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Loss of previously established behaviors in early childhood constitutes a markedly atypical develop-
mental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al.,
2008). We present an artificial neural network model of developmental regression, exploring the
hypothesis that regression is caused by overaggressive synaptic pruning and identifying the mechanisms
involved. We used a novel population-modeling technique to investigate developmental deficits, in which
both neurocomputational parameters and the learning environment were varied across a large number of
simulated individuals. Regression was generated by the atypical setting of a single pruning-related
parameter. We observed a probabilistic relationship between the atypical pruning parameter and the
presence of regression, as well as variability in the onset, severity, behavioral specificity, and recovery
from regression. Other neurocomputational parameters that varied across the population modulated the
risk that an individual would show regression. We considered a further hypothesis that behavioral
regression may index an underlying anomaly characterizing the broader autism phenotype. If this is the
case, we show how the model also accounts for several additional findings: shared gene variants between
autism and language impairment (Vernes et al., 2008); larger brain size in autism but only in early
development (Redcay & Courchesne, 2005); and the possibility of quasi-autism, caused by extreme
environmental deprivation (Rutter et al., 1999). We make a novel prediction that the earliest develop-
mental symptoms in the emergence of autism should be sensory and motor rather than social and review
empirical data offering preliminary support for this prediction.
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In this article, we present a neurocomputational model of be-
havioral regression in autism. The primary aim of the model was
to explore candidate mechanisms that could cause a decline in
performance in an experience-dependent learning system, follow-
ing an initial phase of normal-looking development. Many devel-
opmental disorders are characterized by varieties of delay, some-
times occurring unevenly across different cognitive domains. The
disorders can be characterized by the term delay because behaviors
in affected domains in older children resemble those of younger

typically developing children. Trajectories of development that
cannot be characterized as delayed but are clearly atypical turn out
to be relatively rare and presumably imply more radical differ-
ences in the underlying neural constraints. Developmental regres-
sion is amongst the most atypical patterns observed, and its causes
are currently unknown (Baird et al., 2008; Molloy et al., 2006).

The inspiration for the current model was a recent hypothesis by
Pickles et al. (2009) that pertained to regression in the form of loss
of language in the early development of children with autism.
Pickles et al. argued that language loss is highly specific to autistic
spectrum disorder (ASD) and is unlike linguistic deficits found, for
instance, in children with specific language impairment (SLI).
Although only a subgroup of children with autism show regression
(regression was observed in 15% of the Pickles et al. sample), the
authors speculated that the underlying abnormality may be more
prevalent than the raw data suggest, because cases of potential
language loss may be hidden in children whose language devel-
opment is delayed. The children exhibiting language loss in the
ASD sample studied were indeed those with the fastest developing
language. The implication we draw from this hypothesis is that
factors causing variation in the rate of language development are
independent of those causing variation in the timing of the mech-
anism that causes regression. If language development occurs
more slowly, there will be little or no overt language behavior at
the point in development when the mechanism that causes regres-
sion tends to occur. This implication led us to explore candidate
neurodevelopmental mechanisms that share three properties: (a)
They operate after the onset of experience-dependent develop-
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ment; (b) their timing, while potentially varying between individ-
uals, does so in a manner that is relatively orthogonal to the
developmental process; and (c) they have the potential to impair
functionality should they operate atypically. The mechanism we
considered was synaptic pruning. Specifically, we considered the
idea that regression in autism is caused by overaggressive synaptic
pruning (Johnson & Karmiloff-Smith, 1992). This would serve to
damage functional circuits, thereby causing overt behavior to
worsen over time. In comparison, the normal process of progres-
sive elimination of unused neural resources consolidates proficient
behavior over time.

Developmental Regression in Children With Autism

Developmental regression is observed in only a subset of chil-
dren with autism. Estimates range from 20%–40%, with skills
typically lost between 15 and 24 months of age (Richler et al.,
2006). There is possibly a higher incidence of regression in core
autism than in the broader spectrum disorder (Baird et al., 2008).
Following regression, there is usually some level of recovery of
function. To date, most investigations have been based on retro-
spective parental reports, which indicate the loss of children’s
social and communication skills during the second year of life. The
most systematic study of regression has focused on word loss.
Although in most cases, word loss co-occurs with the loss of social
communicative skills (such as eye contact, gestures, reciprocal
games like peek-a-boo, and sometimes a loss of play and fine
motor skills; Pickles et al., 2009), the disappearance of words that
a child had previously produced is a particularly salient event for
parents. Richler et al. (2006, p. 302) provided one operational
definition for classifying children in the word loss group:

if s/he had spontaneously used at least three meaningful words (aside
from “mama” and “dada”) on a daily basis for at least 1 month, and
then had stopped using all words for at least 1 month, prior to 36
months of age.

The current issues of debate in this field are whether regression
forms a distinct subtype of autism or reflects an aberrant mecha-
nism characterizing the full disorder, the degree to which devel-
opment is normal or atypical prior to the onset of regression, and
whether the presence of regression in a child with autism indicates
poorer ultimate outcome (Baird et al., 2008; Davidovitch, Glick,
Holtzman, Tirosh, & Safir, 2000; Fombonne & Chakrabarti, 2001;
Goldberg et al., 2003; Lord, Shulman, & DiLavore, 2004; Molloy
et al., 2006; Pickles et al., 2009; Siperstein & Volkmar, 2004;
Werner, Dawson, Munson, & Osterling, 2005). For each of these
points, the evidence is mixed. There is some indication that the
later regression occurs before the 3-year diagnostic cutoff for
autism, the poorer the prognosis (Pickles et al., 2009). Where
regression occurs after 3 years of age, by definition this is referred
to as childhood disintegrative disorder (CDD) rather than autism.
CDD has a poorer prognosis still (e.g., Hill & Rosenbloom, 1986).
Moreover, the relation of regression in autism to CDD remains
unclear. Overall, regression in autism is marked by its variability:
in the nature of development prior to regression, in the age of
onset, in the speed of the loss of behaviors, and in the eventual
level of recovery (e.g., Goldberg et al., 2003; Lord et al., 2004;
Rogers, 2009).

Connectivity and Autism

Early brain development is characterized by a period of exuber-
ant growth in connectivity, followed by the pruning back of unused
or weak connections (Cowan, Fawcett, O’Leary, & Stanfield,
1984; Huttenlocher, 2002; Stiles, 2008). This allows the brain
maximum plasticity to adapt to the environment in which it finds
itself and then, by removing unused connectivity, to save on the
metabolic costs of supporting resources for plasticity after such
adaptation has taken place. Associated with this growth-followed-
by-pruning is the idea of sensitive periods in development, where
the plasticity of the cognitive system is initially heightened (Hut-
tenlocher & Dabholkar, 1997; see Huttenlocher, 2002; Thomas &
Johnson, 2008, for discussion). Synapses are one of the main
neural structures responsible for changing functional connectivity
in the brain, with synaptogenesis and synaptic pruning correspond-
ing to the growth and cutting back of resources for connectivity.
Evidence suggests that the formation and elimination of synapses
is in fact a continuous process, and the reduction in uncommitted
synapses with age is a change in the balance of formation and
elimination (Hua & Smith, 2004). The reduction appears to be a
global constraint and has been found in all the areas of the
mammalian cortex that have been studied (Stiles, 2008). However,
the exact timing across brain areas is heterogeneous in humans
(Huttenlocher & Dabholkar, 1997). Although there are likely to be
individual differences in the timing of the onset of synaptic prun-
ing, the necessary longitudinal data in humans to confirm this are
currently lacking (studies of more macro-level measures, such as
gray matter volume, are suggestive of such variability; see, e.g.,
Schumann et al., 2010). The thesis we pursue here is that overag-
gressive synaptic pruning is responsible for regression but that the
onset of pruning is within the normal time window. The fact that
the decline in social communicative skills does not occur until the
second year is therefore explained by the (normal) timing of
pruning events in brain development.

There have been a number of hypotheses that problems with
connectivity may underlie autism as a whole (e.g., Abrahams &
Geschwind, 2008; Belmonte et al., 2004; Johnson & Karmiloff-
Smith, 1992; Just, Cherkassky, Keller, & Minshew, 2004; see
Wass, 2011, for a recent review). These accounts have been
supported by new findings using diffusion tensor imaging (e.g.,
Ben Bashat et al., 2007; Frazier & Hardan, 2009) that reveal
abnormal structural connectivity in autism (i.e., abnormalities in
the white matter structures that are thought to represent the “wir-
ing” of the brain; though see Káradóttir, Hamilton, Bakiri, &
Attwell, 2008). Accounts have also been supported by findings
from functional magnetic resonance imaging that demonstrate
reduced functional connectivity in individuals with ASD (e.g.,
Koshino et al., 2008), indicated by reduced correlations in task-
related activity between nodes in a functional network of brain
regions. Other studies have also pointed to an overreliance on
some forms of connectivity, such as short-range over long-range
connectivity (Belmonte et al., 2004) or thalamo–cortico over
cortico–cortico connectivity (Koshino et al., 2008). These propos-
als are sometimes linked to cognitive-level accounts of behavioral
deficits in autism, such as weak central coherence (Happé, 1999)
and executive function deficits (Ozonoff, Strayer, McMahon, &
Filloux, 1994). Connectivity-based accounts still need to clarify
whether the atypicality observed has temporal primacy in the
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development of autism or whether the connectivity abnormalities
observed are downstream of other developmental abnormalities.
Moreover, abnormal connectivity is not unique to autism: It has
been observed in other conditions as diverse as schizophrenia
(Pachou et al., 2008), HIV/AIDS (Melrose, Tinaz, Castelo, Court-
ney, & Stern, 2008), and dyslexia (Richards & Berninger, 2008).

Three Empirical Phenomena

Before introducing the computational methods to investigate the
hypothesis of overaggressive pruning, we mention three additional
empirical phenomena pertaining to autism as a whole. These will
become relevant when we discuss the modeling results. First,
recent work has assessed whether delays in language development
in autism share a common cause with delays in language devel-
opment in the nonautistic population (Bishop, 2010; Folstein &
Mankoski, 2000; Vernes et al., 2008). For example, a common
gene variant on Chromosome 7 was found to occur more fre-
quently both in individuals with autism and those with SLI, com-
pared with controls (Vernes et al., 2008). Studies of rare genetic
mutations associated with syndromes that exhibit comorbid autis-
tic traits have also suggested that these mutations do not selec-
tively cause autism but are also associated with global develop-
mental delay or language delay, once more implicating a common
cause of separate disorders (Abrahams & Geschwind, 2008).

Second, it has been observed that early in development, overall
brain size is larger in children with autism than in typically
developing controls; across development, cross-sectional studies
indicate that brain size then returns to within the normal range. In
a metareview of relevant literature, Redcay and Courchesne (2005,
p. 1) concluded that the data suggest “a period of pathological
brain growth and arrest in autism that is largely restricted to the
first years of life, before the typical age of clinical identification.”
The brain size data led Frith (2003) to speculate that the over-
growth was caused by a failure of the normal pruning process,
which was then associated with poor functioning of certain neural
circuits. However, the brain size data are puzzling in two respects:
In typical development, there is a weak but positive correlation
between brain size and intelligence (of between �.1 and �.4; e.g.,
in a meta-analysis of more than 1,530 people, McDaniel, 2005,
reported a correlation of .33 between in vivo brain volume and
intelligence). Why should a bigger brain be advantageous when it
comes to typical development but then be associated with a de-
velopmental disorder such as autism? Furthermore, why should the
relative pattern of brain size in autism compared with controls
change across developmental time? Indeed, Courchesne et al.
(2007) proposed that in autism, brain overgrowth at the beginning
of life might be accompanied by slowing or arrest of growth during
early childhood and, in some individuals, a third atypical phase of
degeneration in later life. Despite these puzzles, some
connectivity-based accounts of autism have identified brain size
differences as a primary cause of the behavioral impairments (e.g.,
Lewis & Elman, 2008; Stanfield et al., 2008).

Third, although autism is now viewed primarily as a genetic
disorder, researchers have identified a form of “quasi-autism”
occurring in children who have experienced extreme deprivation
(e.g., Rutter et al., 1999, 2007). This phenomenon was observed in
adoptees from Romanian orphanages in the 1990s and followed
longitudinally. The affected children showed disinhibited attach-

ment disorder but also cognitive deficits in mental flexibility and
idiosyncratic interests symptomatic of autism. The patterns were
variable across children, with the effects being typically milder and
yielding better outcome than in ASD. Because assignment of the
children to the orphanages was not based on any preexisting
mental condition, and because the incidence of quasi-autism at
10% was much higher in the adoptees than the incidence in the
general population of autism spectrum disorder (approximately
1%; Baird et al., 2006), the cause of the disorder in the adoptee
case appears to be environmental. Nevertheless, it did not produce
quasi-autism in all children exposed to the deprived environment,
which also remains to be explained.

Computational Models and Autism

Several neurocomputational models have been put forward to
explain the origins of behavioral deficits in autism. These have
focused either on category formation, atypical neural codes, or
connectivity disruptions. Using self-organizing maps, Gustafsson
(1997) proposed that autism results from an imbalance between
short-range excitatory and long-range inhibitory connections on
cortical maps, whereby too much inhibition results in the emer-
gence of overdetailed features. Using associator networks, Cohen
(1994, 1998) argued that autism results from a surfeit of internal
resources causing overfitting of the data and therefore the encod-
ing of too much detail. In the framework of adaptive resonance
theory, Grossberg and Seidman (2006) put forward a similar idea
that an oversensitive novelty parameter causes the allocation of too
many representational resources during category formation and
therefore overdetailed categories. Allied to this, they proposed
unstable dynamics between cortical and limbic systems under
conditions of novelty, producing extreme emotional responses to
change. Focusing on neural codes, McClelland (2000) proposed
that autism arises from too conjunctive/insufficiently componen-
tial representations. Simmons et al. (2007) viewed the neural codes
in sensory systems as containing elevated levels of noise. Bevers-
dorf, Narayanan, Hillier, and Hughes (2007) speculated that sparse
connectivity in a network model of semantic memory would
produce decreased use of context. Finally, using an associator
network, Lewis and Elman (2008) demonstrated that early brain
overgrowth would particularly impact those functions that relied
on long-range or integrative connections. This plethora of model-
ing efforts focused on different aspects of the autism phenotype,
but their explanations are difficult to generalize to other aspects of
the broader autism spectrum. By contrast, the simulations pre-
sented in the current article attempt to encompass both autism
itself and the broader autism spectrum.

The current simulations employed associative artificial neural
networks and began with an adventitious finding emanating from
work on population modeling. In population modeling, large num-
bers of artificial neural networks (ANNs) are exposed to a learning
problem. Individual differences are included in the parameters of
the ANNs, altering their learning properties, as well as in the
learning environments to which the networks are exposed. Popu-
lation modeling allows for the study of individual differences
within a development framework (Thomas, Ronald, & Forrester,
2011) and, by extension, the origins of variability in developmen-
tal disorders. Thomas, Ronald, and Forrester (2011) employed
population modeling to explore genetic and environmental contri-
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butions to language development. The ANNs they used contained
14 computational parameters that could alter the networks’ learn-
ing capacity (see Method section). Each parameter was initially
benchmarked to assess the range of variation that would accom-
modate developmental outcomes spanning failure through to suc-
cess. The benchmarking constrained the range of parameter vari-
ation that would subsequently be encoded into the population.
Following the Pickles et al. (2009) proposal that timing of regres-
sion and rate of development might dissociate, we revisited the
benchmarking conditions. For 13 of the 14 parameters, suboptimal
settings resulted only in a slowing of the rate of development. One
parameter, however, produced patterns of developmental regres-
sion. This parameter related to the pruning of connectivity.

The framework employed by Thomas, Ronald, and Forrester
(2011) incorporated parameters analogous to several neural func-
tions. These included how the neural network was built (number of
layers, internal units, and connections), its dynamics (processing
noise, threshold functions), how it was maintained (weight decay
and pruning), and how it adapted through experience (learning
rate, momentum). In terms of connectivity, the initial overgrowth
of connections was not simulated (see Shultz, 2003, for modeling
approaches relevant to this phase of development). Instead, each
individual’s starting level of connectivity was specified. After a
certain variable period of development, pruning of unused connec-
tivity began. Pruning was guided by three parameters, for which
the settings could vary between individuals. One parameter deter-
mined when in development pruning would commence. The sec-
ond parameter was a threshold that determined how small a con-
nection (excitatory or inhibitory) should be before it was judged
that the connection was unused. In associator networks, small
connections mean that the activity of the sending unit cannot
markedly alter the activity of the receiving unit, and so cannot
significantly contribute to function.1 A third parameter specified
the probability that a connection judged as unused would be
permanently pruned. It was the second parameter, the pruning
threshold, that was found to cause regression when set to extreme
values. If the threshold was set high, so that large weights were
judged to be unused and legitimate targets of pruning, then the
pruning process could damage previously established functional
circuits. In turn, this could cause impairments in behavior.

The following simulations took advantage of population mod-
eling to assess the impact of atypical settings of the pruning
threshold parameter on producing patterns of regression in the
developmental trajectories of connectionist associator networks.
Because networks contained population-wide individual differ-
ences in the other 13 neurocomputational parameters as well as in
the composition of the learning environment, we were able to
consider possible sources of variation in the onset of regression, its
severity, and the prognosis for recovery. We report the results for
three populations of 1,000 network models: (a) a low-risk popu-
lation, in which the pruning threshold parameter varied within the
normal range, along with all other parameters; (b) a high-risk
population, in which the pruning threshold parameter was allowed
to vary to much higher levels, while all other parameters varied in
the normal range; and (c) an environmental-risk population, in
which all parameters varied in the normal range but the environ-
ment could in principle be very impoverished. The goal of the
simulations was to consider three principal questions: (a) How do
atypical settings of the pruning threshold parameter relate to inci-

dence of regression in the population? (b) To what extent do the
incidence and characteristics of regression depend on variation in
other neurocomputational parameters? And, (c) Could an ex-
tremely impoverished environment also cause regression without
the presence of atypical pruning threshold settings?

Method

We first introduce the target learning problem, then the basic
network architecture. Next we describe how individual variability
was included in network parameters and the training set. Finally,
we describe the three populations for which results are discussed.

Target Learning Problem

This was a qualitative and exploratory model, and for the
purposes of this article, we consider the training set only as an
abstract mapping problem (see Thomas, Ronald, & Forrester,
2011, for its psychological origin in the domain of language
development). The mapping problem was quasi-regular, in that it
included a predominant regularity, which could be generalized to
novel input patterns, along with a set of exception patterns. The
learning environment was designed to assess the role of similarity,
type frequency, and token frequency in development. Through
these properties, the domain was taken to be representative of
some of the mapping problems that the cognitive system faces,
including category formation and language development. The
mapping problem was defined over 90 input units and 100 output
units, using binary coded representations. The training set com-
prised 508 patterns. This was complemented by a generalization
set of 410 patterns.

The predominant regularity required the network to reproduce
the input pattern on the first 90 units of the output layer and then
add a binary code on the last 10 units of the output layer. There
were 410 regular patterns in the training set. The regular pattern
had a high type frequency and formed a consistent set of mappings,
and so is referred to as easy. The generalization ability of each
network was tested on 410 novel patterns that were similar to the
easy patterns, in that they shared 60 of the 90 input elements. This
set is referred to as generalization. There were three different
classes of exception pattern in the training set, which fell on a
continuum of (dis)similarity from the predominant regularity: (a)
Reproduce the input but do not add the final code. There were 20
of these patterns. (b) Reproduce only a portion of the input and
again do not add the final code. There were 68 of these patterns. (c)
Associate an arbitrary binary pattern with the input and again do
not add the final code. There were 10 of these patterns. The first
exception type was most similar to predominant regularity, the
third type the least similar. All three were in the minority in
the training set; that is, they possessed a lower type frequency than
the predominant regularity. The combination of dissimilarity and
low type frequency creates a continuum of difficulty. We refer to
the first exception type as hard and the second as harder. Finally,
the arbitrary mappings were sufficiently difficult that, to be learned
at all, they needed to be repeated in the training set. They therefore

1 The same assumption may not hold in recurrent networks, because
cycling activation may exaggerate the contribution of a small connection
weight to subsequent function.
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provide an opportunity to assess whether greater practice provides
immunity to regression or allows better recovery from regression.
The third pattern type, then, is referred to as hardest-practiced.
Together, the five pattern types allowed us to assess whether
regression interacted with task difficulty.

Basic Architecture

The simulations employed connectionist pattern associator net-
works trained using the supervised backpropagation learning al-
gorithm. This type of architecture has been employed in a number
of cognitive-level models of development, for example, infant
categorization, child vocabulary acquisition, semantic memory,
morphosyntax acquisition, and reading development (see Mare-
schal & Thomas, 2007, for a review).

Variations in the Learning Environment

The full training set was considered to be the ideal learning
environment. For each individual, a subset of this training set was
stochastically selected, to represent the family conditions in which
each simulated child was being raised. Each individual was as-
signed a family quotient, which was a number between 0 and 1.
The value was used as a probability to sample from the ideal
training set. Thus for an individual with a family quotient value of
.75, each of the 508 training patterns had a 75% chance of being
included in that individual’s training set. Family quotients were
sampled randomly depending on the range selected for the popu-
lation. We used either the range 0.6 to 1.0 for typical populations
or the range 0 to 1.0 for an environmental-risk population. In the
latter case, individuals could potentially be exposed to a learning
environment containing very few training patterns.

Variations in Network Learning Capacity

Fourteen neurocomputational parameters were allowed to vary
between individuals, serving to alter the learning capacity of each
network. The available parameter settings allowed for more than
2,000 billion unique combinations. Detailed descriptions of the
computational role of each parameter can be found in Thomas,
Ronald, and Forrester (2011). Here, we broadly categorize them by
function and indicate the range used. The parameters were as
follows: Network construction: Architecture (two-layer network,
three-layer network incorporating a layer of hidden units, or a fully
connected network incorporating a layer of hidden units and also
direct input–output connections); number of hidden units (10 to
500); range for initial connection weight randomization (�0.01

to �3.00); sparseness of initial connectivity between layers (50%
to 100% connectivity). Network activation: unit threshold function
(sigmoid temperatures between 0.0625 and 4); processing noise (0
to 6); response accuracy threshold (.0025 to .5). Network adapta-
tion: backpropagation error metric (Euclidean distance or cross-
entropy); learning rate (.005 to .5); momentum (0 to .75). Network
maintenance: weight decay (0 to 2 � 10�5 per pattern presenta-
tion); pruning onset (0 to 1,000 epochs); pruning probability (0 to
1); pruning threshold (low-regression-risk population: 0.1 to 1.5;
high-regression-risk population: 0.1 to 4.0).

Creation of a Population

Each parameter had a probability distribution created during the
calibration phase. The distribution determined how likely it was
that an individual would have a given value for that parameter.
Parameter values producing medium performance were more
likely than those producing very good or very poor performance.
Table 1 shows the probability distribution for the pruning thresh-
old parameter for low-regression-risk and high-regression-risk
populations (distributions for all parameters are available in
Thomas, Ronald, & Forrester, 2011). The low-risk population
exhibits the normal distribution used for all parameters, with
intermediate values being more common. The high-risk population
had equal numbers of individuals with increasingly large pruning
thresholds (11.1% of individuals at each value).

For each individual, the 14 parameters were independently
sampled from each distribution. Next, a family quotient value was
generated in the appropriate range for that population, and the
quotient was then used to create the individual’s bespoke family
training set. Then the network was initiated with random weight
values (in the range determined by the individual’s weight range
parameter) and trained for 1,000 epochs, where one epoch was an
exposure to all the patterns in the individual’s training set pre-
sented in random order. Performance was measured on the five
pattern types (easy, generalization, hard, harder, hardest-
practiced) at each epoch, according to the full training set and the
generalization set. The process was repeated for 1,000 individuals
to create a population.

Three populations were considered. First, we created a popula-
tion at low risk for regression, exposed to relatively good learning
environments (family quotients in the range of .6 to 1). Maximum
pruning thresholds were 1.5. Next, we created a population at high
risk for regression. For 13 of the 14 neurocomputational parame-
ters, values were sampled from the same probability distributions.
For the pruning threshold parameter, values were sampled from a

Table 1
Probability Distribution Used to Determine the Pruning Threshold Parameter Value for Individuals in the Low-Regression-Risk and
High-Regression-Risk Populations

Probability 0.1 0.2 0.3 0.4 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 3.5 4.0

Low-risk population (%) 0.1 1.0 4.4 11.7 65.6 11.7 4.4 1.0 0.1
High-risk population (%) 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1

Note. In the low-risk population, the median value was more frequent and extreme values were rarer. In the high-risk population, each of the values had
equal probability. When pruning commenced, connections with magnitude less than the threshold were vulnerable to pruning. The most common value for
initially randomized weights before training commenced was in the range �0.5.
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flat probability distribution that included much higher threshold
values (see Table 1). Note that because initial, random weight
values were typically around �0.5, a pruning threshold exceeding
0.5 would place many connections at risk of pruning. However,
because pruning did not commence until an epoch specified by
each individual’s onset parameter, early experience could serve to
strengthen connection weights before pruning commenced, reduc-
ing the risk of connection loss. Atypical pruning thresholds up to
4.0 were included in the high-risk population. Finally, an
environmental-risk population was created. This used the same
network parameter sets as the low-risk population but exposed
these individuals to potentially much more impoverished learning
environments. The family quotient range for the environmental-
risk population was 0 to 1.

Results

Measuring Developmental Regression

We plotted each of the 1,000 individual developmental trajec-
tories in the high-risk population and coded them by hand for
whether they exhibited developmental regression. Regression was
defined as a noticeable drop in performance over development in
one or more of the five behavioral measures (easy, generalization,
hard, harder, hardest-practiced).2 Figure 1 depicts sample trajec-
tories for four typically developing networks and four networks
showing regression. We found that it was not possible to automate
the classification of regression because, whether regression was
present or not, development was very often nonmonotonic (i.e.,
sometimes it got worse before it got better). Regular and exception
pattern types could interfere with each other during development,
causing performance on one or the other to temporarily decline. In
addition, one of the neurocomputational parameters was the level
of internal processing noise, which could cause performance to
oscillate between measurement points. In individuals with noisy
processing, performance could show large oscillations. A judg-
ment of the presence of regression was made against the degree of
developmental variation exhibited by that network. To ensure
consistency, a random sample of 20% of the trajectories was rated
by a second coder who was blind to the ratings of the first coder.
Both coders were blind to the parameter set and environmental
conditions of each individual, including the actual onset of the
pruning process. Interrater reliabilities for onset and size of regres-
sion ranged from r � .81 to .98 (all ps � .001).

When regression was observed for a given pattern type, six
measurements were made: the level of performance just prior to
the onset of regression; the epoch at which regression occurred; the
size of the drop in accuracy; the number of epochs over which that
drop occurred; the rate of recovery (five qualitative categories
were used: no recovery, slow recovery, medium recovery, fast
recovery, and almost instant recovery); and the final level of
performance at the end of training (1,000 epochs). On the basis of
the size of the drop in accuracy, we defined four levels of severity
of regression: Level 1, corresponding to a drop in accuracy be-
tween 0% and 20%; Level 2, corresponding to a drop in accuracy
of 20% to 40%; Level 3, corresponding to a drop in accuracy
between 40% and 60%; and Level 4, corresponding to a drop in
accuracy of 60% to 100%. For the high-risk population, 641 cases
of regression were recorded. In the low-risk population, there were

46 cases. In the environmental-risk population, there were 67
cases.

Regression and Variability

Figure 1 illustrates the large variations found in developmental
trajectories in the typically developing individuals (by which, in
this context, we mean networks not showing regression). Varia-
tions in computational parameters and learning environments pro-
duced differences in the rate of development, the smoothness of
developmental trajectories, and the uniformity of performance
increases across different mapping types. Cases of regression, also
shown in Figure 1, similarly exhibited a great deal of variability.
Variations were observed in the onset of regression, its severity, its
specificity to pattern type, the subsequent rate of recovery, and the
final level of recovery. Although Figure 1 demonstrates clear cases
of regression, there were also less obvious patterns. These included
a slow decline in performance; slight dips in performance in all
pattern types that, given the variability in the trajectory of develop-
ment, would not constitute regression except for the simultaneous
appearance in all pattern types; and regression in early developing
patterns with development in the other patterns occurring only as the
early developing patterns recovered.

The onset of regression in the high-risk population showed a
normal distribution, with a mean of 106 epochs and a standard
deviation of 56 epochs. Counting all cases of regression in the five
behavioral metrics among the 641 individuals, 16% were at Se-
verity Level 1, 20% at Severity Level 2, 24% at Severity Level 3,
and 40% at Severity Level 4. Where regression occurred, in 22%
of cases it was found across all five pattern types, whereas in 78%
of cases it was found only in subsets. Again, collapsing across all
cases of regression, 51% of cases showed no recovery, 6% slow
recovery, 19% medium recovery, 18% fast recovery, and 6% very
fast recovery. The variability observed in the typically developing
networks was generated by the implemented parameter and learn-
ing environment variations. It seems reasonable to conclude that
the variation observed in the nature of regression arose from the
same cause: population-wide individual variation (see Thomas,
Knowland, & Karmiloff-Smith, 2011, for discussion).

Of course, analytically, we know that the pruning threshold was
the sole process that caused developmental regression in these
simulations. And we know that the only difference between the
low-risk and high-risk populations was in the sampling of the
pruning threshold parameter values: The increases in the size of
the threshold shown in Table 1 led to a 14-fold increase in the
incidence of regression between the low-risk and high-risk popu-
lations. The pruning threshold is thus obviously the cause of
regression in these networks. However, it is interesting to establish
exactly how increases in the pruning threshold parameter affected
the incidence of developmental regression. The discovery of mech-
anisms is clearly a major point of the simulations. Figure 2 plots

2 Raters were given the following definition:

Regression is present when any one of the pattern types shows a
systematic drop in performance at any point in development. This may
range from a temporary dip in one pattern type to a complete collapse
in performance across all types. The dip should be noticeable com-
pared to the developmental variation exhibited by that individual.
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this relationship, depicting the cumulative probability of exhibiting
regression at each severity level for each level of the pruning
threshold parameter. The panel on the left plots the incidence of
regression in the most robust behavior (easy), whereas the panel on
the right plots the incidence for the most vulnerable behavior (i.e.,
if any one of the five showed regression). For each panel, the first
line shows the incidence at Severity Level 1 (the mildest), the
second line Severity Levels 1 and 2 combined, the third line
Severity Levels 1, 2, and 3 combined, and so forth. The difference
between adjacent lines shows how many cases are present at each

severity level. Two points from this figure are of note. First, the
relationship between pruning threshold and regression was prob-
abilistic. Even with more extreme values of the pruning threshold
parameter, there was no guarantee that regression would be ob-
served. For example, at the most extreme threshold value of 4.0,
4.3% of those individuals (five networks) showed no evidence of
regression at any level of severity in any behavior. Second, the
relationship between incidence and parameter value was nonlin-
ear, jumping up after a threshold of 1.0 was reached; and the exact
pattern of the relationship was modulated by the robustness of the

Figure 1. Example developmental trajectories for four typically developing individuals and four individuals
exhibiting regression. Each plot includes the pruning threshold parameter setting for that individual.

Figure 2. The cumulative probability of regression per severity level plotted against the value of the pruning
threshold parameter, for the most robust behavior (easy patterns) and the most vulnerable behavior (presence of
regression in any pattern type). Regression was defined on the basis of behavior (1 � least severe, 4 � most
severe).

643MODELING REGRESSION IN AUTISM



target behavior. Such nonlinear relationships between parameter
variations and behavior are a common characteristic of nonlinear
processing systems like neural networks.

Next we sought to unpack the precise role of population-wide
variation in producing this probabilistic outcome: What were the
protective and risk factors? We used the statistical technique of
stepwise logistic regression (forward Wald method) to evaluate
which neurocomputational parameters predicted the presence or
absence of regression (including, in this case, any developmental
regression observed in any behavior). We also included each
individual’s family quotient value in the statistical model. Table 2
shows the results of this analysis, listing the parameters in decreas-
ing size of the variance in outcome that they explained.

As expected, the pruning threshold value predicted most of the
variance in outcome. Six further parameters then served as pro-
tective or risk factors. They fell into three types: (a) The pruning
probability parameter determined the likelihood of a connection
being pruned if it was sufficiently small. A very low probability
directly ameliorated the negative effects of a high pruning thresh-
old, whereas a high probability exacerbated it. (b) The processing
unit threshold function and the momentum were both parameters
that altered how quickly connection weights grew during learning.
If weights grew slowly, their small size rendered them more
vulnerable to pruning. (c) Three parameters affected the number of
connections in the network. First, sparseness determined how
many connections were initially created between any two layers of
processing units. Second, the number of hidden units also contrib-
uted to a greater number of connections. In both cases, these
connections operated in parallel. Roughly speaking, if there are
twice as many connections wired up in parallel, then the connec-
tions need to be only half the magnitude to produce the same effect
at the output. Large numbers of parallel connections therefore
increase the risk of pruning because they reduce connection size.
Third, the architecture determined how many layers of weights
were arranged in series. When additional weights are arranged in
series, as in the three-layer and fully connected networks compared
with the two-layer networks, there is a further risk for developing
connections with small sizes. Connections between input and
hidden units are more remote from the error signal that is driving
learning. They therefore change more slowly and retain a smaller
size for longer (see Thomas & McClelland, 2008, for an algebraic
account). Lower layers in multilayer networks are therefore more
at risk of pruning.

In terms of the mapping to actual neural constraints, we should
be clear about the level of abstractness intended. To take the last
example of lower layers in the network, we do not assume this to
offer a direct parallel to the six layers of the neocortex or to lower
level processing in the perceptual stream; rather, we assume it to
demonstrate that neurocomputational constraints that serve to
modulate connection magnitude in the normal case will become
implicated as risk or protective factors for an atypical process that
operates on connection size.

At this stage we can draw two preliminary conclusions. The first
is that developmental regression showed a probabilistic relation-
ship to its cause (large values of the pruning threshold parameter)
because of the interaction with population-wide individual varia-
tion in other neurocomputational parameters. Only one of the six
risk factors directly modulated the pruning process. The other five
modulated the risk of regression by acting on the size of connec-
tions achieved during the early phase of development prior to the
onset of pruning. Larger connections were less vulnerable to
pruning. The second preliminary conclusion is that variability
arose through protective and risk factors acting via the common
causal pathway of connectivity.

Regression was also observed in the low-risk and
environmental-risk populations. A similar statistical analysis sug-
gested that the presence of regression was once more mostly
predicted by the pruning threshold parameter, even when it took on
smaller values (the parameter explained approximately 20% of the
variance for each population). The population-wide individual
variation that conspired to generate regression in the low-risk
population comprised the number of hidden units (7.7% of the
variance), the learning rate (5.6%), the unit threshold function
(4.1%), and the learning algorithm (3.8%). In terms of mechanism,
these factors conspired to encourage very small weights and so
make even a modest pruning threshold damaging to network
structure and function. The environmental-risk analysis produced
similar results, with the addition of one further factor: Family
quotient now explained 2.1% of the variance.

Specificity was a marked characteristic of regression in the
simulations, with the majority of cases impacting on selective
behaviors. We used one-way analyses of variance (ANOVAs),
with pattern type as a single five-level factor, to investigate which
aspects of regression exhibited the strongest effects of specificity.
Effects were found in all the measures we took, including the
timing of onset, F(4, 3194) � 3.03, p � .017, �p

2 � .004; the size

Table 2
Statistical Stepwise Logistic Regression Analysis for Neurocomputational Parameters That
Modulate Probability of Developmental Regression in the High-Risk Population

Parameter �2 log likelihood of the model Nagelkerke R2 change Significance of model

Pruning threshold 734.8 .597 �.001
Unit threshold function 642.2 .068 �.001
Architecture 624.9 .012 �.001
Pruning probability 611.2 .010 �.001
Hidden unit number 603.7 .005 �.001
Sparseness 598.9 .003 .029
Momentum 594.8 .003 .042
Family quotient (environment)a — — .593

a Not included in model. The p value shows significance at the seventh step.
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of the drop in accuracy, F(4, 3194) � 80.1, p � .001, �p
2 � .091;

the duration over which regression took place, F(4, 3194) � 23.3,
p � .001, �p

2 � .028; the rate of recovery, F(4, 3194) � 106.7, p �
.001, �p

2 � .118; and the final level of performance, F(4, 3194) �
242.5, p � .001, �p

2 � .233. Specificity was most apparent in the
drop size, the rate of recovery, and the final level of recovered
performance. It was least apparent in the timing of onset of
regression. In all these cases, vulnerability echoed the difficulty of
the pattern type. The three types of exception patterns were lost
more easily and recovered more poorly. High type frequency and
consistency of behaviors were protective factors against regres-
sion. Idiosyncratic behaviors, even highly practiced ones, were
more vulnerable to loss. In sum, although neurocomputational
parameters were general to the system, their effects on behavior
(via a developmental process) were uneven.

A series of statistical linear regression (SLR) analyses was
carried out to see which computational parameters modulated the
onset of regression, the drop size, the speed of decline, the rate of
recovery, and the final level. The onset was relatively impervious
to the effects of learning, with the pruning onset parameter ex-
plaining most of the variance. This indeed reflected our initial
thesis that the timing of the cause of regression should be relatively
independent from factors causing variation in learning. The speed
with which behavior declined also pertained mainly to the con-
straints of the pruning process. By contrast, the size of the drop in
behavior, the recovery rate, and the final outcome were mutually
determined by many of the factors involved in experience-
dependent change, as well as by the details of the pruning process.
Features of regression modulated by several causal factors would
be expected to show greater variability in the population. Notably,
in all these analyses, variations in the environment featured only in
the final level of performance following recovery and even in this
case, explained only around 1% of the variance. For the high-risk
population, then, variation in the quality of the environment had
little influence on the characteristics of regression. These charac-
teristics were instead influenced by intrinsic properties.

One salient empirical issue in the autism literature is the rela-
tionship between the age at which regression occurs and the
prognosis for the child, with reports suggesting that later onset may
be associated with poorer prognosis (e.g., Pickles et al., 2009). In
the simulations, we investigated whether the final outcome level
was altered by differences in the timing of onset. We compared the
size of recovery for 118 cases of regression occurring before 50
epochs of training with the size of recovery for 112 cases occurring
after 140 epochs of training. We assessed recovery for the easy
patterns and the harder patterns and measured recovery based on
the accuracy difference at the end of training (1,000 epochs)
compared with the peak performance prior to regression. A value
of zero would indicate that behavior had returned to its preregres-
sion peak. Positive numbers would indicate further progress be-
yond the preregression peak. Negative numbers would indicate a
lasting deficit. The results are shown in Figure 3. The evidence
indicates that in the model, later regression was indeed associated
with poorer outcome, and this effect was independent of the
vulnerability of the behavior; main effect of timing: F(1, 432) �
13.4, p � .001, �p

2 � .030; main effect of vulnerability, F(1,
432) � 20.8, p � .001, �p

2 � .046; interaction, p � .877. To some
extent, this might be explained by the shorter time available for
recovery in the later onset group. However, in most cases there

was sufficient training time for recovered performance to reach
asymptotic levels. Moreover, the value of the pruning threshold
parameter was reliably higher in the late onset group compared
with the early onset group (means of 2.74 vs. 2.45), t(228) �
2.189, p � .021. This suggests that for regression to occur later in
development, when connection weights were typically stronger, it
had to be caused by an even more aggressive pruning process.

Links to the Broader Autism Phenotype

In this section we report three findings from the simulations that
are relevant if developmental regression is in fact an overt mani-
festation of a mechanism that also underlies the broader phenotype
of autism (as per the hypothesis of Pickles et al., 2009). These
findings take the behavioral manifestation of regression as the
marker of the atypical process responsible for the wider phenotype.
We later discuss under what conditions overaggressive pruning
would lead to a failure to progress developmentally (as occurs in
the wider autism phenotype) rather than development followed by
regression.

First, for the low-risk population, we used an SLR analysis to
evaluate which parameters predicted individual differences in the
rate at which development occurred. We used the dependent vari-
able of performance on the harder pattern type after 50 epochs of
training, as this was the most sensitive measure. Table 3 lists a
subset of the factors explaining reliable amounts of variance at the
.05 level. These were the factors that made development faster or
slower. In the low-risk population, variation in the pruning process
predicted very little of the variance in rate of development, with
pruning onset and probability not significant predictors at the .05
level and the pruning threshold explaining only 0.3% of the vari-
ance. This reflects the fact that in its normal operation, pruning just
removed unused connectivity resources. Comparison of Tables 2
and 3 indicates that several of the computational parameters that
served as risk factors for regression also served as direct causes of
variations in the rate of development. If we take the former to stand
for autism and the latter to stand for language delay, this model

Figure 3. Recovery level compared with preregression peak, for easy and
harder patterns, split by timing of regression (early � before 50 epochs,
n � 112; late � after 140 epochs, n � 118). Error bars show the standard
error of the mean.
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provides one means to explain why there might be some shared
common gene variants between autism and SLI (Vernes et al.,
2008). Under this view, the genes would contribute to variation in
a neurocomputational parameter that was a direct cause of SLI but
only a risk factor for autism. We can classify such parameters as
risk factors in the second case because they do not cause autism
(here, regression) provided the pruning process is not overaggres-
sive. Rare mutations linked with both autism and global delay
(mental retardation) might be related in the same way.

Comparison of Tables 2 and 3 also yielded another interesting
result. The number of hidden units and the sparseness of connec-
tivity were predictors of both regression and developmental rate in
the same direction. That is, more hidden units made it both more
likely that an individual would experience regression (if the prun-
ing process was overaggressive) and more likely that an individual
would develop at a faster rate (if the pruning process was normal).
Similarly, more dense initial connectivity made it more likely that
an individual would experience regression (if the pruning process
was overaggressive) but also more likely that an individual would
develop more quickly (if the pruning process was normal). This is
a surprising yet important demonstration that a neurocomputa-
tional parameter can be positively correlated with outcome in the
typically developing population but negatively correlated with
outcome in a disordered population. As we pointed out earlier,
exactly this paradox arises in the positive relationship between
brain size and intelligence in the typically developing population,
against the larger brain sizes observed in early development in
children with autism. As we saw above, whereas parallel resources
increase computational power, they also encourage smaller con-
nection sizes that are more at risk of being pruned.3

Empirically, it is also puzzling that larger brain size is a feature
only of early development in autism (Redcay & Courchesne,
2005). Such a pattern encouraged Courchesne et al. (2007) to
propose that from early childhood onward in autism, there might
be slowing or arrest of brain growth; this would explain the
absence of a difference compared with controls in older individ-
uals with autism. The connectionist networks employed in the
current simulations are relatively abstract and obviously bear only
an analogous relationship to actual neural circuits. Nevertheless, if

one postulated that the number of connections in an artificial
neural network is analogous to brain size, an assessment of how
connection numbers changed across development might be infor-
mative. Figure 4 displays these data for the high-risk population,
comparing the number of connections at various points in devel-
opment for individuals exhibiting regression (split by the level of
severity) with typically developing controls. All individuals
showed initially high levels of connectivity that declined following
the onset of pruning. However, in line with the fact that high levels
of initial connectivity elevate the risk for regression, Figure 4 also
shows that for networks yielding the most severe level of regres-
sion, there were initially more connections than in the control
population. Once the (overaggressive) pruning process began, the
number of connections in this severely affected group fell below
the level found in the control group. Elevated network size in the
group with severest regression was only a feature of early devel-
opment. Figure 4 shows that regression also occurred in smaller
networks at less severe levels.

The link between these simulation results and the brain size data
for autism is, of course, speculative. The simulations have the
limitation of predicting that there should be shrinkage in overall
network size with age, whereas this pattern is observed only for
gray matter volume, while white matter volume increases across
development (Giedd et al., 1999; Paus et al., 2001). Nonetheless,
the simulation results would reconcile both (a) how brain size
could have the opposite correlation with outcome in a typically
developing population compared with a disordered population, and
(b) how the larger brain size in autism could be a feature only of
early development. This account differs from those that have
identified brain size as a primary cause of the behavioral deficits in
autism. In the current simulations, the larger network size in
affected individuals was not a direct cause of deficit but an artifact
of sampling in a behaviorally defined disorder: Because network
size was a risk factor for regression, individuals with large net-
works were overrepresented in the regression group compared
with controls. Moreover, because network size was only a risk
factor for regression rather than a direct cause, there was a great
deal of overlap in the network sizes found in typical and disordered
networks. This pattern is also found for studies comparing brain
size of children with and without autism (e.g., Schumann et al.,
2010). Such a degree of overlap tends to undermine the potential
role of brain size as a direct cause of the phenotype.

Third, we considered whether extremely impoverished environ-
ments could increase the likelihood of regression in a population
that shared the same computational parameters as the low-risk
population. Figure 5 compares the incidence of regression at each
severity level for the low-risk and the environmental-risk popula-
tions. Twenty-one additional cases of regression were observed in
the environmental-risk population, a 45% increase in population
risk. These new cases exhibited regression with mainly mild or
medium severity and with good ultimate outcome. Recovery lev-
els, comparing final outcome with preregression accuracy peak,
yielded means of �13.6% for easy and �8.0% for harder pattern
types; means for the high-risk population were –24.9% and

3 Not all parameters showed the paradoxical correlations: The unit
threshold function contributed to risk of regression in the high-risk popu-
lation and risk of developmental delay in the low-risk population.

Table 3
A Subset of the Computational Parameters That Predicted Rate
of Development in the Low-Risk Population (for Comparison
With Table 2)

Parameter R2 change Significance

Pruning threshold .003 .014
Unit threshold function .057 �.001
Architecture .055 �.001
Pruning probabilitya — .096
Hidden unit number .018 �.001
Sparseness .008 �.001
Momentum .028 �.001
Family quotient (environment) .023 �.001

Note. Values show the R2 change taken from a statistical stepwise linear
regression analysis. The learning rate parameter explained most of the
variance in rate of development (R2 change � .113).
a Not included in model. The p value shows significance at the seventh
step.
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–36.8%, respectively. The additional cases corresponded to indi-
viduals exposed to impoverished environments, with a mean fam-
ily quotient value of .32 (i.e., only a third of the training set). The
mean family quotient value for the 46 cases of regression in the
low-risk population was .78. Mechanistically, the impoverished
training sets caused these networks to develop smaller than usual
connection weights, making them vulnerable to the less aggressive
pruning process present in this population. The pattern of results is
certainly suggestive of the “quasi-autism” identified by Rutter et
al. (2007). Quasi-autism was seemingly caused by extreme envi-
ronmental deprivation but was not universal to the children who
experienced this deprivation. From the perspective of the simula-
tions, two points are noteworthy. First, the environmental effect
still operated via the common causal pathway of connectivity.

Second, as indicated in an earlier analysis, variations in the prun-
ing threshold parameter still explained most of the incidence of
regression in the environmental-risk population. That is, not all
individuals were affected by the impoverished environment be-
cause, in affected cases, it also required marginally elevated un-
derlying risk for aggressive synaptic pruning. Poor environment
only exaggerated underlying risk that would have remained latent
in a normal environment. For both the simulations and the cases of
quasi-autism reported by Rutter et al., the impairments were less
severe and the outcome more positive than that observed for many
core cases of autism.

These three findings provide a parsimonious explanation of
several empirical phenomena in the broader autism phenotype.
However they rest, of course, on the assumption that regression
can be linked to the broader autistic phenotype. Autism is more
often characterized by a failure to progress than by regression.
Under what circumstances could overaggressive pruning cause
failure to progress, rather than development followed by regres-
sion? We believe this link can be made if the mechanism damaging
neural circuits is the same in the two cases but its timing is
different. Under this view, autism will occur without regression if
developmentally the overt behavior has not yet appeared by the
time pruning begins. This may be either because the emergence of
the overt behavior is itself delayed (as per the hypothesis of Pickles
et al., 2009) or because there are individual differences in the
timing of onset of pruning. Earlier occurring pruning will damage
circuits before they have had time to give rise to many overt
behaviors.

Indeed, the idea of individual differences provides a way to link
mechanistically a number of phenomena hitherto treated sepa-
rately: autism without regression, the regressive subtype, and some
cases of childhood disintegrative disorder where regression occurs
after the age of 3 years. In the first case, the aggressive pruning

Figure 4. The mean number of connections in networks across development, shown for typically developing
individuals and individuals exhibiting each level of severity of regression. The insert shows the early crossover
for individuals with the severest level of regression, with initially higher and later lower numbers of connections
compared with controls.

Figure 5. The incidence of regression split by severity level, for low-risk
and environmental-risk populations.
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occurs before many overt behaviors are apparent. In the second
case, it occurs after some salient behaviors have emerged (such as
vocabulary development and social interactions). In the third case,
the aggressive pruning occurs after 3 years of age. The later it
appears, the more extreme pruning would need to be, in order to
damage the more established functional circuits of older children,
explaining the poorer prognosis of children with CDD.

In our final simulation analysis, we investigated whether some
cases that were not rated as instances of regression but that
exhibited delay or a developmental plateau might in fact have been
caused by overaggressive pruning that had occurred early in de-
velopment. We identified several candidate cases in the high-risk
population based on a combination of behavioral delay and either
a high pruning threshold or early pruning onset parameter value.
These analyses are different in kind from the preceding analyses
because cases were identified by a combination of behavior and a
priori knowledge of the individual’s neurocomputational parame-
ter set. Four candidate individuals are illustrated in Figure 6, with
the trajectories illustrating delay and plateau shown in the upper
row. To verify the contribution of the pruning process, these
networks were rerun with identical parameters and environmental
conditions, with the exception of the pruning threshold parameter,
which was lowered to a value of 0.1. Pruning would therefore
occur only for very small connections. The lower row in Figure 6
demonstrates the trajectories for each individual under these con-
ditions. With this one parameter altered, these cases yielded much
more successful developmental outcomes, thereby implicating
overaggressive pruning as a cause of the delay. (Other cases of

delay identified in the population were not altered by changing the
pruning threshold parameter.) In three of the four illustrated cases,
the onset of pruning was earlier than that found in regression (at
50, 75, and 25 epochs, compared with the regression mean of 106).
Pruning thresholds were high for two of these cases (2.5), but for
the third and earliest occurring case, the threshold was only 1.0.
The fourth case experienced pruning onset at 100 epochs but had
a high threshold of 4.0. These case studies offer cautious support
that delay rather than regression can result from overaggressive
pruning if it occurs earlier in development. The fourth case shows
that a plateau in development rather than regression is a possible
consequence of later occurring pruning at more aggressive levels.

There were a number of more extreme cases where development
failed completely. We identified 21 such cases in the high-risk
population, where no learning was apparent (which we refer to as
flatliners). For these networks, the mean onset of pruning was 70
epochs and the mean pruning threshold was 2.7. Once more, we
reran these networks with the sole change of a reduction in the
pruning threshold parameter to 0.1. In 15 cases, the networks now
showed some degree of development, whereas in six others there
was no change. The mean trajectory averaging across these 15
cases of “recovered development” is shown in Figure 7 (right
panel), with the mean trajectory from all typically developing (i.e.,
nonregression) networks shown for comparison (left panel). The
mean typically developing trajectory includes the 21 flatliners.
These extreme cases demonstrate a number of points. First, early
overaggressive pruning can contribute to a failure to progress in an
experience-dependent learning system. Second, the failure to prog-

Figure 6. Top row: Trajectories of individuals who exhibited a pattern of delay or plateau rather than a clear
pattern of regression, and where early aggressive pruning was implicated as a cause. Bottom row: the same
networks rerun with identical parameters and environmental conditions except for the pruning threshold
parameter, which was reduced to 0.1. Stronger performance confirmed the potential role of early pruning in
causing delays and plateaus in development.
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ress can have other neurocomputational causes than pruning, cor-
responding to a critical accumulation of risk factors for delay.
Third, as Figure 7 illustrates, in cases of failure, had the overag-
gressive pruning process not operated, development would have
been delayed in any case. That is, the failure to progress in the 15
cases resulted from a “double hit” of delay and overaggressive
pruning. The simulation result provides computational support for
Pickles et al.’s (2009) hypothesis that cases of regression may
represent faster developing cognitive systems, with the same
mechanism causing slower developing cognitive systems to fail to
progress.

Although this final analysis can only be provisional due to its
post hoc nature, it nevertheless provides support for the hypothesis
that regression and the wider autism phenotype may be linked by
a common underlying mechanism, with the more usual autism
pattern occurring when there is earlier overaggressive pruning or
slower underlying development.

General Discussion

Our account of regression in autism extends the approach of
placing the developmental process at the heart of the explanation
of developmental deficits (Karmiloff-Smith, 1998, 2009) and us-
ing implemented neurocomputational models to specify the details
of that process (Mareschal et al., 2007; Thomas & Karmiloff-
Smith, 2002). It is novel in its use of population modeling, where
large numbers of individuals are simulated to capture the contri-
bution of intrinsic and extrinsic sources of variation on behavior
(neurocomputational parameters and the learning environment,
respectively). This technique permitted the investigation of heter-
ogeneity in regression and the influence of risk factors and pro-
tective factors in modulating the relationship between disorder
cause and deficit outcome. Such factors could not be described as
directly causal because, importantly, they also varied in unaffected
individuals. We were therefore able to model the subsequent
probabilistic relationship between cause and effect in a mechanis-
tic rather than statistical model. Bishop (2006) recently advocated
a causal framework for developmental deficits based on protective

and risk factors. Although this framework is familiar in medicine,
it stands in contrast to previous approaches in neuropsychology
that have appealed to dissociation methodology, seeking to
identify necessary and sufficient conditions for developmental
deficits to arise. We believe that the use of population modeling
to explore the statistical distribution of possible developmental
trajectories given particular intrinsic conditions and particular
environments has much to offer in understanding the causes of
individual variation in behavior and that the same technique could
be used to explore the origins of other developmental disorders.

The main findings of the current simulations can be summarized
as follows. We hypothesized that the loss of previously established
behaviors in early childhood observed in some children with
autism is the result of overaggressive synaptic pruning. A normal
threshold led to the pruning of connections without a negative
impact on development. Setting the threshold too high allowed
established functional circuits to be pruned, thereby damaging
behavior. The simulations showed that (a) the pruning threshold
parameter bore only a probabilistic relationship to the behavioral
manifestation of regression; (b) the relationship was also nonlin-
ear, so that variations in the parameter up to a certain point had
little effect, but over a certain level increasingly led to regression;
(c) the probabilistic nature of regression was due to an interaction
of the pruning threshold parameter with population-wide variation
in other computational parameters that could serve as risk or
protective factors; (d) such factors produced heterogeneity in many
of the characteristics of regression, including the timing of onset,
the severity, the behavioral specificity, and the recovery; and (e)
late onset regression had a poorer prognosis for recovery. Both the
latter characteristics have been noted in the empirical literature on
autism (Goldberg et al., 2003; Lord et al., 2004; Rogers, 2009).
The heterogeneity arose because computational effects converged
on the common causal pathway of connectivity size; (f) some
computational parameters that were only risk factors for regression
were the direct cause of developmental delay. This would provide
an explanation of the finding that some common gene variants
have been found that are more frequent in both autism and SLI

Figure 7. Left panel: Average trajectories for all individuals not classified as showing regression (n � 359).
Right panel: Average trajectories for individuals in whom development failed completely, but who showed some
level of development when the networks were rerun with the pruning threshold parameter reduced to 0.1 (n �
15). The pattern of delay indicates that failure was due to a combination of aggressive pruning and underlying
slow development.
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(Vernes et al., 2008); (g) a larger number of parallel connections
produced more powerful learning when pruning operated normally
but increased the risk of regression when pruning was overaggres-
sive. This would provide an explanation of why larger brain size is
correlated with greater intelligence in the typically developing
population but is also associated with increased risk of autism
(McDaniel, 2005; Redcay & Courchesne, 2005). Large brain size
would not be a cause of autism, as some have claimed, but merely
a risk factor for overaggressive pruning; (h) an extremely impov-
erished learning environment exaggerated the risk that regression
would occur in a low-risk population, because in such an environ-
ment, networks developed small connections that were more at risk
of pruning. Such regression was milder and with better prognosis
for recovery. This would explain why Rutter et al. (1999, 2007)
identified a condition of “quasi-autism,” affecting some but not all
children exposed to extreme physical and social deprivation while
in Romanian orphanages. Finally, (i) supporting the contention
that overaggressive pruning might also underlie the broader autism
phenotype, we found that if pruning commenced early, or devel-
opment was delayed for other neurocomputational reasons, over-
aggressive pruning could result in patterns of delay, plateau, or
failure to develop.

The proposed mechanistic explanation of developmental regres-
sion reconciles a number of disparate and sometimes paradoxical
findings. It reconciles how cognitive abilities can decline after the
onset of development; how the decline can occur while an adaptive
mechanism, which is always seeking to improve the child’s adap-
tive fit to his or her environment, continues to operate; and how the
cognitive system can then show some level of recovery. It recon-
ciles how regression in autism can have late onset yet have nothing
to do with environmental factors (such as parenting): In the high-
risk population with normal environmental variation, there was
little effect of variations in experience. It is worth noting that the
presence of recovery following regression is less easy to explain
than one might imagine: How can an atypical process with a late
onset be severe enough to cause an overt decline in behavior yet
then allow the cognitive system to exhibit recovery—has the
atypical process suddenly ceased to operate? The current hypoth-
esis has a straightforward explanation of recovery in these chil-
dren. Overaggressive pruning removes connections that encode
established behaviors, so causing the decline. But eventually, all
connections that fall beneath the pruning threshold will have been
pruned. The cognitive system can then use those that remain to
acquire abilities as best it can. Importantly here, in our simulations,
the atypical mechanism causing the decline in behavior never
ceased to operate—once activated, pruning was active through
each network’s life span—yet in many cases recovery followed
regression nonetheless. The model reconciles paradoxical findings,
in particular demonstrating how a neurocomputational parameter
can be positively correlated with outcome in the typically devel-
oping population but negatively correlated with outcome in a
developmentally disordered population.

Biological Mechanisms and Heritability

Although the causal process underlying developmental regres-
sion in autism is currently unknown, there has already been spec-
ulation that gene-based mechanisms may impair the anatomical
remodeling of the brain, altering synaptic growth and pruning

during the second year of life (Baird et al., 2008; Carper &
Courchesne, 2005). In the broader autism phenotype, hypotheses
concerning synaptic pruning and remodeling are being investi-
gated via genetic disorders of known cause that show elevated
incidence of the symptomatology of autism, such as Rett and
Fragile X syndromes (Glaze, 2004; Kelleher & Bear, 2008). Al-
though ASDs show high heritability (see Ronald & Hoekstra,
2011, for a review), a large percentage of this heritability remains
unaccounted for, with candidate genes explaining little phenotypic
variability in genome-wide association studies. The majority of
cases of autism are believed to result from probabilistic genetic
interactions, with multiple common variants of small effect con-
tributing marginally to the behavioral phenotype (Abrahams &
Geschwind, 2008). However, around 10%–20% of cases can be
accounted for by known genetic effects, including (transmitted or
de novo) medium-effect mutations or copy number variations
(Sebat et al., 2007). Continued discoveries of specific mutations
(Awadalla et al., 2010; O’Roak et al., 2011) suggest that estimates
of their contribution to heritability may be adjusted in the future.
The complex genetic picture raises the important question of how
a large number of single mutations, or the interplay between many
common variants, can each give rise to a very similar phenotype;
for although a great deal of behavioral heterogeneity is seen in
autism, the diagnostic commonality between individuals suggests
a common underlying cause.

If cases with different genetic causes share a neurobiological
basis, then that process, anomalous in autism, must rely on a wide
variety of genes that also contribute to typical development. Atyp-
ical pruning is a plausible candidate mechanism from this perspec-
tive. Courchesne et al. (2007) noted that although there has been
speculation that the cause of autism lies at the synapse (Garber,
2007), there have been few quantitative studies that have investi-
gated cortical synapses in children with autism. The regulation of
synaptic function depends on potentially thousands of genes (Rou-
leau, 2011), the expression of which is likely to change most
dramatically during developmental periods of modifications in
synaptic structure. Many of the genes identified as being associ-
ated with autism are also known to be involved in the regulation of
synaptic function, or to control the expression of these genes. For
example, in individuals with an ASD, transmitted or de novo
mutations have been found in a number of genes that are involved
in synaptogenesis, neurotransmitter release, or pruning, including
Synapsin 1 (Fassio et al., 2011), SynGAP1 (Hamdan et al., 2011),
SHANK3 (Bozdagi et al., 2010; Durand et al., 2006), and NLGN4
(Laumonnier et al., 2004); moreover, some of these are X-linked
(Fassio et al., 2011; Piton et al., 2010).

The current proposal implicates the pruning of connectivity as
the common causal pathway and also the mechanism by which
both risk and protective factors can operate. The model is consis-
tent with a genetic account in which variation in risk and protective
factors is the result of the common gene variants, whereas the
cause of overaggressive pruning may either be the accumulation of
risk from common variants (as in the low-risk population; see
Table 1) or the targeting of this process via mutations that increase
population risk (as in the high-risk population). Because in this
view the risk factors and the cause of overaggressive pruning can
in principle be inherited independently, this predicts that some
biological markers of autism may be observed in siblings or other
individuals who nevertheless do not present with the disorder.
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Such a pattern has been observed both for common gene variants
(Scott-Van Zeeland et al., 2010) and for variations in white matter
structure (Barnea-Goraly, Lotspeich, & Reiss, 2010). Similarly,
the model predicts that if brain size is a risk factor and indepen-
dently heritable from the direct cause of autism, siblings of af-
fected individuals may also show larger than average brain size;
but in this case, without overaggressive pruning, our model pre-
dicts that it should persist in siblings across development. This
remains to be verified empirically.

Modeling Limitations

As with all modeling, the work presented here has some limi-
tations. Theoretically, several of the findings depend on the as-
sumption that regression indexes mechanisms at work also in the
broader autism phenotype. Although our results support the via-
bility of this link, regression could of course constitute a subtype,
requiring a separate mechanistic explanation of the broader phe-
notype. Additionally, the current proposal is that in regression,
autistic symptoms have later onset because they do not emerge
until pruning begins. This would predict that phases of develop-
ment prior to regression should be normal, but whether early
development is indeed normal prior to regression is the subject of
continuing debate (Luyster et al., 2005; Pickles et al., 2009;
Wilson, Djukic, Shinnar, Dharmani, & Rapin, 2003). In terms of
the simulations themselves, the modeling is both abstract and high
level. Although we used a computational architecture that has been
employed in a number of models of cognitive development, it
obviously bears only an analogous relationship to the properties of
actual neural circuits. For example, we did not simulate the early
phase of synaptogenesis (the growth of connections). Other con-
structivist neural network models would be required to investigate
the possibility of anomalies in this earlier phase (Shultz, 2003).
Moreover, as mentioned earlier, in real neural circuits, pruning
itself is a change in the balance of two concurrent processes of
synapse formation and elimination (Hua & Smith, 2004). The
model used the supervised learning algorithm of backpropagation,
which is only indirectly biologically plausible (see Thomas &
McClelland, 2008, for discussion). And we relied upon the metric
of connection size to determine whether a connection was unused.
In neural circuits, it is possible to conceive of other properties
guiding pruning, such as how recently or often a synapse has been
utilized.

Furthermore, in common with all accounts that posit the
cause of autism as a low-level computational anomaly, it re-
mains to be demonstrated why such an anomaly should lead to
the particular triad of deficits in communication, socialization,
and a restricted repertoire of behaviors that seem to be
syndrome-specific to autism. The assumption is usually that
these cognitive domains must rely on the computational prop-
erty that is compromised in autism, but this remains to be
demonstrated. In the case of a pruning account, one might posit
that the pruning process differentially affects different types of
connections. If the overaggressive pruning process particularly
impacted long-range connectivity over short-range connectiv-
ity, then the current hypothesis would fit into existing (dis)con-
nectivity hypotheses about autism and its associated cognitive
formulations (e.g., Courchesne & Pierce, 2005; Happé, 1999;
Ozonoff et al., 1994; Rippon, Brock, Brown, & Boucher, 2007;

Williams & Casanova, 2010), which posit that the triad are
cognitive domains that require the integration of nonlocally
available cues or interactions between remote brain regions for
the development of typical behavior.

We described the learning problem employed in our simulations
in abstract terms. The results indicated that internally consistent
behaviors with high type frequency were more robust to regression
than idiosyncratic/exceptional behaviors, even if the latter were
highly practiced. Future simulations would need to incorporate
features of target cognitive domains to show how they interact
with compromised connectivity and lead to domain-specific phe-
notypic outcomes. Other low-level deficits should produce other
phenotypic outcomes, such as global delay or language impair-
ment. Lastly, any full account needs to consider the extended
developmental trajectory, incorporating the adaptive response of
the individual to changes in processing properties, proactive con-
trol of behavior, and emotional regulation (see Grossberg & Seid-
man, 2006, for a computational account of the latter).

Novel Predictions

The model generates a prediction that is not found in any current
theory of autism. Our central hypothesis is that regression is
triggered by atypical synaptic pruning. In humans, data suggest
that the timing of synaptic pruning is different across brain areas,
with primary sensory and motor areas experiencing the earliest
pruning, followed by temporal and parietal associative areas, and
lastly frontal cortex (Huttenlocher, 2002; Huttenlocher & Dabhol-
kar, 1997). Behaviors are not typically generated by the operation
of a single brain area. Nevertheless, to the extent that behaviors
rely differentially on certain brain areas, our prediction is that the
order of appearance of the behavioral symptoms of autism should
follow the onset of pruning in relevant brain areas. Thus, we
hypothesize that sensory and motor anomalies should appear first.
This novel prediction contradicts the usual claim that social defi-
cits (e.g., in communicative eye gaze behavior) are the first overt
symptoms to emerge in autism.

It is likely that retrospective parental reports will be insuffi-
ciently sensitive to test our hypothesis, because very early sensory
and motor anomalies may be subtle. Instead, prospective studies
examining the early development of infants at risk for autism are
better suited to probe for the earliest atypical behaviors for chil-
dren who subsequently turn out to present with autism. Several
such studies are underway, but it is premature to draw strong
conclusions. The preliminary evidence, however, is suggestive.
Rogers (2009) reviewed the findings to date from studies of infant
siblings of children with autism, noting the surprising lack of overt
behaviors at 6 months of age that would point to later autism and
highlighting the actual presence of social behaviors in these in-
fants, alongside atypicalities in other areas. Indeed, referring to
findings from Bryson et al. (2007) on nine infants who subse-
quently developed autism, Rogers noted that the earliest atypicali-
ties were in two areas: delayed motor development and unusual
visual interest or reactivity to objects. Further data are required,
but the indication is that deficits in sensory and motor behaviors
may precede social impairments, consistent with the fact that
pruning takes place earlier in the sensory and motor brain systems,
and thus supporting our hypothesis.
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Intervention

Finally, are there any implications for intervention based on the
hypothesis we have developed? Several types of intervention
might be conceived that differ from those currently pursued in
developmental disorder remediation approaches in general. Rather
than target domain-specific deficits known to be part of a syn-
drome’s profile (e.g., social communication in autism), interven-
tion might target very basic-level processes that subsequently have
a cascading impact on domain-specific outcomes (Karmiloff-
Smith, 2009). These would include a very early behavioral inter-
vention to enhance connectivity prior to the onset of pruning, a
pharmacological intervention to lessen the severity of pruning, and
very early visuo-motor training rather than focusing on communi-
cative deficits. Baird et al. (2008) recently concluded that it was
unknown whether regressive processes are influenced by environ-
mental factors. Our simulations of autism showed that environ-
mental stimulation had an asymmetric role: Although a very im-
poverished environment could elevate risk, a good environment
was insufficient to prevent loss of function. However, we did not
consider the possible effects of increased stimulation of at-risk
systems. Turning to autism itself, a speculative and optimistic
vision from our current simulations would be that risk status for
aggressive synaptic pruning could be identified on the basis of
genotype and a pharmacological intervention applied in early
infancy to normalize the pruning process.
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