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This is a commentary on Triesch et al. (2006).

In this commentary, we focus on two aspects of  the
target article. The first is the decision to separate the
gaze following model into two trainable components, a
‘When’ component to determine when to shift gaze and
a ‘Where’ component to determine where gaze should be
shifted to. The second is the lesson that the authors draw
regarding multiple causality in developmental disorders,
that is, from the finding that very different computa-
tional causes can lead to similar deficits in the emergence
of  gaze following. In that context, we assess a version
of the gaze following model given Attention Deficit /
Hyperactivity Disorder (ADHD).

In their article Triesch, Teuscher, Deàk and Carlson (2006)
implement their Basic Set account of gaze following
within a computational setting. In doing so, they provide
a working parameterized theory with which to further
our understanding of the neurocomputational causes of
deficits within developmental disorders. A key feature
of their model is that the developmental process itself  is
central to the emergence of atypical behaviour. Through
the use of theory-driven parameter manipulations, it is
possible to identify atypical precursors that produce
later end-state deficits. For example, changing the reward
value of looking at faces in different ways in their model
is sufficient to characterize gaze following behaviour in
both autism and Williams syndrome. This is very much
in tune with the neuroconstructivist theoretical approach
and empirical studies pioneered by Karmiloff-Smith
(1998), in which she proposes that the causes of adult
cognitive deficits in genetic developmental disorders must
be traced back to their origins in infant precursors for a
full understanding of the disorder (see also Elman, Bates,
Johnson, Karmiloff-Smith, Parisi & Plunkett, 1996).

The biological plausibility of reward-driven learning
motivates Triesch et al. to select Temporal Difference
learning as their central mechanism. This is an embodied

approach to modelling in which the agent (in this case,
the infant) interacts with a predefined environment,
passing from one state to another with each interaction
in order to achieve some future reward. The agent’s
experiences in its environmental setting are balanced
through its tendency to either (a) exploit its existing
knowledge of states and actions that result in rewards,
or (b) explore new states in search of (perhaps greater)
reward. In this model, the agent’s acquisition of knowledge
is controlled through the learning rate, while the decreasing
reward for remaining in a given state (modelled here
through habituation) encourages the agent to explore
new paths of potential reward.

Architectural assumptions

In modelling, simplicity is both a virtue and a necessity.
Overly complex models are time consuming to build and
run the risk of revealing little about the potential causes
of a particular behaviour, since credit and blame assign-
ment can become opaque. The model of Triesch et al. is
an excellent example of a model that generates a rich set
of predictions, despite its simplicity. Some of these stem
directly from the model, others from the theoretical
framework stimulated by constructing the implementa-
tion. Importantly, all aspects of the theory are exposed
for scrutiny in a model.

Triesch et al. argue that their decision to split the
model into two components is not a necessary assumption.
One could use a single system but ‘learning time would
be expected to increase because of the higher dimension-
ality of the resulting state space’ (p. 132). This raises two
issues: first, what is the magnitude of the increase in
complexity of the learning problem for a single system
and second, how does this decision bear on the authors’
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proposal that their model contrasts with innate modu-
larity? Beginning with the complexity issue, a concrete
example will help. A reinforcement learning system can
be conceptualized as a table that relates states to actions.
For each state that the system can be in, the aim is to
learn a reward estimate for each possible action.1 Tables 1
and 2 illustrate possible state-action tables for the When
and Where components for a system that has success-
fully learned to gaze follow in an environment where
five regions of space may contain interesting objects and
episodes last 10 time steps (note, we invented the values
in these tables for illustrative purposes). Separating the
system into two components results in a modest total
of 20 + 42 = 62 cell values, for which reward estimates must
be learned through social interaction.

Now, consider what would happen if  we did not split
the model. This would result in a single state-action
table, which differs in two ways: (a) we would have to
add an extra row to the original Where table to accom-
modate ‘Maintain Fixation’, since the current six actions

are for cases where fixation changes; and (b) we would
need to duplicate this entire table for every time step.
This would result in a table consisting of 7 × 7 × 10 = 490
cells, for which reward estimates must be learned.

Is learning in this larger system tractable? Does it
require more learning events than would be realistically
available to the child between, say, 5 months and 10
months, in an 8-hour infant ‘working day’? Mitchell
(1997) points out that reward learning systems of this
sort can be slow to converge, since the same sequence
of behaviours must be encountered a number of times to
allow reward signals to filter back from the goal state to
the earlier steps that must precede it in the sequence.
If  we follow the authors’ relation of model time to real
time (1 step = 250 msecs), the learning depicted in their
Figure 2 corresponds to around 7 hours of interaction.
If  a non-modular system could converge in 10 or 100
times this period, this architecture might still be viable,
but perhaps not if  convergence takes 1000 times as long.
Of course, it is undoubtedly premature to relate a model
of  this simplicity to real-time learning events. Never-
theless, our point is that architectural decisions of this
type are non-trivial and, when scalability is taken into
account, may form a key assumption of the proposed
theory. In this case, we can make the assumption more
explicit. The architectural decision corresponds to the

1 The table can be translated into a two-layer neural network, where
the possible states correspond to input units and the possible actions
correspond to output units, and the reward estimates correspond to
the strength of the connection weight between each input-output unit
pair. In this way, Triesch et al. relate their model to neural pathways
linking the Fusiform Gyrus to Front Eye Fields.

Table 1 A state-action table for the When module
 

 

States (time slices)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Actions Maintain fixation 90 80 55 40 30 18 10 5 3 1
Shift fixation 10 20 45 60 70 82 90 95 97 99

Note: Values show the system’s reward estimates for each action in each state. Values are illustrative and depict the idea that habituation conditions the system to change
fixation after some point in time. Note, the action that is selected is determined probabilistically, depending on the system’s bias for exploring the environment versus its
bias for exploiting its existing knowledge (see Triesch et al., equation 7).

Table 2 A state-action table for the Where module
 

 

States

Where caregiver is looking 

Caregiver looking at infant No info. (not looking at caregiver)Region 1 Region 2 Region 3 Region 4 Region 5

Actions Fixate 1 80 5 5 5 5 20 10
Fixate 2 5 80 5 5 5 20 10
Fixate 3 5 5 80 5 5 20 10
Fixate 4 5 5 5 80 5 20 10
Fixate 5 5 5 5 5 80 20 10
Fixate caregiver 0 0 0 0 0 0 50

Note: Values are illustrative and depict a system that has successfully learned gaze following. Therefore the system gets most reward from looking to the region where
the caregiver is looking. Other regions still have reward estimates because the caregiver may be unreliable, the infant may have misperceived direction of gaze, or may
chance upon rewarding events by ignoring the caregiver. For states where the infant is already looking at the caregiver, ‘Fixate caregiver’ reward is zero, since the When
table has already requested a change in fixation. The right hand column (‘No info.’) corresponds to the system’s ‘sociability’, i.e. its tendency to spontaneously look at
the caregiver rather than search for an object.
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theoretical proposal that the system is granted a priori
the ability to generalize reward information across time steps.

Interestingly, Triesch et al. present their model as an
alternative to theories that argue for an innate gaze
following module. Their use of a modular architecture
perhaps belies this status, but more significantly, it is
worth noting that one way to define an innate module
is to pre-specify proprietary inputs and outputs for a
system – even if  the system itself  uses domain-general
processing principles (Thomas & Richardson, 2006).
Given that (a) this gaze following system is only
exposed to caregiver information, reward information
(disconnected from the object that drives it) and time
step information, and (b) it is only allowed to drive
eye-gaze movements as an output, our view is that Triesch
et al.’s model comes closer to demonstrating what a realistic
innately modular system would look like than opposing
innate modularity itself. The model’s great bonus, however,
is in detailing how a system with these architectural
commitments could proactively interact with the environ-
ment to acquire its representational content, an element
frequently missing from nativist accounts.

Reinforcement learning and developmental 
disorders: the issue of multiple causality

The second aspect of the model we wish to consider is
multiple causality. Triesch et al. (2006) state that there has
been relatively little use of Temporal Difference learning in
modelling development, a point with which we certainly
agree. However, in this context, we should mention a
recent paper by Williams and Dayan (2005; see also
Williams & Dayan, 2004). These researchers use Temporal
Difference learning to simulate the developmental profile
of impulsivity, based on a model of the role of dopamine
in operant conditioning. In this model, the agent (child)
must learn to delay an immediate action that gains a small
reward in favour of a later action that gains a larger reward.
This is a relatively simple model, corresponding only to
the When component of the Triesch et al. model (e.g.
Table 1). Williams and Dayan then go on to demonstrate
how manipulating the start-state parameters of their
model can capture features of ADHD, specifically an
elevated tendency to select actions that achieve immediate
rewards rather than those that work towards long-term
goals. The Williams and Dayan model leads us to ask,
could we generate an ‘ADHD’ version of  the Triesch
et al. model? What would its gaze following look like?
Since Triesch et al. invite readers to try out their model,
we could not resist the opportunity to find out.

Following Williams and Dayan (2005), there are three
ways in which one could simulate ADHD in the Triesch

et al. model. These are: (1) reduce the learning rate (α in
equation 6). This would result in future rewards needing
more learning events to percolate back across time steps.
Delayed rewards would take more developmental time
to exert an influence on immediate behaviour; (2) alter
the temperature parameter (τ in equation 7). This would
make the model more exploratory, so that it would be
more likely to ignore its current knowledge about poten-
tial rewards when choosing actions; (3) change the dis-
counting factor (γ in equation 5) so that immediate
rewards have a greater influence on learning than future
rewards. Figure 1 (a) demonstrates a normal develop-
mental trajectory generated from Triesch et al.’s model,
along with trajectories for systems with (b) a learning
rate reduced by 40%, (c) a temperature increased by 32%
and (d) a discounting rate reduced by 38%.

In each case, the model generates the prediction that
an ‘ADHD’ system should show impairments in acquir-
ing gaze following. There is little work on ADHD in
infancy as the disorder is not usually diagnosed until
childhood. Nevertheless, these simulation results suggest
infant precursors of the disorder in gaze following. This
finding reinforces Triesch et al.’s claim that models of this
sort point to multiple underlying causes for behavioural
deficits in developmental disorders. But it also raises
a methodological issue. Triesch et al. use hypothesis-
driven parameter changes to the reward signal to produce
the developmental trajectories for autism and Williams
syndrome. However, the strength of  this result must
be weighed against the number of possible parameter
manipulations that lead to the same outcome. The
study of developmental deficits via implemented models
requires researchers to explore the parameter space (or
background flexibility) of their models (see Thomas &
Karmiloff-Smith, 2003; Williams, in press, for methodo-
logical arguments). If  many parameter manipulations
result in the same pattern of atypical behaviour (or a
limited set of patterns), it increases the likelihood that the
range of deficits is being shaped by the structure of the
problem domain rather than the particular parameters
that produce sub-optimal learning. This motivates further
investigation of  the role of  the problem domain in
constraining development.

In other words, Triesch et al.’s two manipulations
caused a deficit in acquiring gaze following, but so did
three further manipulations derived from a theory of
ADHD. One implication is that, in this formulation of
the problem, gaze following is more vulnerable to develop-
mental disruption than shifts of fixation to the caregiver,
because gaze following is a sequence involving more steps
than caregiver fixation; so it necessarily requires further
propagation of  the reward signal back to time steps
earlier in the sequence.
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Importantly, however, if  one inspects Figure 1 closely,
it becomes apparent that, aside from the much slower
and more linear acquisition of gaze following, there are
subtle differences between the three atypical trajectories
in (b) to (d). For example, the ‘exploratory’ system in (c)
displays declining rates of caregiver fixation and reward,
while the ‘delayed’ system in (b) shows prematurely asymp-
toting performance on these metrics, and the ‘discounted’
system in (d) shows persistent gradual improvement. The
advantage of implementation in the study of disorders,
then, is that we gain a concrete handle on a nebulous notion
such as multiple causality, to a point where empirical
predictions may be generated. These may allow us to
separate sub-types of individuals within a more broadly
defined disorder. Using this approach, we recently used

a computational model to derive behavioural heuristics,
based on test score variability, to distinguish heterogene-
ous from homogeneous developmental disorder groups,
where multiple causality is suspected to be operating
(Thomas, 2003).

Summary

In sum, computational models such as that of  Triesch
et al. are not only a powerful tool for understanding the
emergence of a particular behaviour, but also force us to
face and explore broader issues regarding the structure,
organization and mechanisms of learning in cognitive
systems.

Figure 1 Emergence of (a) normal gaze following behaviour (the equivalent of Figure 2 in Triesch et al.), shown alongside three 
parameter manipulations, (b) learning rate α = 0.001, (c) temperature τ = 0.125, and (d) discounting rate γ = 0.3, simulating a 
model with ADHD (default ‘normal’ parameter values: α = 0.0025, τ = 0.095, γ = 0.8). The caregiver index (CGI), gaze following 
index (GFI) and reward are shown. The error bars show standard deviations across 15 simulations.
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