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2 Connectionist Models
of Cognition
Michael S. C. Thomas and James L. McClelland

2.1 Introduction

In this chapter, computer models of cognition that have focused on
the use of neural networks are reviewed. These architectures were inspired by
research into how computation works in the brain, and particularly the
observation that large, densely connected networks of relatively simple
processing elements can solve some complex tasks fairly easily in a modest
number of sequential steps. Subsequent work has produced models of
cognition with a distinctive flavor. Processing is characterized by patterns of
activation across simple processing units connected together into complex
networks. Knowledge is stored in the strength of the connections between
units. It is for this reason that this approach to understanding cognition has
gained the name of connectionism.

Since the first edition of this volume, it has become apparent that the field
has entered the third age of artificial neural network research. The first began
in the 1930s and 1940s, part of the genesis of the first formal theories of
computation; the second arose in the 1980s and 1990s with Parallel
Distributed Processing models of cognition; and the third emerged in the
mid-2000s with advances in “deep” neural networks. Transition between the
ages has been triggered by new insights into how to create and train more
powerful artificial neural networks.

2.2 Background

Over the last forty years, connectionist modeling has formed an influen-
tial approach to the computational study of cognition. It is distinguished by its
appeal to principles of neural computation to inspire the primitives that are
included in its cognitive level models. Also known as artificial neural network
(ANN) or parallel distributed processing (PDP) models, connectionism has
been applied to a diverse range of cognitive abilities, including models of
memory, attention, perception, action, language, concept formation, and
reasoning (see, e.g., Houghton, 2005; Joanisse & McClelland, 2015; Mayor,
Gomez, Chang, & Lupyan, 2014). While many of these models seek to capture
adult function, connectionism places an emphasis on learning internal repre-
sentations. This has led to an increasing focus on developmental phenomena
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and the origins of knowledge. Although, at its heart, connectionism comprises a
set of computational formalisms, it has spurred vigorous theoretical debate
regarding the nature of cognition. Some theorists have reacted by dismissing
connectionism as mere implementation of preexisting verbal theories of cogni-
tion, while others have viewed it as a candidate to replace the Classical
Computational Theory of Mind and as carrying profound implications for
the way human knowledge is acquired and represented; still others have viewed
connectionism as a sub-class of statistical models involved in universal function
approximation and data clustering.
The chapter begins by placing connectionism in its historical context, leading

up to its formalization in Rumelhart and McClelland’s two-volume Parallel
Distributed Processing (1986) written in combination with members of the
Parallel Distributed Processing Research Group. The innovations that then
triggered the emergence of deep networks are indicated. Next, there is a
discussion of three important foundational cognitive models that illustrate some
of the key properties of connectionist systems and indicate how the novel
theoretical contributions of these models arose from their key computational
properties. These three models are the Interactive Activation model of letter
recognition (McClelland & Rumelhart, 1981; Rumelhart and McClelland,
1982), Rumelhart and McClelland’s model of the acquisition of the English
past tense (1986), and Elman’s simple recurrent network for finding structure in
time (1991). The chapter finishes by considering how connectionist modeling
has influenced wider theories of cognition, and how in the future, connectionist
modeling of cognition may progress by integrating further constraints from
neuroscience and neuroanatomy.

2.2.1 Historical Context

Connectionist models draw inspiration from the notion that the information
processing properties of neural systems should influence theories of cognition.
The possible role of neurons in generating the mind was first considered not
long after the existence of the nerve cell was accepted in the latter half of the
nineteenth century (Cobb, 2020). Early neural network theorizing can there-
fore be found in some of the associationist theories of mental processes
prevalent at the time (e.g., Freud, 1895; James, 1890; Meynert, 1884;
Spencer, 1872). However, this line of theorizing was quelled when Lashley
presented data appearing to show that the performance of the brain degraded
gracefully depending only on the quantity of damage. This argued against the
specific involvement of neurons in particular cognitive processes (see, e.g.,
Lashley, 1929).
In the 1930s and 1940s, there was a resurgence of interest in using mathemat-

ical techniques to characterize the behavior of networks of nerve cells (e.g.,
Rashevksy, 1935). This culminated in the work of McCulloch and Pitts (1943)
who characterized the function of simple networks of binary threshold neurons
in terms of logical operations. In his 1949 book The Organization of Behavior,
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Donald Hebb proposed a cell assembly theory of cognition, including the idea
that specific synaptic changes might underlie psychological principles of learn-
ing. A decade later, Rosenblatt (1958, 1962) formulated a learning rule for two-
layered neural networks, demonstrating mathematically that the perceptron
convergence rule could adjust the weights connecting an input layer and an
output layer of simple neurons to allow the network to associate arbitrary
binary patterns (see also Novikoff, 1962). With this rule, learning converged
on the set of connection values necessary to acquire any two-layer-computable
function relating a set of input–output patterns. Unfortunately, Minsky and
Papert (1969) demonstrated that the set of two-layer computable functions was
somewhat limited – that is, these simple artificial neural networks were not
particularly powerful devices. While more computationally powerful networks
could be described, there was no algorithm to learn the connection weights of
these systems. Such networks required the postulation of additional internal or
“hidden” processing units, which could adopt intermediate representational
states in the mapping between input and output patterns. An algorithm (back-
propagation) able to learn these states was discovered independently several
times. A key paper by Rumelhart, Hinton, and Williams (1986) demonstrated
the usefulness of networks trained using backpropagation for addressing key
computational and cognitive challenges facing neural networks.

In the 1970s, serial processing and the Von Neumann computer metaphor
dominated cognitive psychology, relying heavily on symbolic representations
(Newell, 1980). Nevertheless, a number of researchers continued to work on the
computational properties of neural systems. Some of the key themes identified
by these researchers include the role of competition in processing and learning
(e.g., Grossberg, 1976a; Kohonen, 1984), and the use of hierarchically organ-
ized bi-directional connectivity for perceptual inference in adaptive competitive
interactive systems (Grossberg, 1976b).

Researchers also began to explore the properties of distributed representa-
tions (e.g., Anderson, 1977; Hinton & Anderson, 1981), and the possibility of
content addressable memory in networks with attractor states, formalized using
the mathematics of statistical physics (Hopfield, 1982). A fuller characterization
of the many historical influences in the development of connectionism can be
found in Rumelhart, McClelland and the PDP Research Group (1986, chapter
1), Bechtel and Abrahamsen (1991), McLeod, Plunkett, and Rolls (1998), and
O’Reilly and Munakata (2000).

Backpropagation networks prompted an explosion of models targeting sim-
plified versions of problem domains from language and cognition. But it seemed
for many years that such networks could not readily scale to complex, real-
world problems such as natural language processing or vision. Once again, the
issue was not that it was impossible to describe sufficiently powerful networks,
but that such networks were not trainable using the available tools. This time,
instead of a single breakthrough, this barrier was overcome by several conver-
gent developments. These included several architectural and processing
enhancements, the availability of much greater computational power, and the
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availability of large data sets to train the models (LeCun, Bengio, & Hinton,
2015). Now, instead of shallow networks typically containing only three layers
(input, hidden, and output), networks with tens or even hundreds of layers
(hence, “deep”) could be trained to solve complex problems. The latest deep
neural networks are now applied to problems such as visual object recognition,
speech recognition, and natural language processing, sometimes showing near
human or even super-human levels of performance (Kriegeskorte, 2015; Storrs
& Kriegeskorte, 2019; see also Chapter 9 in this handbook).
Figure 2.1 depicts a selective schematic of this history and demonstrates the

multiple types of neural network system that have latterly come to be used in
building models of cognition. While diverse, they are unified on the one hand by
the proposal that cognition comprises processes of constraint satisfaction,
energy minimization and pattern recognition, and on the other that adaptive
processes construct the microstructure of these systems, primarily by adjusting
the strengths of connections among the neuron-like processing units involved in
a computation.

2.2.2 Key Properties of Connectionist Models

Connectionism starts with the following inspiration from neural systems: com-
putations will be carried out by a set of simple processing units operating in
parallel and affecting each other’s activation states via a network of weighted
connections. Rumelhart, Hinton, and McClelland (1986) identified seven key
features that would define a general framework for connectionist processing.
The first feature is the set of processing units ui. In a cognitive model, these

may be intended to represent individual concepts (such as letters or words), or
they may simply be abstract elements over which meaningful patterns can be
defined. Processing units are often distinguished into input, output, and hidden
units. In associative networks, input and output units have states that are
defined by the task being modeled (at least during training), while hidden units
are free parameters whose states may be determined as necessary by the
learning algorithm.
The second feature is a state of activation (a) at a given time (t). The state of

a set of units is usually represented by a vector of real numbers a(t). These may
be binary or continuous numbers, bounded or unbounded. A frequent assump-
tion is that the activation level of simple processing units will vary continuously
between the values 0 and 1.
The third feature is a pattern of connectivity. The strength of the connection

between any two units will determine the extent to which the activation state of
one unit can affect the activation state of another unit at a subsequent time
point. The strength of the connections between unit i and unit j can be repre-
sented by a matrix W of weight values wij. Multiple matrices may be specified
for a given network if there are connections of different types. For example, one
matrix may specify excitatory connections between units and a second may
specify inhibitory connections. Potentially, the weight matrix allows every unit
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Figure 2.1 A simplified schematic showing the historical evolution of neural
network architectures. Simple binary networks (McCulloch & Pitts, 1943) are
followed by two-layer feedforward networks (perceptrons; Rosenblatt, 1958).
Three subtypes then emerge: feedforward networks (Rumelhart &McClelland,
1986), competitive or self-organizing networks (e.g., Grossberg, 1976a;
Kohonen, 1984), and symmetrically connected energy-minimization networks
(Hinton & Sejnowksi, 1986; Hopfield, 1982). Adaptive interactive networks
have precursors in detector theories of perception (Logogen: Morton, 1969;
Pandemonium: Selfridge, 1959) and hard-wired interactive models
(Interactive Activation: McClelland & Rumelhart, 1981; Interactive
Activation and Competition: McClelland, 1981; Stereopsis: Marr & Poggio,
1976; Necker cube: Feldman, 1981), and Grossberg provided an early adaptive
learning rule for such systems (Grossberg, 1976b). Feedforward pattern
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to be connected to every other unit in the network. Typically, units are arranged
into layers (e.g., input, hidden, output) and layers of units are fully connected to
each other. For example, in a three-layer feedforward architecture where acti-
vation passes in a single direction from input to output, the input layer would be
fully connected to the hidden layer and the hidden layer would be fully con-
nected to the output layer.
The fourth feature is a rule for propagating activation states throughout the

network. This rule takes the vector a(t) of output values for the processing units
sending activation and combines it with the connectivity matrixW to produce a
summed or net input into each receiving unit. The net input to a receiving unit is
produced by multiplying the vector and matrix together, so that

neti ¼ W � a tð Þ ¼
X

j

wijaj (2.1)

The fifth feature is an activation rule to specify how the net inputs to a given
unit are combined to produce its new activation state. The function F derives
the new activation state

ai tþ 1ð Þ ¼ F neti tð Þð Þ (2.2)

For example, F might be a threshold so that the unit becomes active only if the
net input exceeds a given value. Other possibilities include linear, Gaussian, and
sigmoid functions, depending on the network type. Sigmoid is perhaps the most
common, operating as a smoothed threshold function that is also differentiable.
It is often important that the activation function be differentiable because
learning seeks to improve a performance metric that is assessed via the acti-
vation state while learning itself can only operate on the connection weights.
The effect of weight changes on the performance metric therefore depends to
some extent on the activation function, and the learning algorithm encodes this
fact by including the derivative of that function (see below).
The sixth key feature of connectionist models is the algorithm for modifying

the patterns of connectivity as a function of experience. Virtually all learning
rules for PDP models can be considered a variant of the Hebbian learning rule
(Hebb, 1949). The essential idea is that a weight between two units should be

Caption for Figure 2.1 (cont.) associators have been extended to three or
more layers with the introduction of backpropagation (Rumelhart, Hinton &
Williams, 1986), and have produced multiple subtypes used in modeling
dynamic aspects of cognition: these include cascaded feedforward networks
(e.g., Cohen, Dunbar, & McClelland, 1990) and attractor networks in which
states cycle into stable configurations (e.g., Plaut & McClelland, 1993); for
processing sequential information, recurrent networks (Elman, 1991; Jordan,
1986); for systems that alter their structure as part of learning, constructivist
networks (e.g., cascade correlation: Fahlman & Lebiere, 1990; Shultz, 2003).
Since the early 2000s, deep neural networks have emerged, characterized by
multiple layers of hidden units (LeCun, Bengio, & Hinton, 2015).
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altered in proportion to the units’ correlated activity. For example, if a unit ui
receives input from another unit uj, then if both are highly active, the weight wij

from uj to ui should be strengthened. In its simplest version, the rule is

Δwij ¼ ηaiaj (2.3)

where η is the constant of proportionality known as the learning rate. Where an
external target activation ti(t) is available for a unit i at time t, this algorithm is
modified by replacing ai with a term depicting the disparity of unit ui’s current
activation state ai(t) from its desired activation state ti(t) at time t, so forming
the delta rule:

Δwij ¼ η ti tð Þ � ai tð Þð Þaj (2.4)

However, when hidden units are included in networks, no target activation is
available for these internal parameters. The weights to such units may be
modified by variants of the Hebbian learning algorithm (e.g., Contrastive
Hebbian; Hinton, 1989; see Xie & Seung, 2003) or by the backpropagation of
error signals from the output layer.

Backpropagation makes it possible to determine, for each connection weight
in the network, what effect a change in its value would have on the overall
network error. The policy for changing the strengths of connections is simply to
adjust each weight in the direction (up or down) that would tend to reduce the
error, by an amount proportional to the size of the effect the adjustment will
have. If there are multiple layers of hidden units remote from the output layer,
this process can be followed iteratively: first error derivatives are computed for
the hidden layer nearest the output layer; from these, derivatives are computed
for the next deepest layer into the network, and so forth. On this basis, the
backpropagation algorithm serves to modify the pattern of weights in powerful
multilayer networks. It alters the weights to each deeper layer of units in such a
way as to reduce the error on the output units (see Rumelhart, Hinton, &
Williams, 1986, for the derivation). The weight change algorithm can be for-
mulated by analogy to the delta rule as shown in Equation 2.4. For each deeper
layer in the network, the central term that represents the disparity between the
actual and target activation of the units is modified. Assuming ui, uh, and uo are
input, hidden, and output units in a three-layer feedforward network, the
algorithm for changing the weight from hidden to output unit is:

Δwoh ¼ η to � aoð ÞF 0 netoð Þah (2.5)

where F 0 netð Þ is the derivative of the activation function of the units (e.g., for
the sigmoid activation function, F 0 netoð Þ ¼ ao 1� aoð Þ). The term (to – ao) is
proportional to the negative of the partial derivative of the network’s overall
error with respect to the activation of the output unit, where the error E is given
by E ¼ P

o to � aoð Þ2.
The derived error term for a unit at the hidden layer is based on the derivative

of the hidden unit’s activation function, times the sum across all the connections
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from that hidden unit to the output later of the error term on each output unit
weighted by the derivative of the output unit’s activation function
to � aoð ÞF 0 netoð Þ times the weight connecting the hidden unit to the output unit:

F 0 nethð Þ
X

o
to � aoð ÞF 0 netoð Þwoh (2.6)

The algorithm for changing the weights from the input to the hidden layer is
therefore:

Δwhi ¼ ηF 0 nethð Þ
X

o
to � aoð ÞF 0 netoð Þwohai (2.7)

It is interesting that the above computation can be construed as a backward pass
through the network, similar in spirit to the forward pass that computes activa-
tions in that it involves propagation of signals across weighted connections, this
time from the output layer back toward the input. The backward pass, however,
involves the propagation of error derivatives rather than activations.
It should be emphasized that a very wide range of variants and extensions of

Hebbian and error-correcting algorithms have been introduced in the connec-
tionist learning literature. Most importantly, several variants of backpropaga-
tion have been developed for training recurrent networks, that is, those in which
activation can cycle around loops (Williams & Zipser, 1995); and several
algorithms (including the Contrastive Hebbian Learning algorithm and
O’Reilly’s 1998 LEABRA algorithm) have addressed some of the concerns that
have been raised regarding the biological plausibility of backpropagation con-
strued in its most literal form (O’Reilly & Munakata, 2000).
One challenge of training deep neural networks, with many layers of hidden

units, is called the vanishing gradient problem (Hochreiter, 1991). As has been
seen, the change to each layer of weights extending deeper into the network (that
is, further from the output, closer to the input) depends on the extent to which
each weight contributes to the error at the output layer, scaled by the gradient of
the activation function at each layer of units above. Since for many activation
functions, such as the sigmoid, the gradient falls between 0 and 1, this results in
the multiplication of several numbers each less than one: potentially it produces
very small weight change at deeper layers, slowing down learning. A parallel
problem exists for recurrent networks, where each pass through the recurrent
loop involves multiplying the weight change by another activation function
derivative (Hochreiter et al., 2001). Equivalently, weight changes can be very
small in response to information separated by several recurrent passes through
the network. Indeed, in practice, the vanishing gradient problem may be more
serious for recurrent networks than feedforward networks, since the identical
weights are involved in each iteration around a recurrent loop, guaranteeing
exponential decay of the error signal. Together with other challenges (such as the
disappearing signal problem, where many intermediate layers of initially ran-
domized weights create noise that makes it hard to detect input–output relation-
ships), the result was a limitation in the scalability of backpropagation networks
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to the depth required to solve complex real-world problems, such as natural
language processing or vision.

Several innovations subsequently made the training of deep neural networks
viable, aided by large increases in computational power (perhaps a million-fold
since the early 1990s; Schmidhuber, 2015). These included drop out, randomly
disabling a subset of input units and hidden units on a given pattern presenta-
tion, which aids learning of more robust, generalizable input–output functions
(Srivastava et al., 2014); rectified linear units, activation functions that are linear
when their net input is greater than zero, but deactivated when less than zero –

the larger, consistent gradient reduces the vanishing gradient problem deeper in
the network (Hahnloser et al., 2000); and for image processing, convolution
networks, which use structures analogous to visual receptive fields, serving to
duplicate what is learned about useful visual features in one area of an input
retina to other areas, so that location-invariant recognition is possible when this
information is pooled (e.g., Krizhevsky, Sutskever. & Hinton, 2012).

For natural language processing, an important innovation was the use of long
short-term memory (LSTM) units in recurrent networks. These units can hold
information over as many recurrent cycles as necessary before feeding it into a
computation, enabling the learning of dependencies further separated in time
(Hochreiter & Schmidhuber, 1997). However, LSTMs only partially alleviated
the central problem facing recurrent networks, which is that contextual infor-
mation still had to be funneled through a very narrow bottleneck (a “context”
vector of the same length as the previous hidden state in a simple recurrent
network). The breakthroughs in natural language processing that attracted public
notice in 2016 with the introduction of the Google Neural Machine Translation
system depend on an innovation called Query Based Attention (see McClelland,
Hill, Rudolph, Baldridge, & Schuetze, 2020, for an explanation of this mechan-
ism; and also Chapter 9 in this handbook). Broadly, the attention mechanism
stores multiple versions of the preceding context and then learns to differently
weight them when predicting the output – in effect, helping to solve the problem
of what in the input sequence goes with what in the output sequence.

Another important development has been the use of weak supervisory sig-
nals, in the form of reward or reinforcement signals, which only indicate
whether a network is right or wrong, instead of specifying exactly what it should
do. While such reinforcement-based approaches have been investigated within a
neural network framework for decades (e.g., Sutton & Barto, 1981), their
potential to address cognitively interesting problems stems from further innov-
ations enabled by the massive scale of computation that has only been available
recently. For instance, breakthroughs in playing games such as chess or Go
stem from architectures enabled by increased computational power, which
allows a system to play games with itself millions of times to identify the
sequences of moves that produce the best possible outcomes. These innovations
are further described in Chapter 10 in this handbook.

The seventh and last general feature of connectionist networks is a represen-
tation of the environment with respect to the system. This is assumed to consist
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of a set of externally provided events or a function for generating such events.
An event may be a single pattern, such as a visual input; an ensemble of related
patterns, such as the spelling of a word and its corresponding sound and/or
meaning; or a sequence of inputs, such as the words in a sentence. A range of
policies have been used for specifying the order of presentation of the patterns,
including sweeping through the full set to random sampling with replacement.
The selection of patterns to present may vary over the course of training but is
often fixed. Where a target output is linked to each input, this is usually
assumed to be simultaneously available.
Two points are of note in the translation between PDP network and cognitive

model. First, a representational scheme must be defined to map between the
cognitive domain of interest and a set of vectors depicting the relevant infor-
mational states or mappings for that domain. Second, in many cases, connec-
tionist models are addressed to aspects of higher-level cognition, where it is
assumed that the information of relevance is more abstract than sensory or
motor codes. This has meant that the models often leave out details of the
transduction of sensory and motor signals, using input and output representa-
tions that are already somewhat abstract. The same principles at work in
higher-level cognition are also held to be at work in perceptual and motor
systems, and indeed there is also considerable connectionist work addressing
issues of perception and action, though these will not be the focus of the
present chapter.

2.2.3 Neural Plausibility

It is a historical fact that most connectionist modelers have drawn their inspir-
ation from the computational properties of neural systems. However, it has
become a point of controversy whether these “brain-like” systems are indeed
neurally plausible. If they are not, should they instead be viewed as a class of
statistical function approximators? And if so, should not the ability of these
models to simulate patterns of human behavior be judged in the context of the
large number of free parameters they contain (e.g., in the weight matrix)
(Green, 1998)?
Neural plausibility should not be the primary focus for a consideration of

connectionism. The advantage of connectionism, according to its proponents, is
that it provides better theories of cognition. Nevertheless, this issue will be briefly
dealt with since it pertains to the origins of connectionist cognitive theory. In
this area, two sorts of criticism have been leveled at connectionist models. The
first is to maintain that many connectionist models either include properties that
are not neurally plausible and/or omit other properties that neural systems
appear to have (e.g., Crick, 1989). Some connectionist researchers have
responded to this first criticism by endeavoring to show how features of con-
nectionist systems might in fact be realized in the neural machinery of the brain.
For example, the backward propagation of error across the same connections
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that carry activation signals is generally viewed as biologically implausible.
However, a number of authors have shown that the difference between activa-
tions computed using standard feedforward connections and those computed
using standard return connections can be used to derive the crucial error
derivatives required by backpropagation (Hinton & McClelland, 1988;
O’Reilly, 1996), even indeed if those return connections simply have random
weights (Lillicrap et al., 2016). It is widely held that connections run bidirec-
tionally in the brain, as required for this scheme to work. Under this view,
backpropagation may be shorthand for a Hebbian-based algorithm that uses
bidirectional connections to spread error signals throughout a network (Xie &
Seung, 2003). This view was encapsulated in Lillicrap et al.’s (2020) proposal
that the brain’s feedback connections induce neural activities whose differences
can be used to locally approximate error signals and drive effective learning in
deep networks in the brain. Other researchers have argued that the apparent
limited biological plausibility of backpropagation stems not from the algorithm
per se but to the lack of temporal extension of processing in its usual implemen-
tation (specifically the instantaneous mapping from the input to output) (e.g.,
Betti & Gori, 2020; Scellier & Bengio, 2019).

Other connectionist researchers have responded to the first criticism by
stressing the cognitive nature of current connectionist models. Most of the work
in developmental neuroscience addresses behavior at levels no higher than
cellular and local networks, whereas cognitive models must make contact with
the human behavior studied in psychology. Some simplification is therefore
warranted, with neural plausibility compromised under the working assump-
tion that the simplified models share the same flavor of computation as actual
neural systems. Connectionist models have succeeded in stimulating a great deal
of progress in cognitive theory – and sometimes generating radically different
proposals to the previously prevailing symbolic theory – just given the set of
basic computational features outlined in the preceding section.

The second type of criticism leveled at connectionism questions why, as
Davies (2005) put it, connectionist models should be reckoned any more plaus-
ible as putative descriptions of cognitive processes just because they are “brain-
like.” Under this view, there is independence between levels of description
because a given cognitive level theory might be implemented in multiple ways
in different hardware. Therefore the details of the hardware (in this case, the
brain) need not concern the cognitive theory. This functionalist approach, most
clearly stated in Marr’s three levels of description (computational, algorithmic,
and implementational; see Marr, 1982) has been repeatedly challenged (see,
e.g., Mareschal et al., 2007; Rumelhart & McClelland, 1985). The challenge to
Marr goes as follows. While, according to computational theory, there may be a
principled independence between a computer program (the “software”) and the
particular substrate on which it is implemented (the “hardware”), in practical
terms, different sorts of computation are easier or harder to implement on a
given substrate. Since computations have to be delivered in real time as the
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individual reacts with his or her environment, in the first instance cognitive-level
theories should be constrained by the computational primitives that are most
easily implemented on the available hardware; human cognition should be
shaped by the processes that work best in the brain.
The relation of connectionist models to symbolic models has also proved

controversial. A full consideration of this issue is beyond the scope of the
current chapter. Suffice to say that because the connectionist approach now
includes a diverse family of models, there is no single answer to this question.
Smolensky (1988) argued that connectionist models exist at a lower (but still
cognitive) level of description than symbolic cognitive theories, a level that he
called the sub-symbolic. Connectionist models have sometimes been put for-
ward as a way to implement symbolic production systems on neural architec-
tures (e.g., Touretzky & Hinton, 1988). At other times, connectionist
researchers have argued that their models represent a qualitatively different
form of computation: while under certain circumstances, connectionist models
might produce behavior approximating symbolic processes, it is held that
human behavior often only approximates the characteristics of symbolic
systems rather than directly implementing them. That is, when human behavior
is (approximately) rule-following, it need not be rule-driven. Furthermore,
connectionist systems incorporate additional properties characteristic of human
cognition, such as content addressable memory, context-sensitive processing,
and graceful degradation under damage or noise. Under this view, symbolic
theories are approximate descriptions rather than actual characterizations of
human cognition. Connectionist theories should replace them because they both
capture subtle differences between human behavior and symbolic characteriza-
tions, and because they provide a specification of the underlying causal mech-
anisms (van Gelder, 1991).
This strong position has prompted criticisms that connectionist models are

insufficiently powerful to account for certain aspects of human cognition – in
particular those areas best characterized by symbolic, syntactically driven
computations (Fodor & Pylyshyn, 1988; Lake et al, 2017; Marcus, 2001).
Again, however, the characterization of human cognition in such terms is highly
controversial; close scrutiny of relevant aspects of language – the ground on
which the dispute has largely been focused – lends support to the view that the
systematicity assumed by proponents of symbolic approaches is overstated, and
that the actual characteristics of language are well matched to the characteris-
tics of connectionist systems (Bybee & McClelland, 2005; Kollias &
McClelland, 2013; McClelland, Plaut, Gotts, & Maia, 2003). Furthermore,
recent breakthroughs in machine language processing now demonstrate that
aspects of structure can emerge in powerful ways from neural networks that
have been trained on large text corpora (see Section 2.3.3). Nevertheless,
explanations of explicitly symbolic ways of thinking remain an area of debate,
including behaviors such as generalization over variables that are less readily
delivered by connectionist architectures.
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2.2.4 The Relationship Between Connectionist Models
and Bayesian Inference

Since the early 1980s, it has been apparent that there are strong links between
the calculations carried out in connectionist models and key elements of
Bayesian calculations (McClelland, 2013). It was noted, first of all, that units
can be viewed as playing the role of probabilistic hypotheses; that weights and
biases play the role of conditional probability relations between hypotheses and
prior probabilities, respectively; and that if connection weights and biases have
the correct values, the logistic activation function sets the activation of a unit to
its posterior probability given the evidence represented on its inputs. A second
and more important observation is that, in stochastic neural networks
(Boltzmann Machines and Continuous Diffusion Networks; Hinton &
Sejnowski, 1986; Movellan & McClelland, 1993) a network’s state over all of
its units can represent a constellation of hypotheses about an input; and (if the
weights and the biases are set correctly) that the probability of finding the
network in a particular state is monotonically related to the probability that
the state is the correct interpretation of the input. The exact nature of the
relation depends on a parameter called temperature; if set to one, the probabil-
ity that the network will be found in a particular state exactly matches its
posterior probability. When temperature is gradually reduced to zero, the
network will end up in the most probable state, thus performing optimal
perceptual inference (Hinton & Sejnowski, 1983). It is also known that back-
propagation can learn weights that allow Bayes-optimal estimation of outputs
given inputs (MacKay, 1992) and that the Boltzmann machine learning algo-
rithm (Ackley, Hinton, & Sejnowski, 1985; Movellan & McClelland, 1993) can
learn to produce correct conditional distributions of outputs given inputs. The
original algorithm was very slow but recent variants are more efficient (Hinton
& Salakhutdinov, 2006), and have been effectively used to model, for example,
human numerosity judgments (Stoianov & Zorzi, 2012). (See Chapter 3 in this
handbook for a fuller discussion.)

2.3 Three Foundational Models

This section outlines three of the landmark models in the emergence of
connectionist theories of cognition. The models serve to illustrate the key
principles of connectionism and demonstrate how these principles are relevant
to explaining behavior in ways that are different from other prior approaches.
The contribution of these models was twofold: they were better suited than
alternative approaches to capturing the actual characteristics of human cogni-
tion, usually on the basis of their context-sensitive processing properties; and
compared to existing accounts, they offered a sharper set of tools to drive
theoretical progress and to stimulate empirical data collection. Each of these
models significantly advanced its field.
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2.3.1 An Interactive Activation Model of Context Effects in Letter
Perception (McClelland & Rumelhart, 1981, 1982

The interactive activation model of letter perception illustrates two interrelated
ideas. The first is that connectionist models naturally capture a graded con-
straint satisfaction process in which the influences of many different types of
information are simultaneously integrated in determining, for example, the
identity of a letter in a word. The second idea is that the computation of a
perceptual representation of the current input (in this case, a word) involves the
simultaneous and mutual influence of representations at multiple levels of
abstraction – this is a core idea of parallel distributed processing.
The interactive activation model addressed itself to a puzzle in word recogni-

tion. By the late 1970s, it had long been known that people were better at
recognizing letters presented in words than letters presented in random letter
sequences. Reicher (1969) demonstrated that this was not the result of tending
to guess letters that would make letter strings into words. He presented target
letters either in words, unpronounceable nonwords, or on their own. The stimuli
were then followed by a pattern mask, after which participants were presented
with a forced choice between two letters in a given position. Importantly, both
alternatives were equally plausible. Thus, the participant might be presented
with WOOD and asked whether the third letter was O or R. As expected,
forced-choice performance was more accurate for letters in words than for
letters in nonwords or presented on their own. Moreover, the benefit of sur-
rounding context was also conferred by pronounceable pseudowords (e.g.,
recognizing the P in SPET) compared to random letter strings, suggesting that
subjects were able to bring to bear rules regarding the orthographic legality of
letter strings during recognition.
Rumelhart and McClelland took the contextual advantage of words and

pseudowords on letter recognition to indicate the operation of top-down pro-
cessing. Previous theories had put forward the idea that letter and word recog-
nition might be construed in terms of detectors which collect evidence consistent
with the presence of their assigned letter or word in the input (Morton, 1969;
Selfridge, 1959). Influenced by these theories, Rumelhart and McClelland built
a computational simulation in which the perception of letters resulted from
excitatory and inhibitory interactions of detectors for visual features.
Importantly, the detectors were organized into different layers for letter fea-
tures, letters and words, and detectors could influence each other both in a
bottom-up and a top-down manner.
Figure 2.2 illustrates the structure of the Interactive Activation (IA) model,

both at the macro level (left) and for a small section of the model at a finer level
(right). The explicit motivation for the structure of the IA was neural: “[We]
have adopted the approach of formulating the model in terms similar to the way
in which such a process might actually be carried out in a neural or neural-like
system” (McClelland & Rumelhart, 1981, p. 387). There were three main
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assumptions of the IA model: (1) perceptual processing takes place in a system
in which there are several levels of processing, each of which forms a represen-
tation of the input at a different level of abstraction; (2) visual perception
involves parallel processing, both of the four letters in each word and of all
levels of abstraction simultaneously; (3) perception is an interactive process in
which conceptually driven and data-driven processing provide multiple, simul-
taneously acting constraints that combine to determine what is perceived.

The activation states of the system were simulated by a sequence of discrete
time steps. Each unit combined its activation on the previous time step, its
excitatory influences, its inhibitory influences, and a decay factor to determine
its activation on the next time step. Connectivity was set at unitary values and
along the following principles: in each layer, mutually exclusive alternatives
should inhibit each other. For each unit in a layer, it excited all units with which
it was consistent and inhibited all those with which it was inconsistent in layer
immediately above. Thus in Figure 2.2, the first-position W letter unit has an
excitatory connection to the WEED word unit but an inhibitory connection to
the SEED and FEED word units. Similarly, a unit excited all units with which it
was consistent and inhibited all those with which it was inconsistent in the layer
immediately below. However, in the final implementation, top-down word-to-
letter inhibition and within-layer letter-to-letter inhibition were set to zero (gray
arrows, Figure 2.2).

WORD LEVEL 

LETTER LEVEL 

FEATURE LEVEL 

VISUAL INPUT 

SEED 

FEED 

WEED 

S
F

W

Figure 2.2 Interactive Activation model of context effects in letter recognition
(McClelland & Rumelhart, 1981, 1982). Pointed arrows are excitatory
connections, circular headed arrows are inhibitory connections. Left: macro
view (connections in gray were set to zero in the implemented model). Right:
micro view for the connections from the feature level to the first letter position
for the letters S, W, and F (only excitatory connections shown) and from the
first letter position to the word units SEED, WEED, and FEED (all
connections shown).
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The model was constructed to recognize letters in four-letter strings. The full
set of possible letters was duplicated for each letter position, and a set of 1,179
word units created to represent the corpus of four-letter words. Word units were
given base rate activation states at the beginning of processing to reflect their
different frequencies. A trial began by clamping the feature units to the appro-
priate states to represent a letter string, and then observing the dynamic change
in activation through the network. Conditions were included to allow the
simulation of stimulus masking and degraded stimulus quality. Finally, a
probabilistic response mechanism was added to generate responses from the
letter level, based on the relative activation states of the letter pool in
each position.
The model successfully captured the greater accuracy of letter detection for

letters appearing in words and pseudowords compared to random strings or in
isolation. Moreover, it simulated a variety of empirical findings on the effect of
masking and stimulus quality, and of changing the timing of the availability of
context. The results on the contextual effects of pseudowords are particularly
interesting, since the model only contains word units and letter units and has no
explicit representation of orthographic rules. Let us say on a given trial, the
subject is required to recognize the second letter in the string SPET. In this case,
the string will produce bottom-up excitation of the word units for SPAT, SPIT,
and SPOT, which each share three letters. In turn, the word units will propagate
top-down activation reinforcing activation of the letter P and so facilitating its
recognition. Were this letter to be presented in the string XPQJ, no word units
could offer similar top-down activation, hence the relative facilitation of the
pseudoword. Interestingly, although these top-down “gang” effects produced
facilitation of letters contained in orthographically legal nonword strings, the
model demonstrated that they also produced facilitation in orthographically
illegal, unpronounceable letter strings such as SPCT. Here, the same gang
of SPAT, SPIT, and SPOT produce top-down support. Rumelhart and
McClelland (1982) reported empirical support for this novel prediction.
Therefore, although the model behaved as if it contained orthographic rules
driving recognition, it did not in fact do so, because continued contextual
facilitation could be demonstrated for strings that had gang support but vio-
lated the orthographic rules.
There are two specific points to note regarding the IA model. First, this early

connectionist model was not adaptive – connectivity was set by hand. While the
model’s behavior was shaped by the statistical properties of the language it
processed, these properties were built into the structure of the system, in terms
of the frequency of occurrence of letters and letter combinations in the words.
Second, the idea of bottom-up excitation followed by competition amongst
mutually exclusive possibilities is a strategy familiar in Bayesian approaches
to cognition. In that sense, the IA bears similarity to more recent probability
theory-based approaches to perception.
Subsequent work saw the principles of the IA model extended to the recogni-

tion of spoken words (the TRACE model: McClelland & Elman, 1986) and to
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bilingual speakers where two languages must be incorporated in a single repre-
sentational system (Grainger, Midgley & Holcomb, 2010; Thomas & van
Heuven, 2005). The architecture was applied to other domains where multiple
constraints were thought to operate during perception, for example in face
recognition (Burton, Bruce, & Johnston, 1990). Within language, more complex
architectures tried to recast the principles of the IA model in developmental
settings, such as Plaut and Kello’s (1999) model of the emergence of phonology
from the interplay of speech comprehension and production.

The more general lesson to draw from the interactive activation model is the
demonstration of multiple influences (feature, letter, and word-level knowledge)
working simultaneously and in parallel to shape the response of the system; and
the somewhat surprising finding that a massively parallel constraint satisfaction
process of this form can appear to behave as if it contains rules (in this case,
orthographic) when no such rules are included in the processing structure. At
the time, the model brought into question whether it was necessary to postulate
rules as processing structures to explain regularities in human behavior. This
skepticism was brought into sharper focus by the next example.

2.3.2 On Learning the Past Tense of English Verbs (Rumelhart &
McClelland, 1986)

Rumelhart and McClelland’s (1986) model of English past tense formation
marked the real emergence of the PDP framework. Where the IA model used
localist coding, the past tense model employed distributed coding. Where the IA
model had handwired connection weights, the past tense model learned its
weights via repeated exposure to a problem domain. However, the models share
two common themes. Once more, the behavior of the past model will be driven
by the statistics of the problem domain, albeit these will be carved into the
model by training rather than sculpted by the modelers. Perhaps more import-
antly, there is a return to the idea that a connectionist system can exhibit rule-
following behavior without containing rules as causal processing structures; but
in this case, the rule-following behavior will be the product of learning and will
accommodate a proportion of exception patterns that do not follow the general
rule. The key point that the past tense model illustrates is how (approximate)
conformity to the regularities of language – and even a tendency to produce new
regular forms (e.g., regularizations like “thinked” or past tenses for novel verbs
like “wugged”) – can arise in a connectionist network without an explicit
representation of a linguistic rule.

The English past tense is characterized by a predominant regularity in which
the majority of verbs form their past tenses by the addition of one of three
allomorphs of the “-ed” suffix to the base stem (walk/walked, end/ended, chase/
chased). However, there is a small but significant group of verbs which form
their past tense in different ways, including changing internal vowels (swim/
swam), changing word final consonants (build/built), changing both internal
vowels and final consonants (think/thought), an arbitrary relation of stem to
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past tense (go/went), and verbs which have a past tense form identical to the
stem (hit/hit). These so-called irregular verbs often come in small groups sharing
a family resemblance (sleep/slept, creep/crept, leap/leapt) and usually have high
token frequencies (see Pinker, 1999, for further details).
During the acquisition of the English past tense, children show a characteris-

tic U-shaped developmental profile at different times for individual irregular
verbs. Initially they use the correct past tense of a small number of high
frequency regular and irregular verbs. Latterly, they sometimes produce “over-
regularized” past tense forms for a small fraction of their irregular verbs (e.g.,
thinked) (Marcus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992), along with
other, less frequent errors (Xu & Pinker, 1995). They are also able to extend the
past tense “rule” to novel verbs (e.g., wug – wugged). Finally, in older children,
performance approaches ceiling on both regular and irregular verbs (Berko,
1958; Ervin, 1964; Kuczaj, 1977).
In the early 1980s, it was held that this pattern of behavior represented the

operation of two developmental mechanisms (Pinker, 1984). One of these was
symbolic and served to learn the regular past tense “rule,” while the other was
associative and served to learn the exceptions to the rule. The extended phase of
overregularization errors corresponded to difficulties in integrating the two
mechanisms, specifically a failure of the associative mechanism to block the
function of the symbolic mechanism. That the child comes to the language
acquisition situation armed with these two mechanisms (one of them full of
blank rules) was an a priori commitment of the developmental theory.
By contrast, Rumelhart and McClelland (1986) proposed that a single net-

work that does not distinguish between regular and irregular past tenses is
sufficient to learn past tense formation. The architecture of their model is shown
in Figure 2.3. A phoneme-based representation of the verb root was recoded
into a more distributed, coarser (more blurred) format, which they called
“Wickelfeatures.” The stated aim of this recoding was to produce a representa-
tion that (a) permitted differentiation of all of the root forms of English and
their past tenses, and (b) provided a natural basis for generalizations to emerge
about what aspects of a present tense correspond to what aspects of a past tense.
This format involved representing verbs over 460 processing units. A two-layer
network was then used to associate the Wickelfeature representations of the
verb root and past tense form. A final decoding network was then used to derive
the closest phoneme-based rendition of the past tense form and reveal the
model’s response (the decoding part of the model was somewhat restricted by
computer processing limitations of the machines available at the time).
The connection weights in the two-layer network were initially randomized.

The model was then trained in three phases, in each case using the delta rule to
update the connection weights after each verb root/past tense pair was pre-
sented (see Section 2.1.2). In Phase 1, the network was trained on ten high
frequency verbs, two regular and eight irregular, in line with the greater pro-
portion of irregular verbs amongst the most frequent verbs in English. Phase
1 lasted for ten presentations of the full training set (or “epochs”). In Phase 2,
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the network was trained on 410 medium frequency verbs, 334 regular and 76
irregular, for a further 190 epochs. In Phase 3, no further training took place,
but 86 lower frequency verbs were presented to the network to test its ability to
generalize its knowledge of the past tense domain to novel verbs.

There were four key results for this model. First, it succeeded in learning both
regular and irregular past tense mappings in a single network that made no
reference to the distinction between regular and irregular verbs. Second, it
captured the overall pattern of faster acquisition for regular verbs than irregular
verbs, a predominant feature of children’s past tense acquisition. Third, the
model captured the U-shaped profile of development: an early phase of accurate
performance on a small set of regular and irregular verbs, followed by a phase
of overregularization of the irregular forms, and finally recovery for the irregu-
lar verbs and performance approaching ceiling on both verb types. Fourth,
when the model was presented with the low-frequency verbs on which it had not
been trained, it was able to generalize the past tense rule to a substantial
proportion of them, as if it had indeed learned a rule. Additionally, the model
captured more fine-grained developmental patterns for subsets of regular and
irregular verbs, and generated several novel predictions.

Rumelhart and McClelland explained the generalization abilities of the
network in terms of the superpositional memory of the two-layer network. All
the associations between the distributed encodings of verb root and past tense
forms must be stored across the single matrix of connection weights. As a result,
similar patterns blend into one another and reinforce each other. Generalization

Phonological representation of past tense 

Phonological representation of verb root 

Recoding 

Decoding 

2-layer network 
trained with the 

delta rule 

Coarse coded, distributed 
Wickelfeature 

representation of root 

Coarse coded, distributed 
Wickelfeature representation 

of past tense 

Figure 2.3 Two-layer network for learning the mapping between the verb roots
and past tense forms of English verbs (Rumelhart & McClelland, 1986).
Phonological representations of verbs are initially encoded into a coarse,
distributed “Wickelfeature” representation. Past tenses are decoded from the
Wickelfeature representation back to the phonological form. Later
connectionist models replaced the dotted area with a three-layer feedforward
backpropagation network (e.g., Plunkett & Marchman, 1991, 1993).
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is contingent on the similarity of verbs at input. Were the verbs to be presented
using an orthogonal, localist scheme (e.g., 420 units, one per verb), then there
would be no similarity between the verbs, no blending of mappings, no gener-
alization, and therefore no regularization of novel verbs. As the authors state,
“it is the statistical relationships among the base forms themselves that deter-
mine the pattern of responding. The network merely reflects the statistics of the
featural representations of the verb forms” (p. 267). Based on the model’s
successful simulation of the profile of language development in this domain
and, compared to the dual mechanism model, its more parsimonious a priori
commitments, Rumelhart and McClelland viewed their work on past tense
morphology as a step towards a revised understanding of language knowledge,
language acquisition, and linguistic information processing in general.
The past tense model stimulated a great deal of subsequent debate, not least

because of its profound implications for theories of language development (no
rules!). The model was initially subjected to concentrated criticism. Some of this
was overstated – for instance, the use of domain-general learning principles (such
as distributed representation, parallel processing, and the delta rule) to acquire
the past tense in a single network was interpreted as a claim that all of language
acquisition could be captured by the operation of a single domain-general
learning mechanism. Such an absurd claim could be summarily dismissed.
However, as it stood, the model made no such claim: its generality was in the
processing principles. The model itself represented a domain-specific system
dedicated to learning a small part of language. Nevertheless, a number of the
criticisms were more telling: the Wickelfeature representational format was not
psycholinguistically realistic; the generalization performance of the model was
relatively poor; the U-shaped developmental profile appeared to be a result of
abrupt changes in the composition of the training set; and the actual response of
the model was hard to discern because of problems in decoding theWickelfeature
output into a phoneme string (Pinker & Prince, 1988).
The criticisms and following rejoinders were interesting in a number of ways.

First, there was a stark contrast between the precise, computationally imple-
mented connectionist model of past tense formation and the verbally specified
two-system theory (e.g., Marcus, Pinker, Ullman, Hollander, Rosen, & Xu,
1992). The implementation made simplifications but was readily evaluated
against quantitative behavioral evidence; it made predictions and it could be
falsified. The verbal theory by contrast was vague – it was hard to know how or
whether it would work or exactly what behaviors it predicted (Thomas,
Forrester, & Richardson, 2006). Therefore, it could only be evaluated on loose
qualitative grounds. Second, the model stimulated a great deal of new multi-
disciplinary research in the area. Today, inflectional morphology (of which past
tense is a part) is one of the most studied aspects of language processing in
children, in adults, in second language learners, in adults with acquired brain
damage, in children and adults with neurogenetic disorders, and in children
with language impairments, using psycholinguistic methods, event-related
potential measures of brain activity, functional magnetic resonance imaging,
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and behavioral genetics . . . This rush of science illustrates the essential role of
computational modeling in driving forward theories of human cognition. Third,
further modifications and improvements to the past tense model have high-
lighted how researchers go about the difficult task of understanding which parts
of their model represent the key theoretical claims and which are implementa-
tional details. Simplification is inherent to modeling but successful modeling
relies on making the right simplifications to focus on the process of interest. For
example, in subsequent models, the Wickelfeature representation was replaced
by more plausible phonemic representations based on articulatory features; the
recoding/two-layer-network/decoding component of the network (the dotted
rectangle in Figure 2.3) that was trained with the delta rule was replaced by a
three-layer feedforward network trained with the backpropagation algorithm;
and the U-shaped developmental profile was demonstrated in connectionist
networks trained with a smoothly growing training set of verbs or even with a
fixed set of verbs (see, e.g., Plunkett & Marchman, 1991, 1993, 1996).

The English past tense model prompted further work within inflectional
morphology in other languages (pluralization in German: Goebel & Indefrey,
2000; pluralization in Arabic: Plunkett & Nakisa, 1997), as well as models that
explored the possible causes of deficits in acquired and developmental disorders
such as aphasia, developmental language disorder, and Williams syndrome
(e.g., Hoeffner & McClelland, 1993; Joanisse & Seidenberg, 1999; Thomas &
Karmiloff-Smith, 2003a; Thomas & Knowland, 2014). More recent work treats
the past tense as one role of a more general system which has the goal of
outputting the phonological form of words appropriate to the syntactic context
of the sentence in which they appear – whether this involves the tense of verbs,
the number of nouns, or the comparative of adjectives (Karaminis & Thomas,
2010, 2014). Moreover, the idea that rule-following behavior could emerge in a
developing system that also has to accommodate exceptions to the rules was
also successfully pursued via connectionist modeling in the domain of reading
(e.g., Plaut et al., 1996). This led to work that also considered various forms of
acquired and developmental dyslexia.

For the past tense itself, there remains much interest in the topic as a crucible
to test theories of language development. There is now extensive evidence from
child development, adult cognitive neuropsychology, developmental neuro-
psychology, and functional brain imaging to suggest partial dissociations
between performance on regular and irregular inflection under various condi-
tions. For the connectionist approach, the dissociations represent the integra-
tion of multiple information sources, syntactic, lexical semantic, and
phonological. Regular and irregular inflections depend differently on these
sources depending on statistical properties of the mappings, explaining the
dissociations. For the two-system approach, the dissociations represent separate
contributions of causal rules and associative memory. (See Pater, 2019, and
Kirov & Cotterell, 2018, for more recent reviews of this debate from the
perspective of linguistics). Nevertheless, the force of the original past tense
model remains: so long as there are regularities in the statistical structure of a
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problem domain, a massively parallel constraint satisfaction system can learn
these regularities and extend them to novel situations. Moreover, as with
humans, the behavior of the system is flexible and context sensitive – it can
accommodate regularities and exceptions within a single processing structure.

2.3.3 Finding Structure in Time (Elman, 1990)

This section introduces the notion of the simple recurrent network and its
application to language. As with past tense, the key point of the model will be
to show how conformity to regularities of language can arise without an explicit
representation of a linguistic rule. Moreover, the following simulations will
demonstrate how learning can lead to the discovery of useful internal represen-
tations that capture conceptual and linguistic structure on the basis of the
cooccurrences of words in sentences.
The IA model exemplified connectionism’s commitment to parallelism: all of

the letters of the word presented to the network were recognized in parallel and
processing occurred simultaneously at different levels of abstraction. But not all
processing can be carried out in this way. Some human behaviors intrinsically
revolve around temporal sequences. Language, action planning, goal-directed
behavior, and reasoning about causality are examples of domains that rely on
events occurring in sequences. How has connectionism addressed the processing
of temporally unfolding events? One solution was offered in the TRACE model
of spoken word recognition (McClelland & Elman, 1986) where a word was
specified as a sequence of phonemes. In that case, the architecture of the system
was duplicated for each time slice and the duplicates wired together. This
allowed constraints to operate over items in the sequence to influence recogni-
tion. In other models, a related approach was used to convert a temporally
extended representation into a spatially extended one. For example, in the past
tense model, all the phonemes of a verb were presented across the input layer.
This could be viewed as a sequence if one assumed that the representation of the
first phoneme represents time slice t, the representation of the second phoneme
represents time slice tþ1, and so on. As part of a comprehension system, this
approach assumes a buffer that can take sequences and convert them to a
spatial vector. However, this solution is fairly limited, as it necessarily precom-
mits to the size of the sequences that can be processed at once (i.e., the size of
the input layer).
Elman (1990, 1991) offered an alternative and more flexible approach to

processing sequences, proposing an architecture that has been extremely influ-
ential and much used since. Elman drew on the work of Jordan (1986) who had
proposed a model that could learn to associate a “plan” (i.e., a single input
vector) with a series of “actions” (i.e., a sequence of output vectors). Jordan’s
model contained recurrent connections permitting the hidden units to “see” the
network’s previous output (via a set of “state” input units that are given a copy
of the output on the previous time step). The facility for the network to shape its
next output according to its previous response constitutes a kind of memory.
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Elman’s innovation was to build a recurrent facility into the internal units of the
network, allowing it to compute statistical relationships across sequences of
inputs and outputs. To achieve this, first time is discretized into a number of
slices. On time step t, an input is presented to the network and causes a pattern
of activation on hidden and output layers. On time step t þ 1, the next input in
the sequence of events is presented to the network. However, crucially, a copy
of the activation of the hidden units on time step t is transmitted to a set of
internal “context” units. This activation vector is also fed to the hidden units on
time step t þ 1. Figure 2.4 shows the architecture, known as the simple recurrent
network (SRN). It is usually trained with the backpropagation algorithm (see
Section 2.2.3) as a multi-layer feedforward network, ignoring the origin of the
information on the context layer.

Each input to the SRN is therefore processed in the context of what came
before, but in a way subtly more powerful than the Jordan network. The input
at t þ 1 is processed in the context of the activity produced on the hidden units
by the input at time t. Now consider the next time step. The input at time t þ 2
will be processed along with activity from the context layer that is shaped by
two influences:

the input at tþ 1 shaped by the input at tð Þð Þ
The input at time t þ 3 will be processed along with activity from the context
layer that is shaped by three influences:

the input at tþ 2 shaped by the input at tþ 1 shaped by the input at tð Þð Þð Þ
The recursive flavor of the information contained in the context layer means
that each new input is processed in the context of the full history of previous

Input units 

Output units 

Hidden units 

Context units 

HU activations 
at time (t+1) 

HU activations 
at time (t) 

Fixed 1-to-1 weights
copy activation of

hidden layer to
context units

Figure 2.4 Elman’s simple recurrent network architecture for finding structure
in time (Elman, 1991, 1993). Connections between input and hidden, context
and hidden, and hidden and output layers are trainable. Sequences are applied
to the network element by element in discrete time steps; the context layer
contains a copy of the hidden unit activations on the previous time step
transmitted by fixed, one-to-one connections.
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inputs. This permits the network to learn statistical relationships across
sequences of inputs or, in other words, to find structure in time.
In his original paper of 1990, Elman demonstrated the powerful properties of

the SRN with two examples. In the first, the network was presented with a
sequence of letters made up of concatenated words, e.g.:

Many Years Ago a Boy and Girl Lived by the Sea they
Played Happily

Each letter was represented by a distributed binary code over five input
units. The network was trained to predict the next letter in the sentence for
200 sentences constructed from a lexicon of fifteen words. There were 1,270
words and 4,963 letters. Since each word appeared in many sentences, the
network was not particularly successful at predicting the next letter when it
got to the end of each word, but within a word it was able to predict the
sequences of letters. Using the accuracy of prediction as a measure, one could
therefore identify which sequences in the letter string were words: they were the
sequences of good prediction bounded by high prediction errors. The ability to
extract words was of course subject to the ambiguities inherent in the training
set (e.g., for the and they, there is ambiguity after the third letter). Elman
suggested that if the letter strings are taken to be analogous to the speech
sounds available to the infant, the SRN demonstrates a possible mechanism
to extract words from the continuous stream of sound that is present in infant-
directed speech. Elman’s work contributed to the increasing interest in the
statistical learning abilities of young children in language and cognitive devel-
opment (e.g., Saffran & Kirkham, 2018; Saffran, Newport, & Aslin, 1996).
In the second example, Elman created a set of 10,000 sentences by combin-

ing a lexicon of twenty-nine words and a set of short sentence frames (noun þ
[transitive] verb þ noun; noun þ [intransitive] verb). There was a separate
input and output unit for each word and the SRN was trained to predict the
next word in the sentence. During training, the network’s output came to
approximate the transitional probabilities between the words in the sentences –
that is, it could predict the next word in the sentences as much as this was
possible. Following the first noun, the verb units would be more active as the
possible next word, and verbs that tended to be associated with this particular
noun would be more active than those that did not. At this point, Elman
examined the similarity structure of the internal representations to discover
how the network was achieving its prediction ability. He found that the
internal representations were sensitive to the difference between nouns and
verbs, and within verbs, to the difference between transitive and intransitive
verbs. Moreover, the network was also sensitive to a range of semantic
distinctions: not only were the internal states induced by nouns split into
animate and inanimate, but the pattern for “woman” was most similar to
“girl,” and that for “man” was most similar to “boy.” The network had learnt
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to structure its internal representations according to a mix of syntactic and
semantic information because these information states were the best way to
predict how sentences would unfold. Elman concluded that the representa-
tions induced by connectionist networks need not be flat but could include
hierarchical encodings of category structure.

Based on his finding, Elman also argued that the SRN was able to induce
representations of entities that varied according to their context of use. This
contrasts with classical symbolic representations that retain their identity irre-
spective of the combinations into which they are put, a property called “com-
positionality.” This claim is perhaps better illustrated by a second paper Elman
published two years later called “The importance of starting small” (1993). In
this later paper, Elman explored whether rule-based mechanisms are required to
explain certain aspects of language performance, such as syntax. He focused on
“long-range dependencies,” which are links between words that depend only on
their syntactic relationship in the sentence and, importantly, not on their
separation in a sequence of words. For example, in English, the subject and
main verb of a sentence must agree in number. If the noun is singular, so must
be the verb; if the noun is plural, so must be the verb. Thus, in the sentence “The
boy chases the cat,” boy and chasesmust both be singular. But this is also true in
the sentence “The boy whom the boys chase chases the cat.” In the second
sentence, the subject and verb are further apart in the sequence of words, but
their relationship is the same; moreover, the words are now separated by plural
tokens of the same lexical items. Rule-based representations of syntax were
thought to be necessary to encode these long-distance relationships because,
through the recursive nature of syntax, the words that have to agree in a
sentence can be arbitrarily far apart.

Using an SRN trained on the same prediction task as that outlined above but
now with more complex sentences, Elman (1993) demonstrated that the net-
work was able to learn these long-range dependencies even across the separ-
ation of multiple phrases. If boy was the subject of the sentence, when the
network came to predict the main verb chase as the next word, it predicted that
it should be in the singular. The method by which the network achieved this
ability is of particular interest. Once more, Elman explored the similarity
structure in the hidden unit representations, using principal component analyses
to identify the salient dimensions of similarity across which activation states
were varying. This enabled him to reduce the high dimensionality of the internal
states (150 hidden units were used) to a manageable number in order to
visualize processing. Elman was then able to plot the trajectories of activation
as the network altered its internal state in response to each subsequent input.
Figure 2.5 depicts these trajectories as the network processes different multi-
phrase sentences, plotted with reference to particular dimensions of principal
component space. This figure demonstrates that the network adopted similar
states in response to particular lexical items (e.g., tokens of boy, who, chases),
but that it modified the pattern slightly according to the grammatical status of
the word. In Figure 2.5a, the second principal component appears to encode
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singularity/plurality. Figure 2.5b traces the network’s state as it processes two
embedded relative clauses containing iterations of the same words. Each clause
exhibits a related but slightly shifted triangular trajectory to encode its role in
the syntactic structure.
The importance of this model is that it prompts a different way to understand

the processing of sentences. Previously one would view symbols as possessing
fixed identities and as being bound into particular grammatical roles via a
syntactic construction. In the connectionist system, sentences are represented
by trajectories through activation space in which the activation pattern for each
word is subtly shifted according to the context of its usage. The implication is
that the property of compositionality at the heart of the classical symbolic
computational approach may not be necessary to process language.
Elman (1993) also used this model to investigate a possible advantage to

learning that could be gained by initially restricting the complexity of the
training set. At the start of training, the network had its memory reset (its
context layer wiped) after every third or fourth word. This window was then
increased in stages up to six to seven words across training. The manipulation
was intended to capture maturational changes in working memory in children.
Elman (1993) reported that starting small enhanced learning by allowing the
network to build simpler internal representations that were later useful for
unpacking the structure of more complex sentences (see Rohde & Plaut, 1999,
for discussion and further simulations). This idea resonated with developmental

TSTAR

T

(a) (b) 

Principal Component #1 

P
rin

ci
pa

l C
om

po
ne

nt
 #

11

boy1

chases2

boy3

who4

chases5

boy6

who7

chases8

boy9 END

Time step 

boy1

boy6

chases5

who2

chase4

boys3

STAR END 

P
rin

ci
pa

l C
om

po
ne

nt
 #

2

boys1

who2

boys3

chase4

chase5

boy6

Figure 2.5 Trajectory of internal activation states as the SRN processes
sentences (Elman, 1993). The data show positions according to the dimensions
of a principal components analysis (PCA) carried out on hidden unit
activations for the whole training set. Words are indexed by their position in the
sequence but represent activation of the same input unit for each word. (a)
PCA values for the second principal component as the SRN processes two
sentences, “Boy who boys chase chases boy’”or “Boys who boys chase chase
boy”; (b) PCA values for the first and eleventh principal components as the
SRN processes “Boy chases boy who chases boy who chases boy.”
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psychologists in its demonstration of the way in which learning and maturation
might interact in constructing cognition (Elman et al., 1996).

Recurrent models were subsequently extended to consider other domains
where temporal information about sequence is important. For example,
Botvinick and Plaut (2004) demonstrated how simple recurrent networks can
capture the control of routine sequences of actions without the need for schema
hierarchies. Elman and McRae (2019) used simple recurrence to construct a
model of semantic event knowledge, that is, what tends to happen in different
situations involving actors and agents. The model learned both the internal
structure of activities as well as the temporal structure that organizes activity
sequences. Cleeremans and colleagues demonstrated how simple recurrent
models were a useful architecture to understand phenomena within implicit
learning, which often involve detecting patterns within sequences of stimuli (see
Cleeremans & Dienes, 2008).

In the domain of language processing, meanwhile, subsequent progress was
initially slow (Christiansen & Chater, 2001). The ability of simple recurrent
networks to induce structured representations containing grammatical and
semantic information from word sequences prompted the view that associative
statistical learning mechanisms might play a much more central role in lan-
guage acquisition. This innovation was especially welcome given that symbolic
theories of sentence processing do not offer a ready account of language
development. Indeed, they are largely identified with the nativist view that little
in syntax develops. But a limitation of Elman’s initial simulations was that the
prediction task does not learn any categorizations over the input set. While the
simulations demonstrate that information important for language comprehen-
sion and production can be induced from word sequences, neither task
was performed.

Recurrent neural network approaches to sentence processing have gone in
two directions. In terms of cognitive modeling, connectionist simulations have
included more differentiated structure to learn mappings between messages and
word sequences, including limited use of binding to temporarily link concepts
and roles (Chang, Dell, & Bock, 2006). Most recently, the model has been
applied to how children learn the relationship between declarative (statement)
and interrogative (question) sentences (Fitz & Chang, 2017). In terms of engin-
eering approaches, deep recurrent neural networks have been scaled up to an
extent where they can achieve automatic translation between sentences in
different languages with a reasonable degree of accuracy, such as in the case
of Google Translate (Wu et al., 2016). The architecture of Google Translate
includes a deep recurrent neural network (eight layers) that encodes a sentence
of the first language in a vector of numbers, and a decoder network (also eight
layers) that learns to map to a similar vector in the second language and then to
an output sequence. The mapping between encoder and decoder is mediated by
an “attention” mechanism that gives flexibility on which parts of the first
sentence might map to which parts of the second sentence. The overall system
is trained to map between millions of sentences in the two languages.
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While the degree of accuracy of translation is unimaginable from the per-
spective of the early PDP models and must rely heavily on the syntactic infor-
mation in the respective languages, from a cognitive perspective, it contains no
representation of sentence meaning. The shallowness of the mapping between
languages becomes apparent when real world knowledge is required to solve
ambiguities in sentence processing, such as which pronouns refer to which
nouns; here, Google Translate can perform poorly (Hofstadter, 2018).
However, within linguistics, the successes of machine translation by deep recur-
rent neural networks has focused attention on learning theory to constrain
theories of grammar (Pater, 2019). Moreover, the new recurrent network trans-
lation models lend credence to early claims by PDP researchers (e.g.,
Rumelhart, Smolensky, McClelland, & Hinton, 1986) that thoughts – although
they can be expressed as sentences – are represented in the brain as vectors
(patterns of neural activation) and that reasoning is a sequence of transitions
between such vectors. As of mid 2020, further breakthroughs in machine
language processing have occurred (Brown et al., 2020). The latest models
now resolve referential ambiguities better than earlier versions, and their
internal representations appear to capture syntactic structure in language better
than critics expected (Manning et al., 2020). However, they still fail at capturing
human understanding of common-sense physical relationships, indicating they
are still somewhat shallow language processors. An exciting next step for neural
language models will be to place them within systems that understand and
communicate about real or hypothetical situations, since ultimately this is what
language is for (McClelland et al., 2020).
In sum, then, Elman’s work demonstrates how simple connectionist architec-

tures can learn statistical regularities over temporal sequences. These systems
may indeed be sufficient to produce many of the behaviors that linguists have
described with grammatical rules. However, in the connectionist system, the
underlying primitives are context-sensitive representations of words and trajec-
tories of activation through recurrent circuits. Such representations appear to be
playing a more and more important role in theories of how humans process –
and even understand – natural language.

2.4 Connectionist Influences on Cognitive Theory

Connectionism offers an explanation of human cognition because
instances of behavior in particular cognitive domains can be explained with
respect to a set of general principles (parallel distributed processing) and the
conditions of the specific domains. However, from the accumulation of suc-
cessful models, it is also possible to discern a wider influence of connectionism
on the nature of theorizing about cognition, and this is perhaps a truer
reflection of its impact. How has connectionism made us think differently
about cognition?
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2.4.1 Knowledge versus Processing

One area where connectionism has changed the basic nature of theorizing is
memory. According to the old model of memory based on the classical compu-
tational metaphor, the information in long-term memory (e.g., on the hard
disk) has to be moved into working memory (the CPU) for it to be operated on,
and the long-term memories are laid down via a domain-general buffer of short-
term memory (RAM). In this type of system, then, long-term memory is
separated from processing. It is relatively easy to shift informational content
between different systems, back and forth between central processing and short-
and long-term stores. Computation is predicated on variables: the same binary
string can readily be instantiated in different memory registers or encoded onto
a permanent medium.

By contrast, knowledge is hard to move about in connectionist networks
because it is encoded in the weights. For example, in the past tense model,
knowledge of the past tense rule “add –ed” is distributed across the weight
matrix of the connections between input and output layers. The difficulty in
portability of knowledge is inherent in the principles of connectionism –

Hebbian learning alters connection strengths to reinforce desirable activation
states in connected units, tying knowledge to structure. If the foundational
premise is that knowledge will be very difficult to move about in the human
information processing system, what kind of cognitive architecture results?
There are four main themes.

First, it is necessary to distinguish between two different ways in which
knowledge can be encoded: active and latent representations (Munakata &
McClelland, 2003). Latent knowledge corresponds to the information stored
in the connection weights from accumulated experience. By contrast, active
knowledge is information contained in the current activation states of the
system. Clearly the two are related, since the activation states are constrained
by the connection weights. But, particularly in recurrent networks, there can be
subtle differences. Active states contain a trace of recent events (how things are
at the moment) while latent knowledge represents a history of experience (how
things tend to be). Differences in the ability to maintain the active states (e.g., in
the strength of recurrent circuits) can produce errors in behavior where the
system lapses into more typical ways of behaving (Morton & Munakata, 2002;
Munakata, 1998).

Second, if information does need to be moved around the system, for
example from a more instance-based (episodic) system to a more general
(semantic) system, this will require special structures and special (potentially
time consuming) processes. Thus McClelland, McNaughton, and O’Reilly
(1995) proposed a dialogue between separate stores in the hippocampus and
neocortex to gradually transfer knowledge from episodic to semantic memory
(see O’Reilly, Bhattacharyya, Howard, & Ketza, 2014). For example, French,
Ans, and Rousset (2001) proposed a special method to transfer knowledge
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between two memory systems: internally generated noise produces “pseudopat-
terns” from one system that contain the central tendencies of its knowledge; the
second memory system is then trained with this extracted knowledge to effect
the transfer.
Third, information will be processed in the same substrate where it is stored.

Therefore, long-term memories will be active structures and will perform com-
putations on content. An external strategic control system plays the role of
differentially activating the knowledge in this long-term system that is relevant
to the current context. In anatomical terms, this distinction broadly corresponds
to frontal/anterior (strategic control) and posterior (long-term) cortex, with
posterior cortex comprising a suite of content-specific processing systems. The
design means, somewhat counter-intuitively, that the control system has no
content. Rather, the control system contains placeholders that serve to activate
different regions of the long-term system. The control system may contain plans
(sequences of placeholders) and it may be involved in learning abstract concepts
(using a placeholder to temporarily co-activate previously unrelated portions of
long-term knowledge while Hebbian learning builds an association between
them) but it does not contain content in the sense of a domain-general working
memory. The study of frontal systems then becomes an exploration of the
activation dynamics of these placeholders and their involvement in learning
(see, e.g., work by Botvinick & Cohen, 2014; Davelaar & Usher, 2002;
Haarmann & Usher, 2001; O’Reilly, Braver, & Cohen, 1999; Usher &
McClelland, 2001).
Similarly, connectionist research has explored how activity in the control

system can be used to modulate the efficiency of processing elsewhere in the
system, for instance to implement selective attention. For example, in an early
model, Cohen, Dunbar, and McClelland (1990) demonstrated how task units
could be used to differentially modulate word naming and color naming pro-
cessing channels in a model of the color-word Stroop task. Here, latent know-
ledge interacted with the operation of task control, so that it was harder to
selectively attend to color naming and ignore information from the more
practiced word-naming channel than vice versa. This work was later extended
to demonstrate how deficits in the strategic control system (prefrontal cortex)
could lead to problems in selective attention in disorders like schizophrenia (see
Botvinick & Cohen, 2014, for a review).
Lastly, the connectionist perspective on memory alters the conception of

domain generality in processing systems. It is unlikely that there are any
domain-general processing systems that serve as a “Jack of all trades,” i.e., that
can move between representing the content of multiple domains. However,
there may be domain-general systems that are involved in modulating many
disparate processes without taking on the content of those systems, either via
direct connectivity or through the regional modulation of neurotransmitter
levels. This type of general system might be called one with “a finger in every
pie.” Meanwhile, short-term or working memory (as exemplified by the active
representations contained in the recurrent loop of a network) is likely to exist as
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a devolved panoply of discrete systems, each with its own content-specific loop.
For example, research in the neuropsychology of language tends to support the
existence of separate working memories for phonological, semantic, and syn-
tactic information (MacDonald & Christiansen, 2002). And one might expect
recurrent loops in the prefrontal cortex to maintain information about current
goal states and positions in task sequences. From a connectionist perspective,
therefore, and in contrast to traditional cognitive theory, there is no such thing
as working memory as a general mechanism; rather it is a content-specific
activity carried out in multiple systems.

2.4.2 Cognitive Development

A key feature of PDP models is the use of a learning algorithm for modifying
the patterns of connectivity as a function of experience. Compared to symbolic,
rule-based computational models, this has made them a more sympathetic
formalism for studying cognitive development (Elman et al., 1996). The com-
bination of domain-general processing principles, domain-specific architectural
constraints, and structured training environments has enabled connectionist
models to give accounts of a range of developmental phenomena. These include
infant category development, language acquisition and reasoning in children
(see Mareschal & Thomas, 2007; see also Chapter 23 in this handbook).

Connectionism has become aligned with a resurgence of interest in statistical
learning, and a more careful consideration of the information available in the
child’s environment that may feed their cognitive development. One central
debate revolves around how children can become “cleverer” as they get older,
appearing to progress through qualitatively different stages of reasoning.
Connectionist modeling of the development of children’s reasoning was able
to demonstrate that continuous incremental changes in the weight matrix driven
by algorithms such as backpropagation can result in nonlinear changes in
surface behavior, suggesting that the stages apparent in behavior may not
necessarily be reflected in changes in the underlying mechanism (McClelland,
1989). Other connectionists have argued that algorithms able to supplement the
computational resources of the network as part of learning may also provide an
explanation for the emergence of more complex forms of behavior with age in
so-called constructivist networks (e.g., cascade correlation; see Shultz, 2003; see
also Chapter 23 in this handbook).

The key contribution of connectionist models in the area of developmental
psychology has been to specify detailed, implemented models of transition
mechanisms that demonstrate how the child can move between producing
different patterns of behavior. This was a crucial addition to a field that has
accumulated vast amounts of empirical data cataloguing what children are able
to do at different ages. The specification of mechanism is also important to
counter some strongly empiricist views that simply to identify statistical infor-
mation in the environment suffices as an explanation of development; instead, it
is necessary to show how a mechanism could use this statistical information to
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acquire some cognitive capacity. Moreover, when connectionist models are
applied to development, it often becomes apparent that passive statistical
structure is not the key factor; rather, the relevant statistics are in the trans-
formation of the statistical structure of the environment to the output or the
behavior that is relevant to the child, thereby appealing to notions like the
regularity, consistency, and frequency of input–output mappings.
Connectionist approaches to development have influenced understanding of

the nature of the knowledge that children acquire. For example, Mareschal
et al. (2007) argued that many mental representations of knowledge are partial
(i.e., capture only some task-relevant dimensions) and only some dimensions of
knowledge may be activated in any given situation; the existence of explicit
language may blind people to the fact that there could be a limited role for truly
abstract knowledge in the normal operation of the cognitive system
(Westermann et al., 2007; Westermann, Thomas, & Karmiloff-Smith, 2010).
One important topic area gaining more attention is the use of connectionist

models to capture aspects of numerical and mathematical cognition. This is an
attractive application area since it has now become clear that an understanding
of exact number (Gordon, 2004), and even the precision of approximate
number estimation (Piazza et al., 2013) are highly experience-dependent.
Building on earlier work by Verguts and Fias (2004), Stoianov and Zorzi
(2012) introduced a neural network that captured aspects of adult human
numerical estimation abilities, and Tesolin, Zou, and McClelland (2020)
applied a similar approach to capture experience-dependent developmental
increases in precision. More recent work using newer neural network architec-
tures captures the emergence of an understanding of the exact number system
through experience with an ensemble of distinct but underlyingly overlapping
exact-number dependent tasks (Sabatiel, McClelland, & Solstad, 2020).

2.4.3 The Study of Acquired Disorders in Cognitive Neuropsychology

Traditional cognitive neuropsychology of the 1980s was predicated on the
assumption of underlying modular structure, i.e., that the cognitive system
comprises a set of independently functioning components. Patterns of selective
cognitive impairment after acquired brain damage could then be used to
construct models of normal cognitive function. The traditional models com-
prised box-and-arrow diagrams that sketched out rough versions of cognitive
architecture, informed both by the patterns of possible selective deficit (which
bits can fail independently) and by a task analysis of what the cognitive system
probably has to do.
In the initial formulation of cognitive neuropsychology, caution was advised

in attempting to infer cognitive architecture from behavioral deficits, since a
given pattern of deficits might be consistent with a number of underlying
architectures (Shallice, 1988). It is in this capacity that connectionist models
have been extremely useful. They have both forced more detailed specification
of proposed cognitive models via implementation and also permitted
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assessment of the range of deficits that can be generated by damaging these
models in various ways. For example, models of reading have demonstrated
that the ability to decode written words into spoken words and recover their
meanings can be learned in a connectionist network; and when this network is
damaged by, say, lesioning connection weights or removing hidden units,
various patterns of acquired dyslexia can be simulated (e.g., Plaut et al., 1996;
Woollams, 2014). Connectionist models of acquired deficits have grown to be
an influential aspect of cognitive neuropsychology and have been applied
to domains such as language, memory, semantics, and vision (see Cohen,
Johnstone, & Plunkett, 2000, for examples).

Several ideas have gained their first or clearest grounding via connectionist
modeling. One of these ideas is that patterns of breakdown can arise from the
statistics of the problem space (i.e., the mapping between input and output)
rather than from structural distinctions in the processing system. In particular,
connectionist models have shed light on a principal inferential tool of cognitive
neuropsychology, the double dissociation. The line of reasoning argues that if in
one patient, ability A can be lost while ability B is intact, and in a second
patient, ability B can be lost while ability A is intact, then the two abilities may
be generated by independent underlying mechanisms. In a connectionist model
of category-specific impairments of semantic memory, Devlin et al. (1997)
demonstrated that a single undifferentiated network trained to produce two
behaviors could show a double dissociation between them simply as a conse-
quence of different levels of damage. This can arise because the mappings
associated with the two behaviors lead them to have different sensitivity to
damage. For a small level of damage, performance on A may fall off quickly
while performance on B declines more slowly; for a high level of damage,
A may be more robust than B. The reverse pattern of relative deficits implies
nothing about structure.

Connectionist researchers have often set out to demonstrate that, more
generally, double dissociation methodology is a flawed form of inference, on
the grounds that such dissociations arise relatively easily from parallel distrib-
uted architectures where function is spread across the whole mechanism.
However, on the whole, when connectionist models show robust double dissoci-
ations between two behaviors (for equivalent levels of damage applied to
various parts of the network and over many replications), it does tend to be
because different internal processing structures (units or layers or weights) or
different parts of the input layer or different parts of the output layer are
differentially important for driving the two behaviors – that is, there is special-
ization of function. Connectionism models of breakdown have, therefore,
tended to support the traditional inferences. Crucially, however, connectionist
models have greatly improved understanding of what modularity might look
like in a neurocomputational system: a partial rather than an absolute property;
a property that is the consequence of a developmental process where emergent
specialization is driven by structure-function correspondences (the ability of
certain parts of a computational structure to learn certain kinds of computation
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better than other kinds); and a property that must now be complemented by
concepts such as division of labor, degeneracy, interactivity, compensation, and
redundancy (see Thomas & Karmiloff-Smith, 2002a). These insights have
emerged even while advances in neuroimaging have tended to revise the overall
notion of modularity, from an a priori theoretical principle of cognitive design
to a data-driven way of describing patterns of activation across the brain during
behavior (Thomas & Brady, 2021).
The most recent developments in cognitive neuropsychology have tended to

reflect a growing trend in connectionist cognitive models as a whole: the
inclusion of more constraints from neuroanatomy (Chen, Lambon Ralph, &
Rogers, 2017). This produces so-called connectivity-constrained theories of
cognition. For example, models of language have included dual pathways
linking auditory areas for hearing a word to motor areas for producing the
same word, reflecting the dorsal and ventral pathways observed in the brain
(Ueno et al., 2011). This model is able to capture patterns of breakdown where
adults can retain the ability to repeat words while losing the ability to compre-
hend them. Models of semantics have incorporated a hub-and-spoke architec-
ture, where information from different sensory modalities is bound together in
an amodal hub, based on the connectivity observed in the ventral anterior
temporal lobe, the hub, with posterior fusiform gyrus (visual representations
of objects), superior temporal gyrus (auditory representations of speech), and
lateral parietal cortex (representations of object function and actions), the
spokes (Chen et al., 2017). This model is able to capture various patterns of
knowledge loss during semantic aphasia and semantic dementia as structure is
lost from the anterior temporal lobe, as well as disorders stemming from the loss
of control in retrieving semantic knowledge (Chen et al., 2017; Hoffman,
McClelland, & Lambon Ralph, 2018). Lastly, the connectionist framework
has been applied to the diagnosis of acquired disorders of language (Abel,
Huber, & Dell, 2009) and therapeutic interventions (Abel, Willmes, & Huber,
2007), though the latter is comparatively under-developed to date (Thomas
et al., 2019).

2.4.4 The Origins of Individual Differences

The fact that many connectionist models learn their cognitive abilities makes
them a useful framework within which to study variations in trajectories of
cognitive development, such as those associated with developmental disorders,
intelligence, and giftedness. Connectionist models contain a number of con-
straints (architecture, activation dynamics, input and output representations,
learning algorithm, training regime) that determine the efficiency and outcome
of learning. Developmental outcomes may also be influenced by the quality of
the learning experiences (the training set) to which the system is exposed.
Manipulations to these constraints produce candidate explanations for impair-
ments found in developmental disorders – for example, if a network has insuffi-
cient computational resources – or the impairments caused by exposure to
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atypical environments such as in cases of deprivation, as well as the factors that
underlie resilience and strong developmental outcomes.

In the 1980s and 1990s, many theories of developmental deficits employed the
same explanatory framework as adult cognitive neuropsychology. There was a
search for specific behavioral deficits or dissociations in children, which were
then explained in terms of the failure of individual modules to develop.
However, as Karmiloff-Smith (1998) pointed out, this meant that developmen-
tal deficits were actually being explained with reference to non-developmental,
static, and sometimes adult models of normal cognitive structure. Karmiloff-
Smith (1998, 2009) argued that the causes of developmental deficits of a genetic
origin are likely to lie in changes to low-level neurocomputational properties
that only exert their influence on cognition via an extended atypical develop-
mental process (Elman et al., 1996; Mareschal et al., 2007). Connectionist
models provided a way to explore the thesis that an understanding of the
constraints on the developmental process is essential for generating explan-
ations of developmental deficits. Models were applied to explaining a range of
behavioral disorders including dyslexia, developmental language disorder and
autism, as well as genetic disorders such as Williams syndrome and Down
syndrome (Harm & Seidenberg, 1999; Joanisse & Seidenberg, 2003;
Seidenberg, 2017; Thomas & Karmiloff-Smith, 2002b, 2003a; Thomas et al.,
2016; Tovar, Westermann, & Torres, 2017).

If one can capture the development of the “average child,” and one can
capture particular cases of atypical development, the stage is set to consider
the origin of variations across the normal range. Some children develop more
quickly than others; at a given age, a “bell-curve” or normal distribution of
variation in ability is observed. The causes of such individual differences are
often construed in terms of multiple interacting genetic and environmental
factors. From the genetic side, the current view is that there are small contribu-
tions from many, perhaps thousands, of gene variants to individual differences
in cognition, the so-called polygenic model (Knopik et al., 2016). From the
environmental side, the most salient predictor of variation in cognitive out-
comes is socio-economic status, although this metric is a proxy for potentially
many underlying environmental influences (Hackman, Farah, & Meaney,
2010). To capture this range of variation in a formal model, however, requires
simulations of whole populations, where individuals differ in their neurocom-
putational properties and in the quality of the learning environment to which
they are exposed.

Connectionist models of cognitive development have been scaled to consider-
ing population-level characteristics in this manner, including applications to
consider intelligence and giftedness (Thomas, 2016, 2018), as well as the inter-
play of genetic factors and of socio-economic status in influencing trajectories of
development (Thomas, Forrester, & Ronald, 2013, 2016). These models have
given mechanistic insight into how, for example, similar behavioral develop-
mental disorders can arise from a monogenic cause – a large alteration of a
single computational parameter produced by a genetic mutation – or from a
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polygenic cause – the cumulative contribution of smaller differences in many
computational parameters, perhaps lying on a continuum with variation in
the normal range and produced by common genetic variants (Thomas &
Knowland, 2014; Thomas et al., 2019).
Reflecting a move towards neuroanatomically constrained models discussed

in the previous section, multiscale models of variation have sought to reconcile
population-level data at multiple levels of description, including genes, brain
structure, behavior, and environment (Thomas, Forrester, & Ronald, 2016).
For example, to the extent that scientists are committed to viewing cognition as
arising from the information processing properties of the brain, genetic effects
on cognition must correspond to influences on neurocomputational properties; and
some properties of connectionist networks, such as the number or strength of
connections, can be seen as analogues to measures of brain structure, such as
volumes of gray and white matter (Thomas, 2016). To give one recent example,
Dündar-Coecke and Thomas (2019) sought to reconcile apparently paradoxical
data from brain and behavior. Why are high IQs associated with having a
bigger brain (as if more neural resources were better for cognition) but also
associated with faster gray matter loss and cortical thinning during cognitive
development (as if fewer neural resources were better for cognition)? The model
suggested that the network size drives ability (so more is always better), but that
a higher peak of network size during growth is then associated with faster
connectivity loss as the brain optimizes processing through pruning unused
resources (in the manner that higher mountain peaks have steeper sides).
Lastly, as with acquired disorders, implemented models of developmental

deficits provide a foundation to explore interventions to ameliorate these def-
icits. While models of interventions are fewer than models of deficits, more
attention has recently been paid to their implications. In these models, the
success of behavioral interventions to remediate development deficits depends
on the nature of the computational deficit, where it occurs in the model’s
architecture, the timing when the intervention is applied, and the content of
the intervention items with respect to the training set (the latter corresponding
to natural or educational experiences) (Thomas et al., 2019). Interventions that
buttress developmental strengths rather than attempt to remediate weaknesses
may also have more lasting benefits (Alireza, Fedor, & Thomas, 2017). These
models may contribute to the (sometimes substantial) gap between theories of
deficit and theories of treatment (see Moutoussis et al., 2017 for related work).

2.4.5 Deep Neural Networks for Cognitive Modeling

Deep neural networks have provided a step change in the performance of artifi-
cial intelligence systems for visual object recognition and natural language pro-
cessing. Do they provide the basis for better cognitive models? As a case study, a
number of researchers have explored whether the representations developed in
the respective hidden unit layers of deep neural networks of visual object recog-
nition accord to the types of representation found in the hierarchy of neural areas
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in the ventral pathway of vision in inferior temporal cortex (e.g., Kriegeskorte,
2015; Yamins et al., 2014). Such a comparison is made possible by assessing the
representational similarity between activity produced by a range of images of
objects (faces, places, animals, tools, etc.), either in functional magnetic reson-
ance imaging data of human participants or in the hidden unit activation levels of
the trained neural network. The sequence of lower level features (edges), inter-
mediate level features (contours), and high-level features (objects) is found both in
neural areas and in network layers moving further from the input, suggesting
similar computations are taking place. However, in other respects, these deep
neural networks are not human-like: in the face of noise, their performance
declines in nonhumanlike ways, suggesting over-fitting to the training data or
the absence of crucial human-like architectural constraints; and at best, current
models are capturing bottom-up, feedforward aspects of visual processing, not
the top-down expectation-based influences enabled by bidirectional connectivity
(Kriegeskorte, 2015; Storrs & Kriegeskorte, 2019).

Deep neural networks may be necessary to train more complex connectionist
architectures suggested by the inclusion of neuroanatomical constraints. For
example, Blakeman and Mareschal (2020) used a deep reinforcement learning
architecture to model the interaction between neocortical, hippocampal, and
striatal systems for learning the evaluation of actions. However, deep architec-
tures do not provide better models solely by virtue of greater computational
power. Indeed, the emergence of deep neural networks has resurrected some of
the concerns expressed in early PDP days, that the lack of transparency in how
trained networks operate limits their use for cognitive theory – if it is unknown
how the model is working, how can the understanding of cognition be
advanced? (See Seidenberg, 1993, for discussion.)

Some argue that deep neural networks are less readily extendible to higher
level cognition, because unlike visual object recognition, it is unknown what
cost function is being optimized (Aru & Vincente, 2018). For example, Aru and
Vincente (2018) give the example of theory of mind/mindreading. The skills
presumably being optimized (communication or deception) are themselves
complex and hard to formulate. Higher cognitive functions may arise from
the combination of many different neural processes that obey their own opti-
mization cost functions. Others argue that deep networks indicate researchers in
the field should ready themselves to deal with mechanisms that elude a concise
mathematical description and an intuitive understanding (Kriegeskorte, 2015).
The brain, after all, is complex. Yet others argue that understanding how big
artificial neural networks work after they have learned will be similar to figuring
out how the brain works but with several advantages: in the model, the
following are known: exactly what each neuron computes, the learning algo-
rithm they are using, and exactly how they are connected; the input can be
controlled and the behavior of any set of neurons observed over an extended
time period; and the system can be manipulated without any ethical concerns.
Furthermore, these models may even be amendable to the methods used in
cognitive psychology experiments (Ritter, Barrett, Santoro, & Botvinick, 2017).
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2.4.6 Connectionism and Predictive Coding

Deep neural networks represent one instance of the reemergence of connection-
ism in the 2000s. Another can be identified in predictive processing, which has
attracted considerable attention in certain areas of psychology, neuroscience,
and philosophy. The idea of predictive coding was articulated in a paper on
visual processing by Rao and Ballard (1999). Rao and Ballard proposed a model
of visual processing in which feedback connections from a higher-order to a
lower-order visual cortical area carry predictions of lower-level neural activities.
This aspect of the predictive coding approach has similarities to the bidirec-
tional, interlevel constraint satisfaction in McClelland & Rumelhart’s (1981)
Interactive Activation model of letter perception described in Section 2.3.1.
The broad idea of predictive processing is that a good internal model of the

world will be one which can predict future sensory input. This will include the
outcome of the organism’s actions on the world on what will subsequently be
perceived. And one way of improving the internal model is to compare its
predictions against the actual sensory input and modify the model to reduce
the disparity. This idea of minimizing temporal prediction error is already
present in the SRN model of Elman (1990) described in Section 2.3.3, and is
used widely in neural network models of learning and development.
However, predictive coding goes further in proposing that the signals propa-

gated forward in the brain are prediction error signals; that is, only deviations
from top-down expectations are passed between levels of representation within
the sensory systems of the brain. Moreover, it proposes a role for precision
weighting – a flexible calibration of how much noise is expected in bottom-up
signals in a given context – in determining whether a disparity between top-
down expectations and bottom-up input is sufficiently large to cause the internal
model to update, so that it better predicts sensory input in the future. In the
related idea of active inference, motor actions are no longer viewed as com-
mands to move muscles but as descending predictions about proprioceptive
sensory information (Friston, 2009).
The predictive coding approach has interesting applications to computational

psychiatry, perception and action, although accounts of cognition formulated
within this approach are not often used to create implemented models which
capture details of human performance. While predictive coding shares features
with some connectionist/PDP approaches, there are subtle differences whose
empirical consequences remain to be worked out (see, e.g., Magnuson, Li,
Luthra, You, & Steiner, 2019, for first steps in this direction).

2.5 Conclusion

This chapter has considered the foundation of connectionist modeling
and its contribution to understanding of cognition. Connectionism was placed
in the historical context of nineteenth-century associative theories of mental
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processes and twentieth-century attempts to understand the computations
carried out by networks of neurons, as well as the most recent innovations in
deep learning. The key properties of connectionist networks were then reviewed,
and particular emphasis placed on the use of learning to build the microstructure
of these models. The core connectionist themes were: (1) that processing is
simultaneously influenced by multiple sources of information at different levels
of abstraction, operating via soft constraint satisfaction; (2) that representations
are spread across multiple simple processing units operating in parallel; (3) that
representations are graded, context-sensitive, and the emergent product of
adaptive processes; (4) that computation is similarity-based and driven by the
statistical structure of problem domains, but it can nevertheless produce rule-
following behavior. The connectionist approach was illustrated via three
foundational cognitive models, the Interactive Activation model of letter recog-
nition (McClelland & Rumelhart, 1981), the past tense model (Rumelhart &
McClelland, 1986), and simple recurrent networks for finding structure in time
(Elman, 1990). Apart from its body of successful individual models, connection-
ist theory has had a widespread influence on cognitive theorizing, and this
influence was illustrated by considering connectionist contributions to under-
standing of memory, cognitive development, acquired cognitive impairments,
and cognitive variation. New emerging themes were identified, including connec-
tionist models that incorporate neuroanatomical constraints, models that con-
sider variation across populations reflecting the interaction of genetic and
environmental influences, models that attempt to integrate data across levels of
description, and models that make use of deep neural network architectures.

One could argue that since the first edition of this volume, a number of the
theoretical constructs introduced by the connectionist approach have become so
integrated into mainstream cognitive science, spurred by supporting evidence
from neuroimaging, that they are no longer accompanied by the label “connec-
tionist” – among them, notions like distributed representations shaped by task
context; the role of prediction; and interactive processing (Mayor et al., 2014).
Connectionism continues to challenge symbolic conceptions of thought, in
areas such as language and mathematical cognition and in doing so, provides
a more sympathetic framework for capturing developmental change. Recent
directions have sought to integrate further constraints, such as from neuroanat-
omy and genetics. The future of connectionism, therefore, is likely to rely on its
relationships with other fields within the cognitive sciences, and its ability to
mediate between different levels of description in furnishing an understanding
of the mechanistic basis of thought.
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