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Supplementary Material 

To accompany the article ‘Multi-scale modeling of gene-behavior associations in an 

artificial neural network model of cognitive development’ by M. S. C. Thomas, N. A. 

Forrester, and A. Ronald 

 

Introduction 

This document contains technical details to accompany computer simulations that explore 

a population of networks acquiring the past tense domain. This domain is here used as a 

representative abstract learning problem within cognition. Individual variability is 

included both in the parameters of the artificial neural networks which model the 

children’s learning systems, and the learning environment to which they are exposed. The 

parameters of the artificial neural networks are encoded in an artificial genome. 

Population variability in parameters is created by generating populations of artificial 

genomes. Each genome is realized as a parameterized network. The network is exposed 

to an individualized learning environment, generating a trajectory of behavioral 

development. The inclusion of an artificial genome level in the simulations allows us to 

study the associations that can arise between values on the artificial genome and 

behavioral variability that is the product of an implemented developmental process. 

In the following, we describe the computational parameters that varied in the 

artificial neural networks. We outline how the range of variation for each parameter in 

the population was established. We then describe the method for designing the artificial 

genome, and the assumptions that this method embodies. Finally, a set of lookup tables is 
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included detailing how values on the artificial genome were mapped to computational 

parameter values in the artificial neural networks. 

 

The base past-tense model 

Model architecture and parameters  

The original connectionist model employed a three-layer artificial neural network, 

comprising an input layer, a layer of internal or ‘hidden’ units, and an output layer. It was 

trained using the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), a 

type of supervised learning. The free parameters in the model were the number of hidden 

units, the learning rate, and the momentum (see below). An expanded set of 14 

parameters was employed in the current simulations, in many cases to allow for 

additional analogues to known neurocomputational properties. However, 

backpropagation itself is not viewed as fully biologically plausible. We use it here in 

place of a more biologically plausible error-correction algorithm (see Thomas & 

McClelland, 2008, for discussion). An introduction to the idea that parameters in 

connectionist models can explain types of cognitive variability can be found in Thomas 

and Karmiloff-Smith, 2002a). The parameters and model architecture are depicted 

schematically in Figure 1. 
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Figure 1: Architecture of the connectionist model of English past-tense acquisition, 

showing the internal parameters that varied in the population. 
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The parameters were as follows: 

Building the network: 

- Architecture: In addition to the 3-layer network, a 2-layer network without a layer of 

hidden units, and a fully connected network were used. A 2-layer network has less 

computational power than a 3-layer network but learns more quickly. A fully 

connected network contains both direct connections from input to output and a hidden 

layer, and produces a computationally more powerful system. Networks could 

therefore have 1, 2, or 3 layers of connection weights. Previous connectionist models 

have proposed single or multiple pathways may be available to connect input and 

output (e.g., Westermann, 1998; Zorzi, Houghton & Butterworth, 1998), and that 

differential use of routes may explain individual differences in behavior (Harm & 

Seidenberg, 2004; Plaut, 1997; Thomas & Karmiloff-Smith, 2002b). Recent functional 

brain imaging of reading lend support to this proposal (e.g., Richardson et al., 2011; 

Seghier et al., 2008).  

- Hidden units: For networks with a hidden unit layer, the number of hidden units could 

vary. Variations of the number of hidden units have been proposed to account for 

developmental deficits such as dyslexia (e.g., Harm & Seidenberg, 1999) and autism 

(e.g., Cohen, 1998), as well as individual differences (Richardson et al., 2006a, b). We 

did not vary the number of hidden layers. More hidden units within a layer increases 

computational power and the rate of learning, while more layers of hidden units 

increases computational power but slows down learning, since error must be 
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propagated from the output more deeply into the network to improve learning (see 

Richardson et al., 2006a,b, for a comparison of these conditions). 

- Sparseness: The architecture determined how many layers of connection weights 

existed. Of the potential connections in a layer, only a certain proportion was created. 

The sparseness parameter set the probability that any given connection would be 

created. Greater connectivity increases computational power, but can lead to slower 

learning. Under some conditions, it can also lead to poorer generalization, since 

greater integration of information causes more item-specific and context-specific 

learning (see McClelland, 2000, for a proposal that conjunctive coding may cause 

autistic symptoms; and conversely, Beversdorf, Narayanan & Hughes, 2007, for a 

proposal that the symptoms arise from sparse connectivity). 

- Weight variance: Connection weights were assigned an initial random value within a 

range depending on this parameter. E.g., if set to 0.5, weights would be randomized 

between +/- 0.5. Large initial weights take time to unlearn, which slows learning (an 

effect known as entrenchment; see Munakata & McClelland, 2003, for discussion). 

 

Processing dynamics: 

- Processing noise: The net activation a receiving unit receives from a given sending 

unit is a product of the sending unit’s activation and the connection strength between 

them. Transmission noise was added to this net activation. Gaussian noise was used 

and the parameter specified the standard deviation of the noise distribution around 

zero. Noise has been used to simulate under-specified representations in development 

(e.g., to simulate Specific Language Impairment: Joanisse & Seidenberg, 2003; or as a 
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candidate explanation of autistic symptoms: Simmons et al., 2007), and has also been 

proposed as an essential primitive in neural processing (McClelland, 1993). 

- Unit threshold function: A receiving unit sums the net activation from all sending units 

and uses an activation function to determine its consequent output. We used a 

common non-linear activation function, the sigmoid or logistic function, equivalent to 

a smoothed threshold. This function has a free parameter, the ‘temperature’, which 

makes the smoothed threshold either steeper or shallower. The activation function 

was: 

! 

Output =
1

1+ e" temperature# netinput+bias( )  

where netinput is the summed activation to a unit, bias is the negative of the unit’s 

threshold, and Output is the unit’s activation state in response to this input. A shallow 

function (low temperature) denies a unit the opportunity to make large output changes 

in response to small changes in net input, whereas a steep function (high temperature) 

approximates a non-smoothed threshold, thereby producing a unit with binary 

response characteristics. Variations in the slope of the sigmoid function have been 

proposed as candidate explanations of disorders such as specific language impairment 

(Thomas, 2005) and schizophrenia (Cohen & Servan-Schreiber, 1992), as well as 

ageing (Li & Lindenberger, 1999). Changes to the slope of the sigmoid have a number 

of effects on learning. A shallow slope means that processing units are less sensitive to 

small differences in their input. This poor discriminability means they will be slow to 

learn categorizations that rely on small distinctions in the input. Secondly, in the 

backpropagation algorithm, weight update for a given error signal is proportional to 

the slope on the sigmoid (the differential of the function). If the function resembles a 
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gentle S-shape, then the slope across the range of unit activations will be small. A 

shallow sigmoid will lead directly to slower learning. Conversely, if the temperature is 

very high, producing a sigmoid similar to a step function, for most inputs to a unit, it 

will be jammed on or off (‘saturated’) rather than in its dynamic range. When a unit is 

saturated, the slope on the sigmoid function is flatter (the regions below or above the 

step). When it is in its dynamic range it is steep (the step). If a unit is predominantly 

saturated due to a high temperature, the flat slope will again lead to small weight 

changes for a given error signal and therefore slow learning. Finally, units with high 

temperatures flip between being saturated on or off. They are therefore ill suited to 

learning mappings requiring graduations of activation states. In sum, temperatures that 

are either too high or too low can delay learning. 

 

Network maintenance: 

- Connection weight decay: each connection’s magnitude was reduced by a small 

proportion on each presentation of a training pattern, according to the weight decay 

parameter. The approximate range of weight decay values was derived by estimating a 

percentage of weight value that could plausibly be lost overall all of training (e.g., 

50%), and then dividing this proportion by the number of training epochs (e.g., 1000) 

and the number of training patterns presented on each epoch (e.g., 508), to give a 

proportional reduction in the connection weights to be applied on each pattern 

presentation (e.g., 0.5/1000/508=9.84 x 10-7). To our knowledge, weight decay has not 

been used as a candidate mechanism to explain individual variability. 
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- We did not simulate the increase in synaptic density observed in human cortex during 

infancy and early childhood, instead simulating the outcome of this process through 

variations in the sparseness of connectivity; we did, however, implemented the 

pruning of spare resources from mid-childhood (Huttenlocher, 2002). The pruning 

process eliminated small connection weights. Variations in pruning have been 

proposed as an explanation of autistic symptoms, and specifically developmental 

regression (Thomas, Knowland & Karmiloff-Smith, 2011). The pruning process 

involved three parameters: onset, threshold, and probability: 

- Connection pruning – onset: Connections that were not being used were 

probabilistically pruned away after a certain point in training. The onset parameter 

determined the point in training when pruning began (see Thomas & Johnson, 2006, 

for simulations of pruning applied to sensitive periods in plasticity). 

- Connection pruning – threshold: Connections stood a chance of being pruned after 

onset only if their magnitude fell below a threshold determined by this parameter. The 

rationale is that small weights are assumed not to transmit strong activations and 

therefore not to be playing a key role in computations. They may therefore be removed 

to save on resources. 

- Connection pruning – probability: If the magnitude of a connection fell below 

threshold after pruning had begun, it was eliminated probabilistically based on this 

parameter. High probability leads to faster loss of unused connections. Low 

probability leads to slower loss. 
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Network adaptation: 

- Learning algorithm error measure: The backpropagation algorithm was used with two 

different metrics to determine the error signal marking the disparity between the 

network’s current output and its intended target. These were Euclidean distance and 

cross-entropy (Hinton, 1989). The Euclidean distance metric produces less weight 

change for a unit when it is committed to an erroneous response than the cross-entropy 

measure. That is, when a unit is stuck on in a saturated state but the learning algorithm 

requires it to be off, or vice versa, cross-entropy will lead to faster changes to its 

weights to change its activation state than Euclidean distance. Under some conditions, 

cross-entropy can therefore be a more plastic learning algorithm, leading to faster 

learning and higher ceiling performance.  

- Learning rate: This parameter determined how much the connection weights were 

altered in response to a certain disparity between output and target during supervised 

learning. A large learning rate produces a system that learns more quickly but that also 

may be unstable, flipping between good performance on different parts of the problem 

domain. Differences in learning rate have been proposed as explanations of individual 

differences in cognitive ability (Richardson et al., 2006a,b) and general intelligence 

(Garlick, 2002), as well as developmental deficits (e.g., dyslexia; Harm & Seidenberg, 

1999). 

- Momentum: This parameter allowed some proportion of the weight change on the 

previous learning trial to be carried over. It serves a smoothing function to prevent 

learning from getting stuck in local, sub-optimal solutions. While a parameter often 
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varied in connectionist models of development, it has not to my knowledge been used 

as a candidate explanation for individual differences in learning. 

 

Network response: 

- Nearest neighbor threshold: Network output comprised a vector of continuous 

activation values between 0 and 1, while legal responses of the network were binary 

vectors. An algorithm determined which legal phoneme was closest to the activation 

patterns at onset, nucleus, and coda. However, the phoneme was only recognized as a 

response if the activation was sufficiently close to the legal phoneme (using a root 

mean square or RMS measure). This was determined by the nearest neighbor 

threshold. (The legal phonemes could of course still be the incorrect ones for the target 

verb). The nearest neighbor computation may be viewed as equivalent to the settling 

of an unimplemented recurrent attractor network into a particular response state (see 

Plaut et al., 1996, for a model of reading development in which this attractor network 

was implemented). The nearest neighbor threshold parameter then indexes the 

efficiency of this attractor network to generate a response within some notional 

deadline. A high threshold allows an approximate output to be recognized as correct 

(i.e., larger error is tolerated); a low threshold requires a more exact initial output. The 

use of a nearest neighbor algorithm allowed the network to generate accuracy levels. 

Differences in the functioning of the attractor network (sometimes called ‘clean-up’ 

units) have been proposed as a candidate explanation of developmental deficits (e.g., 

dyslexia; Harm & & Seidenberg, 1999). 
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Calibrating parametric variation 

Calibration was carried out to establish the full range of variation for each parameter over 

which the artificial neural network exhibited some degree of learning. In general, the 

network was fairly robust to variation in its parameters, as illustrated in Appendix A. 

Two of the network parameters were categorical: the architecture and learning 

algorithm metric. The others were continuously valued. In order to produce variability in 

the population according to these remaining parameters, they were calibrated as follows. 

An initial ‘normal’ set of parameters was defined. These were estimated based on 

previous research. Each of the continuously valued parameters was then varied in turn, 

holding the all other parameters at their initial values. For each parameter, the range was 

derived that produced failure of learning up to highly successful learning. In some cases, 

parameters had a monotonic relationship to performance (e.g., hidden units, where more 

was better); in other cases, there was an optimal intermediate value (e.g., activation 

function). The functions linking a given parameter and behavioral outcomes, with all 

other parameters held constant, are included in Appendix A. The aim was to determine an 

average or adequate value for each parameter, which was defined heuristically as ‘just 

enough to succeed and then a little bit more’. Values were then derived that would cause 

increasingly poorer or increasingly better performance around this value. We attempted 

to make poorer and better performance roughly symmetrical around average performance 

for each parameter. This caused some parameter ranges to be skewed. For example, 50 

hidden units was determined as the average value in a 3-layer network. Values of 40 or 

30 would cause poorer performance. However, to achieve equivalent differences above 

average level, 100 or 200 hidden units might be necessary. We chose to emphasize 
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behavioral symmetry around the average parameter value rather than parametric 

symmetry, on the grounds that the symmetrical bell curve is a common pattern observed 

in human abilities. The ranges for each parameter for the phonology-to-phonology 

network are included in Figure 2. 

We chose not to vary the input and output coding scheme. Our previous work 

suggests that, within certain limits, varying the problem encoding has similar effects on 

the developmental trajectory to altering computational parameters (Thomas & Karmiloff-

Smith, 2003). However, recoding the problem domain can in principle have extreme 

effects on learnability, if key distinctions in the input or output are lost in the recoding. 

Some models of developmental language impairment and dyslexia propose that 

differences in the representation of phonology cause subsequent behavioral deficits in 

grammar and reading acquisition (e.g., Harm & Seidenberg, 1999; Hoeffner & 

McClelland, 1993; Joanisse, 2004). 

 Although only main effects of each parameter were considered as sources of 

variability during calibration, we expected interactions between these 

neurocomputational parameters in subsequent learning. To pick four examples: (i) large 

numbers of hidden units can partially compensate for a shallow sigmoid function in those 

processing units; (ii) having a more sparse initial connectivity is likely to reduce the 

amount of weights eliminated via pruning because their magnitudes will be larger; (iii) 

high weight decay can be countered by a higher learning rate; (iv) an over-aggressive 

pruning process (e.g., with a high threshold and high probability) can be alleviated if its 

onset occurs very late in training when weights have become large, but exacerbated if the 

onset is early. Large numbers of parameter combinations were possible within our 
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scheme: given the number of levels specified for each parameter, approximately two 

trillion unique parameter combinations were available. 
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Figure 2: Parameter values and target population frequencies (dark lines). 
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In Figure 2, dark lines show parameter values (x-axis) and their target frequencies in the 

population (y-axis) for each of the 14 computational parameters. Each gene had two 

alleles, coded as binary values. Several genes coded for each parameter value. Sets of 

binary values were summed and a look-up table used to derive each parameter value. The 

numbers of binary alleles for each parameter were as follows: hidden units: 10; 

temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight variance: 8; 

architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; pruning onset 

epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12 

(total 126 bits). The grey lines show the functions for a condition in which parameter 

variation was narrower. We do not consider this condition further here. 

 
 
Specifying an artificial genome for the model 

The use of genetic algorithms entails creation of an artificial genome to encode the neural 

network’s parameter values, such that all possible genomes correspond to legal parameter 

sets. In creating the genome, we made the following assumptions: 

 

• There were two copies of each gene, with genes residing on pairs of 

chromosomes.  

• For simplicity, each gene had only two variants or alleles.  

• The two alleles produced different outcomes in the functionality of the 

neurocomputational parameter which they encoded.  

• The influence of genes was intended to be additive: we did not include dominant 

or recessive effects, and genes had the same effect in combination as in isolation. 
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This constraint was motivated by the finding within behavioral genetics that the 

effect of gene variants is predominantly additive on phenotypic outcomes (Plomin 

et al., 2008). Nevertheless, our method of implementing the mapping between 

gene variants and neurocomputational parameters did inadvertently produce some 

non-additive effects. 

• All neurocomputational parameters were polygenic. That is, their value was 

determined by the additive action of a collection of genes.  

• In the first instance, we assumed that the action of genes was not pleiotropic; that 

is, with respect to neurocomputational parameters, we assumed that no gene 

affected the value of more than one parameter at once. This simplification likely 

will not hold in many cases, and certainly the current theoretical view is that the 

relationship between genes and cognitive processes is pleiotropic (see, e.g., Kovas 

& Plomin, 2006). 

 

The assumption of polygenicity was motivated by the fact that we are using 

computational models to capture cognitive-level phenomena, and is a point worth 

emphasizing. We expect many low-level neural variations to influence 

neurocomputational functions at the level of cognitive processes in neural circuits. We 

therefore view it as unlikely that a single gene would modulate a neurocomputational 

parameter responsible for normal cognitive variation.  

We assumed, for reasons of simplification only, that the combination of alleles for 

each polygenic neurocomputational parameter had a deterministic relation to the value of 

that parameter in the instantiated network: that is, the allele set alone determined the 
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parameter value. Alternatively, this may be viewed as the assumption that the relation 

between alleles and parameter setting relied on an environment that did not vary across 

the individuals in the simulated population. We assumed (and did not instantiate) a much 

larger part of the genome that was species universal and was responsible for the basics of, 

for example, creating the processing units, the connections, the activation dynamics, the 

sensorium, the input-output connectivity pathways, and the mechanics of experience-

dependent systems. 

 

Parameter values and their link to the artificial genome for the past tense network 

For the basic past tense network, the total of number of genes used to encode the value of 

the 14 computational parameters was 126 (or two copies of 63) as follows – hidden units: 

10; temperature: 10; noise: 8; learning rate: 12; momentum: 8; weight variance: 8; 

architecture: 6; learning algorithm: 4; nearest neighbor threshold: 10; pruning onset 

epoch: 10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness: 12 

(total 126 bits). 

 

Figure 2 plots the range of values for each parameter against their target frequency of 

occurrence in the population. The translation of a genome into a parameter set was 

implemented by assigning alleles the value of 1 or 0, and then deriving the total for all the 

genes influencing the parameter. The parameter value was calculated from the total using 

a lookup table, created by hand for each parameter to reflect the range of values identified 

during the calibration stage. The lookup tables for the 14 parameters (in the Wide Genetic 

used) condition used in the association simulations are shown below. 
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Table 1. Lookup table linking the artificial genome to the Hidden Unit parameter, for the 

Wide Genetic Variation condition 

 Hidden Unit Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 10 20 30 40 50 60 75 100 200 350 500 
 

Table 2. Lookup table linking the artificial genome to the Temperature parameter, for the 

Wide Genetic Variation condition 

 Temperature Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4 
 

Table 3. Lookup table linking the artificial genome to the Noise parameter, for the Wide 

Genetic Variation condition 

 Noise Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

- 0.04 0.11 0.22 0.27 0.22 0.11 0.03 0.00 

Parameter value 0 0 0.05 0.1 0.2 0.5 2 4 6 
 

Table 4. Lookup table linking the artificial genome to the Learning Rate parameter, for 

the Wide Genetic Variation condition 

 Learning Rate Parameter Value 

Number of 
1-valued 

0 1 2 3 4 5 6 7 8 9 10 11 12 
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alleles 
Population 

probability  
0.0002 0.0029 0.02 0.05 0.12 0.19 0.23 0.19 0.12 0.05 0.02 0.0029 0.0002 

Parameter 
value 

0.005 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.25 0.3 0.5 

 

Table 5. Lookup table linking the artificial genome to the Momentum parameter, for the 

Wide Genetic Variation condition 

 Momentum Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0 0.05 0.1 0.15 0.2 0.35 0.5 0.6 0.75 
 

Table 6. Lookup table linking the artificial genome to the Weight Variation parameter, 

for the Wide Genetic Variation condition 

 Weight Variation Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 

Population 
probability 

0.004 0.03 0.11 0.22 0.27 0.22 0.11 0.03 0.004 

Parameter value 0.01 0.05 0.1 0.25 0.5 0.75 1 2 3 
 

Table 7. Lookup table linking the artificial genome to the Architecture parameter, for the 

Wide Genetic Variation condition. (0 = 2-layer, 1 = 3-layer, 2 = fully-connected) 

 Architecture Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 

Population 
probability 

- 0.109 - 0.781 - 0.109 - 

Parameter value 0 0 1 1 1 2 2 
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Table 8. Lookup table linking the artificial genome to the Learning Algorithm parameter, 

for the Wide Genetic Variation condition. (0 = Euclidean distance error metric, 1 = cross-

entropy error metric) 

 Learning Algorithm Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 

Population 
probability 

0.063 0.938 - - - 

Parameter value 0 1 1 1 1 
 

Table 9. Lookup table linking the artificial genome to the Nearest Neighbor Threshold 

parameter, for the Wide Genetic Variation condition 

 Nearest Neighbor Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.010 0.044 0.117 0.451 - 0.205 0.117 0.044 0.011 - 

Parameter 
value 

0.0025 0.005 0.01 0.025 0.1 0.1 0.15 0.2 0.25 0.5 0.5 

 

Table 10. Lookup table linking the artificial genome to the Pruning Onset parameter, for 

the Wide Genetic Variation condition 

 Pruning Onset Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

0.001 0.01 0.04 0.12 - 0.45 0.21 0.12 0.04 0.01 0.001 

Parameter value 1000 500 250 150 100 100 75 50 25 20 0 
 

Table 11. Lookup table linking the artificial genome to the Pruning Probability 

parameter, for the Wide Genetic Variation condition 

 Pruning Probability Parameter Value 

Number of 1- 0 1 2 3 4 5 6 7 8 
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valued alleles 
Population 

probability 
0.004 0.03 0.11 - 0.49 0.22 0.11 0.03 0.004 

Parameter value 0 0.01 0.025 0.05 0.05 0.1 0.5 0.75 1 
 

Table 12. Lookup table linking the artificial genome to the Pruning Threshold parameter, 

for the Wide Genetic Variation condition 

 Pruning Threshold Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 
(%) 

0.001 0.01 0.04 0.12 - 0.66 - 0.12 0.04 0.01 0.001 

Parameter value 0.1 0.2 0.3 0.4 0.5 0.5 0.5 0.75 1 1.25 1.5 
 

Table 13. Lookup table linking the artificial genome to the Weight Decay parameter, for 

the Wide Genetic Variation condition 

 Weight Decay Parameter Value 

Number of 1-
valued 
alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 
probability 

- - - - 0.38 0.25 0.21 0.12 0.04 0.01 0.001 

Parameter 
value 

0 0 0 0 0 1x10-7 2x10-7 9.8x10-7 19.7x10-7 98.4x10-7 196.9x10-7 

 

Table 14. Lookup table linking the artificial genome to the Sparseness parameter, for the 

Wide Genetic Variation condition 

 Sparseness Parameter Value 

Number of 1-
valued alleles 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Population 
probability 

- - - - - - 0.61 0.19 0.12 0.05 0.02 0.003 0.0002 

Parameter 
value 

0 0 0 0 0 0 0 0.05 0.1 0.2 0.3 0.4 0.5 
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Appendix A 

Parameter-behavior functions for the basic past tense network 

All other parameters were held at default values, while a single parameter was varied. 

Performance is reported for regular verbs on the past tense task. The shape of the function 

is displayed for three points in training, 50, 100, and 250 epochs. The default parameter 

values were: hidden units: 50; temperature: 1; noise: 0; learning rate: 0.01; momentum: 

0.2; weight variance: 0.5; architecture: 3-layer; learning algorithm: back propagation 

error measure; nearest neighbor threshold: 0.1; pruning onset epoch: 50; pruning 

probability: 0.1; pruning threshold: 0.5; weight decay: 0.000019; sparseness: 90% 

connectivity. 
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Unit threshold function (temperature) 

 

 

 

 

 

 

 

Processing noise: 
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Momentum: 

 

 

 

 

 

 

 

Initial weight variance??? 

 

 

 

 

 

 

 

Initial weight variance???? 
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Architecture (0=2-layer; 1=3-layer; 2=fully connected): 

 

 

 

 

 

 

 

Learning algorithm error metric (0=Euclidean distance; 1=Cross-entropy): 

 

 

 

 

 

 

 

 

Nearest neighbor response threshold: 
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Pruning onset: 

 

 

 

 

 

 

 

Pruning probability: 

 

 

 

 

 

 

 

Pruning threshold: 
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Weight decay: 

 

 

 

 

 

 

 

 

Sparseness of initial connectivity (proportion removed): 

 

 

 

 

 

 

 

 

 

 

 


