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Abstract 

The study of variability in reasoning can shed light on several 
issues, including mechanisms underlying developmental 
change, individual differences, and developmental disorders. 
We explored the basis of variability in a much-studied task in 
cognitive development, the balance scale. Starting with a 
simple feed-forward connectionist model and training patterns 
based on McClelland (1989), we investigated computational 
parameters, problem encodings, and training environments 
that contribute to variability in development, both across 
groups and within individuals. We report on the parameters 
that affect the complexity of reasoning and the nature of ‘rule’ 
transitions exhibited by networks learning to reason about 
balance scale problems. 

Introduction 
In the study of cognitive development, a rich literature has 
accumulated on the balance scale task. In this task, different 
numbers of weights are placed at distances either side of a 
fulcrum and the child is asked whether the scale will 
balance, tip left, or tip right when released (Inhelder & 
Piaget, 1958). For both recent empirical and computational 
approaches to this domain, the cornerstone is Siegler’s 
initial work (1976, 1981) in which children’s decisions at 
different ages were characterized in terms of four rules of 
increasing complexity. Rules I to IV describe the child’s 
performance on each of the six different problem types (see 
Figure 1), with Rule IV representing mastery. 
   Siegler’s rule assessment methodology has provoked 
much debate, both with regard to whether the rules he 
postulated are sufficient to capture children’s behavior  
(e.g., Wilkening & Andersen, 1982) and whether rules 
actually play a causal role in driving behavior (Hardiman, 
Pollatsek, & Well, 1986). Rule-based theories of 
development have traditionally struggled to explain the 
mechanisms mediating transitions between rule states, 
leading to theories based on connectionist learning models 
(e.g., McClelland, 1989). As an example of the debate, it 
has been argued that children use different rules depending 
on the torque value (where torque = weight x distance from 
fulcrum): Ferretti and Butterfield (1986) found that 

problems with a large difference in the torque acting on 
each side were likely to draw responses consistent with a 
more advanced rule; Jansen and van der Maas (1997) later 
reported that the torque difference effect only occurred for 
problems with extreme torque values. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The balance scale and developmental ‘rules’ 
 

Despite criticism, Siegler’s rules have stood the test of 
time, albeit with proposed additions (and replacements) to 
the original four core rules. For example, the smallest 
distance down rule (SDD, Figure 1) has been proposed as a 
rule used by children only when in transition between rules I 
and II (Jansen & van der Maas, 2002). The majority of new 
rules have emerged through the scrutiny of behavior 
surrounding Rule III where, according to Siegler’s scheme, 
children perform well when either weight or distance 
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information unambiguously predicts the side to tip, but then 
guess when these sources of information conflict. Some of 
the new rules proposed to account for the variability around 
Rule III include: Rule IIIa, the qualitative proportionality, 
distance dominant, addition, and buggy rules (Ferretti & 
Butterfield, 1986; Jansen & van der Maas, 1997, 2002; 
Normandeau et al., 1989; van Maanen, Bean & Sijtsma, 
1989; Wilkening & Andersen, 1982). 

The existence of additional rules has found support from 
Latent Class Analysis, a statistical technique for 
categorizing behavioral data into consistent subgroups (e.g., 
Jansen & van der Maas, 1997, 2002). Though these analyses 
differ in the number of classes generated (relating to a free 
parameter in the technique), they converge on the idea that 
Rule III behavior consists of a variety of strategies that 
children tend to switch between. Recent work examining 
reaction times (RT) as well as accuracy has supported the 
development of more complex balance-scale strategies with 
age, favoring the buggy rule over the addition rule as a Rule 
III strategy (van der Maas & Jansen, 2003), although the 
response patterns for buggy and addition are equivalent. 
   Individual variability in performance on different problem 
types has been acknowledged in theories of the phases of 
development. The staircase model captures the phases of 
development by proposing that transitions between rules are 
quick with relatively little overlap, while transitions in the 
overlapping waves model are more gradual and interleaved, 
particularly around Rule III (Siegler, 2002). A combination 
of these two models (Jansen & van der Maas, 2002) 
captures the behavioral data via steep transitions between 
Rule I and Rule II but overlap and gradual transitions 
between subsequent rules (such as Rule II, Rule III, and the 
addition rule) prior to reaching Rule IV. 
   Computational approaches have sought to specify the 
mechanisms that generate the behavioral profile of 
development on the balance-scale task. The models are 
disparate, ranging from connectionist implementations 
(Dawson & Zimmerman, 2003; McClelland, 1989; Shultz, 
Mareshal & Schmidt, 1994) to production systems (van 
Rijn, Someren & van der Maas, 2003) to decision trees 
(Schmidt & Ling, 1996). Typically, these models have 
attempted to capture the sequence of Siegler’s four core 
rules, and have been judged on their ability to capture the 
complete range of behavioral phenomena (van Rijn et al., 
2003). However, Dawson and Zimmerman (2003) have 
argued that computational modeling has been preoccupied 
with fitting the data. Since none of the models give a perfect 
fit and the detailed data are themselves contested, at this 
stage the contribution of models should be a qualitative 
understanding of the mechanisms underling rule transitions. 

Despite the wealth of research on the balance scale task, 
one area has remained relatively under explored until 
recently. This is the question of variability. The study of 
variability in cognitive development is important for three 
reasons. First, within a single individual, it has been argued 
that increased variability in performance presages the onset 
of developmental transitions (Jansen & van der Maas, 

2002). Second, variability across individuals of the same 
age gives a window onto general or specific intelligence. 
Third, variations in development from the normal pathway 
are found in disorders, sometimes exhibiting delay, 
sometimes failure to reach more complex levels of 
reasoning, and sometimes qualitatively atypical patterns. 
Implemented models have generally focused on the 
normative (average) pathway, yet each type of variability 
must ultimately be explained at a mechanistic level (Thomas 
& Karmiloff-Smith, 2003). 

The following sections report an initial set of simulation 
results investigating sources of variability in the balance 
scale task. First we introduce our normal model of 
development. Second, we explore how changes to the 
model’s computational parameters, representations, and 
training environment alter its behavioral profile. Third, we 
evaluate variability in a single case study. 

The Normal Model 
The normal model was defined as a 3-layer feedforward 
connectionist network consisting of an input layer of 20 
units representing the number of weights placed (up to 5) on 
each side of the scale (5 distances either side), a hidden 
layer of 4 units, and an output layer of 2 units (tip left, tip 
right). The model used McClelland’s (1989) input encoding, 
where weight and distance information were represented on 
different units. McClelland’s original model separated 
channels for weight and distance processing channels (i.e., a 
split hidden layer), a design assumption intended to amplify 
the model’s difficulty in integrating these dimensions. In 
contrast, we used an undifferentiated network because we 
wished to avoid using a proprietary network architecture for 
this particular reasoning problem. There are limitations in 
our simple model but it remains a useful launching pad to 
begin an exploration of developmental variability. 

The model was trained using back-propagation for 100 
epochs, with a learning rate of 0.01. Ten network runs were 
conducted per manipulation, with initial weights 
randomized between ±0.5. The standard deviation across 
runs is depicted in all figures. The training set contained of 
621 of the possible 625 balance scale problems for a five-
peg scale using up to five weights, and was similar to that of 
McClelland in that balance and weight problems were 
repeated in the training set. This is based on the original 
assumption that when learning about balance scale 
problems, children encounter more experiences that vary on 
the weight dimension than on the distance dimension. This 
resulted in a training set consisting of 1069 patterns rather 
than McClelland’s 1125. The remaining 24 problems were 
used to assess novel performance, which was assessed at 10, 
20, 25, 30, 35, 40, 50, 60, 70, 80, 90, and 100 epochs. 

The test set consisted of 4 problems from the 6 problem 
types (see Figure 1). The model’s performance on the test 
set was assessed with 7 test metrics. The metrics captured 
behavior in line with the following rules: (i) Rule I, (ii) SDD 
rule, (iii) Rule II, (iv) QP rule, (v) Rule III, (vi) addition 
rule, and (vii) Rule IV. Each metric calculated the 
percentage of responses consistent with its rule. Note that a 
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given correct response may be consistent with several rules. 
For example, Figure 2 shows the problem-space and the 
proportion of patterns consistent with the four core rules. 
 

 
 
 
 
 
 
 
 

 
Figure 2: The problem space for rules I to IV 

 

The normal network learned the training set to an accuracy 
of 98.0% (SD 0.0%). The mean performance of the normal 
model on each of the test metrics across training is shown in 
Figure 3 (1HL). Given that we did not separate distance and 
weight information in the architecture, the network did not 
exhibit strong evidence of early Rule I, SDD, or Rule II 
behavior, confirming that weight-distance integration 
difficulties require architectural assumptions. However, our 
focus here is upon the model’s balance scale behavior 
around Rule III, since much of the literature has focused on 
this phase. The sequence of metrics that best characterized 
the development of the model was: QP -> Rule III -> 
addition rule -> Rule IV. 
 
 
 
 

 
 
 
  
  
 
 
 
 
Figure 3:  Developmental phases of the normal model ‘1HL’ 
and networks with 2 and 3 Hidden Layers (2HL, 3HL) 
   

Exploring Variability 
Variability was explored by making a series of systematic 
changes either to the normal model’s computational 
parameters, to the problem encoding, or to its environment. 

Variability and Computational Parameters 
We varied (i) the number of hidden layers, (ii) the number 
of hidden units in a single layer, and (iii) the learning rate. 
 
Increasing the number of hidden layers The performance 
of the model was tested with 2 and 3 hidden layers (HL), 
with 4 units per layer. Additional hidden layers tend to 
increase the computational complexity of the mappings that 
can be learned by a network, while slowing down learning 
since the error signal must filter back through more levels. 

So that learning would fall within a 100-epoch window, the 
learning rate (lr) was increased as follows: 1HL=0.01, 
2HL=0.02, 3HL=0.2 (these values hold for subsequent use 
of these architectures unless otherwise stated)1. These 
networks achieved mean accuracy levels on the training set 
of 98.0, 99.8, and 100.0% respectively. The developmental 
profiles of the networks are included in Figure 3. Increasing 
the number of hidden layers altered the number of 
transitions in behavior made prior to approaching Rule IV 
performance (we define a transition as a shift in the rule that 
covers the most behavior). The standard deviation across 
runs went up as the number of hidden layers increased but 
notably, phases of development became less incremental. 
For example, the sequence of closest fitting metrics for 
models with 2HL was: QP -> addition rule -> Rule III -> 
Rule IV, but was just QP -> Rule IV for networks with 3HL. 
(This pattern did not result from lr changes, since it did not 
arise when 1HL was trained with a learning rate of 0.2). 
Increasing the power of the network reduced the number of 
transitional states it went through in reaching mastery. 
 
Increasing the number of hidden units in a single layer 
Expanding the number of units in a single a layer increases 
the capacity of the network to learn more patterns of a given 
complexity, and allows it to learn a given problem with 
smaller weights, thereby requiring less learning. We 
evaluated networks with 4, 10, and 20 units in the hidden 
layer for the normal 1HL network. After training, the all 
networks had a mean accuracy of 98.0%. Their 
developmental profiles are shown in Figure 4. Increasing 
the number of hidden units did not change the profiles 
compared to the normal case. We explored this 
manipulation in the 2HL and 3HL networks and found the 
same result. If the capacity of the system is measured in 
parallel processing resources, additional capacity did not 
alter the transitional stages through which the system passed 
but altered the rate at which it did so. 
 
Reducing the learning rate Individual differences and 
developmental disorders are sometimes characterized in 
terms of delay. This term is usually descriptive, but one 
obvious way to implement it is to turn down the learning 
rate. This would not explain why delay is frequently uneven 
across problem domains, but we can at least address how 
learning rate alters the transitions that the system exhibits. 
Learning rate was reduced in the normal network in four 
steps as follows: 0.08, 0.06, 0.04, and 0.02. After 100 
epochs, these networks achieved mean accuracies 98.0, 
97.1, 94.1, and 56.7% respectively. Figure 5 depicts their 
developmental phases, with the four steps labeled LR1 to 
LR4. Slower learning rates caused roughly parallel shifts for 
all metrics from right to left. That is, while development 
slowed down, the order of the transitions between types of 
reasoning behavior remained the same. When the learning 
                                                           
1 These networks showed qualitatively equivalent results to multi-
hidden-layer networks trained on the same lr with an extended 
training time.  

Rule I            SDD             Rule II             QP             Rule III            Add            Rule IV 
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rate was insufficient to achieve mastery within the fixed 
time window of 100 epochs, performance terminated at a 
less complex level (e.g., LR3 terminated at Rule III rather 
than IV, LR4 at the addition rule). However, were training 
to be extended, Rule IV would be reached in both cases. By 
contrast, developmental disorders typically exhibit 
asymptoting performance at less complex levels of 
reasoning. For individual differences, it is unclear whether 
everyone eventually ‘catches up’. Reduced learning rate 
does not, therefore, seem a good (sole) candidate to explain 
the type of developmental delay found in disorders. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  Profile for models with 4 (normal), 10 and 20 
hidden units in a single hidden layer 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5:  The 1HL model with reducing learning rates 

Variability and the Problem Encoding 
We explored two variations in the problem encoding. These 
correspond to alterations in the way in which the problem is 
presented to the child (perhaps in the salience of different 
information or options) or to alterations in how the problem 
is encoded in the part of the cognitive system required to 
predict outcomes of balance-scale problems. We either: (i) 
added a further response option so that the scale could either 
tip left, tip right, or balance; or (ii) altered the input coding 
so that information about the weights was represented with 
position-specific units. 
 
Changing the response options In the normal model, there 
are two output units whose activation can vary between 0 
and 1. If the left output unit is more active than the right unit 
by more than 0.33, the response is ‘tip left’, and vice versa 
for ‘tip right’. If the difference between the units is less than 

0.33, the response is taken to be ‘balance’ (McClelland, 
1989). However, since balance is a legitimate response for a 
proportion of the problems, it could reasonably be encoded 
as a separate output unit. For this condition, a response was 
considered correct if the activation of the corresponding 
output unit was >=0.5 and the activation of any other output 
unit was <0.5. Finally, because encoding of the problem 
domain could alter its complexity, we contrasted 
performance on 1HL, 2HL, and 3HL networks with 4 
hidden units per layer. After training, these networks 
achieved mean accuracy levels of 86.3, 87.5, and 99.2% 
respectively. The developmental phases are shown in Figure 
6. Comparison with Figure 3 reveals that the additional 
response option dramatically changed the pattern of 
transitions. 1HL and 2HL networks began in Rule I and did 
not exceed Rule II. Only the 3HL network reached Rule IV. 
Changing the response options altered the categorization 
that the internal representations had to make across problem 
types. It ramped up the complexity of the task since 
balances must be computed internally rather than left to the 
competition between left and right output units. 
 

Combined Weight-Distance Encoding In McClelland’s 
(1989) formulation, weight and distance information were 
encoded separately. However, one could represent the 
amount of weights on each peg locally at each distance. For 
this manipulation, there were 10 input units, one for each 
peg on the balance scale. The activation level coded the 
number of weights placed on a peg. Activation ranged from 
0 to 1 and each weight was represented by an increment of 
0.2. Thus, three weights on a peg corresponded to an 
activation of 0.6. The composition of the training set and the 
output responses remained as normal. Networks with 1, 2, 
and 3 hidden layers were run to assess the demands of this 
encoding. The results are in Figure 7. 

The final performance of the models was poorer than with 
the normal encoding by around 20% (1HL=80.2%, 
2HL=65%, 3HL=90.3%). As above, only the 3HL network 
achieved Rule IV reasoning as the closest fitting metric at 
the end of training. 1HL only reached the QP rule. Again, a 
recoding of the problem domain, this time at input, 
increased the complexity of the task and altered the 
developmental phases exhibited by the model.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Profile over training for models with 3 response 
options, shown for 1HL, 2HL, and 3HL networks 

Rule I           SDD            Rule II            QP             Rule III            Add            Rule IV

Rule I           SDD            Rule II               QP              Rule III            Add            Rule IV 

Rule I           SDD            Rule II            QP             Rule III            Add            Rule IV
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Figure 7:  Profile over training for models trained on an 
environment with combined encoding 

Variability and the Engaged Environment 
Since development in the balance scale task corresponds to 
the child’s active exploration of the domain, we refer to the 
training set as the engaged environment. We created two 
variations in the environment: (i) a training set without the 
weight dimension bias, and (ii) an impoverished training set 
with restricted coverage of the problem space. In these 
cases, the normal architecture and problem encoding was 
used. 1HL, 2HL, and 3HL networks with 4 units per layer 
were also contrasted to explore whether additional 
representational power could overcome limitations in the 
engaged environment. 
 
An Impoverished Engaged Environment This engaged 
environment consisted of a subset of 703 training patterns, 
which excluded any problems where the distances from the 
fulcrum on both sides were >=3. After training, the 1HL, 
2HL, and 3HL reached accuracy levels of 97.8, 99.7, and 
100.0% respectively. This environment had an adverse 
effect on the single hidden layer network, where the closest 
fitting metric at the end of training was Rule III (Figure 8) 
instead of the normal Rule IV. The number of closest fitting 
metrics was also fewer across training, indicating fewer 
transitions. In contrast, for 2HL and 3HL networks, the 
closest fitting test metric at the end of training was Rule IV, 
with the 2HL network making more transitions than the 
3HL. For all models, there was a considerable increase in 
variability between individual runs compared to the normal 
environment. This impoverished environment, then, 
increased developmental variability between individuals 
but, importantly, could be compensated for in a more 
powerful learning system with respect to this test set. 
 
An Unbiased Engaged Environment The unbiased 
engaged environment consisted of 1069 patterns where the 
original bias for the weight dimension was removed. The 
duplicated weight problems were replaced with a random 
selection of patterns already in the training set. All models 
trained using this environment were able to reach Rule IV 
performance. However, this environment reduced the 
number of transitions between rules across training. The 
developmental phases for 1HL, 2HL, and 3HL networks are 
depicted in Figure 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8:  Developmental phases for models in an 
impoverished engaged environment 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 9: Profile over training for models trained on an 
unbiased engaged environment. 

Individual Variability: A Case Study  
Variability also occurs during the development of individual 
children, including regression to less sophisticated rules. 
However, averaging across individuals risks producing 
variability not found in any one, which may be the case for 
simulations as well. In this section, we report the rule 
transitions in the trajectory of a single network (1HL, 
lr=0.008, normal encoding and training set). Performance 
on the training set is shown in Figure 10(a), while 10(b) 
illustrates performance on the 6 problem types in the test set 
at 25, 40, 60, 70, and 100 epochs. Figure 11 depicts the rule 
transitions shown by this individual network. The model 
made the following transitions: QP => addition => Rule III  
=> addition => Rule IV. The trajectory confirms variability 
around Rule III, with a jump from QP to addition, back to 
the less sophisticated Rule III, returning to addition, and on 
to Rule IV. Inspection of Figure 10(b) suggests that this 
variability is driven by the network’s attempts to solve the 
low-salience distance problems. Balance and weight 
problems are performed well from early on, but the network 
struggles to accommodate distance and conflict-distance 
problems, inducing greater variability and more transitions 
between 60 and 80 epochs. In sum, the variability found in 
averaged data is not an artifact of averaging but found in 
individual runs. Apparent rule transitions, including 
regressions, are a key part of the network’s attempts to 
integrate weight and distance information in solving balance 
scale problems. 
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Figure 10 (a) training performance; (b) test performance 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11:  Profile of the model on test patterns across 
training. Rule transitions are marked by a dark square 

Conclusions 
Mechanisms underlying variability in cognitive 
development are important for understanding individual 
differences and developmental disorders, as well as 
normative development. Simulation of the balance scale 
task indicated that variations of internal computational 
parameters, problem encoding, and engaged environment all 
act on the complexity of the reasoning exhibited by the 
network during learning, including the findings that more 
hidden layers increase complexity but not more units per 
layer (contrasting reasoning power with capacity); that a 
slower learning rate does not reduce complexity per se and 
is therefore a poor model of unresolved developmental 
delay; and that an impoverished environment can reduce 
complexity but (at least in some cases) be compensated for 
by a more powerful learning system. 
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