complex social information, like faces (Behrmann et al., 2006; Gauthier, Klaiman, 

& Schultz, 2009; Scherf, Elbich, Minshew, & Behrmann, 2014). This is substantiated by 

brain imaging research documenting atypical neural responses to eye gaze and diminished 

face inversion effects in individuals with autism (McPartland, Dawson, Webb, Panagiotides, 

& Carver, 2004; Tye et al., 2013). Now, consider that, as stated previously, relative social 

competency in DS is considered to be a protective factor against certain elements of the 

autism phenotype, including diminished social reciprocity and environmental withdrawal 

(DiGuiseppi et al., 2010). If the expression of autism in DS is indeed coloured in this way, it 

should be evident across multiple levels of description. Beyond overt phenotypic 

characteristics, then, individuals with DS and autism may be expected to demonstrate less of 

a visuo-perceptual preference for local detail and subsequently fewer face processing deficits 

than individuals with non-syndromic autism.  

Clinical and Diagnostic Implications 

When faced with the challenge of discerning whether a child with a genetic disorder 

is presenting with autism, clinicians deliberate on the extent to which the behavioural, 

symptomatic profile exhibited by the child resembles that of non-syndromic autism. 

However, the autism encountered in individuals with genetic disorders like FXS or DS does 

not appear to reflect the ‘classic’ phenotype, with subtle deviations in terms of cognitive 

strengths and weaknesses distinguishing syndromic from non-syndromic presentations. 

Consequent clinical uncertainty surrounding the nature and validity of syndromic forms of 



Syndromic Autism 

	

13 

autism often leads to prolonged diagnostic decision making and delayed access to 

intervention services. The significance of this is apparent in research documenting poorer 

prognostic outcomes in individuals presenting with syndromic autism, relative to those with 

stand-alone diagnoses (Carter, Capone, Gray, Cox, & Kaufmann, 2007; Hatton et al., 2003; 

Molloy et al., 2009; Philofsky et al., 2004; Warner et al., 2014).  

Clinical uncertainty is aggravated further by the insensitivity of current assessment 

measures to detect cases of secondary autism from genetic syndrome groups characterised by 

distinct, yet nuanced, socio-communicative impairment. While there is some preliminary 

support for the clinical incorporation of eye tracking paradigms as objective means of 

identifying risk markers for autism (Frazier et al., 2016; Pierce et al., 2016), diagnostic utility 

in the context of syndromic autism has yet to be explored. First, future research will need to 

ascertain whether syndrome-specific autism phenotypes exist and can be documented across 

multiple levels of analyses. Empirical insights gained may ultimately benefit clinical practice 

by facilitating more timely and accurate diagnoses, and by minimizing the risk of diagnostic 

overshadowing (i.e., the clinical tendency to attribute symptoms of a co-occurring disorder to 

the primary diagnosis). 

Little is known about whether treatment programs designed to target the mechanisms 

underpinning socio-communicative impairment in non-syndromic autism are applicable to 

syndromic forms of the disorder. Founded upon a social motivational account of autism, the 

Early Start Denver Model (ESDM) is one intervention program for which significant 

improvements in autistic symptomology have been documented (Dawson et al., 2010; Estes 

et al., 2015). By increasing a child’s exposure to meaningful interpersonal exchange and 

positive affect, this practice seeks to facilitate active attention to faces, promote the 

development of neural reward systems specific to social interaction and consequently elevate 
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the child’s social motivation. In addition to significant gains in socio-communicative 

function, long-term participation in this program has been found to normalise 

electrophysiological brain responses to facial stimuli in young children with autism (Dawson 

et al., 2012). It remains unknown, however, whether application of ESDM to syndromic 

forms of autism would generate similar improvements. If, as per the literature, the 

neurocognitive basis for autism in FXS is inattention and anxiety as opposed diminished 

social motivation, this kind of intervention is unlikely to be effective (Thurman et al., 2014). 

Rather, a remedial focus on minimising anxiety levels in infants with FXS may be preferable. 

Attention training, for instance, has been found to reduce anxiety in anxious individuals 

(Amir et al., 2008; Hazen et al., 2009; Mathews & McLeod, 2002; Schmidt et al., 2009). This 

may be a more promising approach to treating socio-communicative impairment in children 

with comorbid FXS and autism. Thus, research focused on identifying the mechanisms by 

which syndromic autism profiles emerge is necessary in order to direct clinical foci in the 

early years and improve prognostic outcomes in these populations.  

Future Research: Cautions & Considerations 

If we define autism strictly according to current diagnostic standards, we may 

conclude that a child with a genetic disorder who reaches clinical thresholds on widely used 

assessment measures, such as the Autism Diagnostic Observation Schedule (ADOS; Lord, 

Rutter, Dilavore, & Risi, 2000) and the Autism Diagnostic Interview-Revised (ADI-R; Lord, 

Rutter, & LeCouteur, 1994), has autism. However, to address the question of whether autistic 

symptomology in syndromic populations represents the ‘classic’ autism phenotype, we 

advocate empirical incorporation of a broader definition of autism - one that includes the 

visuo-perceptual and neurophysiological markers for the disorder that have been documented 

in the literature. Investigating whether syndromic autism is similarly characterised by a 
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perceptual preference for local detail, for instance, would provide valuable insight into the 

mechanisms underpinning syndromic autism profiles. Empirical efforts to differentiate 

comorbid from non-syndromic autism phenotypes must, therefore, progress from a reliance 

on insensitive behavioural measures of socio-communicative function towards more fine-

grained analytic frameworks incorporating sensory processing and neuroimaging modalities. 

Furthermore, longitudinal trajectory analyses of symptomatic change over time are necessary 

to build a more comprehensive understanding of the nature and development of syndromic 

autism profiles (Karmiloff-Smith et al., 2004; Thomas et al., 2009). Such a research 

foundation would then provide a basis on which to develop sensitive and robust measures of 

neurocognitive profile for potential clinical use. 

Advances in the field of autism research are challenged by developing definitions of 

autism and uncertainty concerning the phenotypic specificity of autistic traits (for discussion, 

see Xavier, Bursztejn, Stiskin, Canitano, & Cohen, 2015). Recent enquiry into what 

constitutes the ‘typical’ DS phenotype, for instance, has provided support for the inclusion of 

repetitive and restricted patterns of behaviour (Channell et al., 2015). These findings caution 

researchers against accepting superficial behavioural similarities or heightened scores on 

autism assessments that may be accounted for by syndromic factors. Clinical input is 

necessary for accurate differentiation of individuals with and without syndromic autism. 

Thus, future research should endeavour to include clinical judgement when evaluating the 

nature of autistic symptomology in syndromic populations.  

Syndromic autism was first documented over 30 years ago (Brown et al., 1982), yet 

much remains to be elucidated about this comorbidity. Critically, it remains unclear whether 

autistic symptomology exhibited by individuals with a genetic disorder reflects the same 

underlying cognitive and neurobiological impairments as in non-syndromic autism. We 
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propose a developmental interpretation of autism comorbidity that takes into account the 

character of the genetic disorder and anticipates emerging syndrome-specific autism 

phenotypes. Clinical efforts to diagnose syndromic autism may be better served by an 

expectation of syndrome-specific autism phenotypes, as opposed to the ‘classic’ autism 

presentation. Such a distinction provides a sounder basis on which to evaluate the utility of 

different types of intervention for syndromic and non-syndromic forms of autism. 
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