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In this chapter, we consider computational approaches to understanding learning and 
teaching. We consider the utility of computational methods in two senses, which we 
address in separate sections. In the first part, we consider the use of computers to build 
models of cognition, focusing on the one hand on how they allow us to understand the 
developmental origins of behaviour and the role of experience in shaping behaviour, and on 
the other hand how a particular type of model – artificial neural networks – can uncover the 
way in which the constraints of brain function likely shape the properties of our cognitive 
systems. In the second half of the chapter, we consider the use of computers as tools to aid 
teaching, in particular in the use of artificial intelligence in education. 
 
These two approaches naturally cross-fertilise. The origin of computational devices in the 
early 20th century lay in an endeavour to build machines that thought as humans did; in 
order to have a good computer tool to help teachers, the design of the tool needs to be 
informed by how children learn. One of the goals of the latter part of the chapter is to 
provide a basis for informed discussion of whether and how the developmental cognitive 
neuroscience and artificial intelligence approaches can guide each other for the benefit of 
their respective aims, and whether artificial intelligence may be able to act as a bridge 
between developmental cognitive neuroscience research and real-world educational 
practices. 

Part 1. Computers as models of cognition 
 
Humans are biological entities, whatever the sophistication of our cultures and cultural 
artefacts. When it comes to education, we are, as it were, primates in the classroom. 
Understanding the operation of the brain – the biological basis of learning – in terms of 
computation is one perspective of what biological systems do. It is a valuable perspective 
that helps us understand and unify various properties of the brain – such as the electrical 
activity of neurons – and how these properties relate to behaviour. However, there may be 
limitations to the perspective, for example in the properties of biology or the environment 
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which are de-emphasised or ignored.1 More widely, the computational perspective fits into 
the contemporary cultural context of measurement and optimisation familiar in free market 
societies (‘everything has a cost, optimise profits’). Computational modelling is to some 
extent a method of our time. Those caveats in mind, let us introduce the theoretical 
framework in which we will consider the use of computational approaches in the first part 
of this chapter. 
 
The first theoretical framework we will use is educational neuroscience. This is an emerging 
interdisciplinary field that seeks to use new insights into brain mechanisms of learning to 
inform educational practices (Mareschal, Butterworth, & Tolmie, 2013; Thomas, Mareschal 
& Dumontheil, 2020). It is not reductionist, in the sense that the field comprises a dialogue 
between neuroscientists, psychologists, and educators, with an understanding that 
education is a much broader phenomenon that the changing of brains. Education is 
intrinsically a cultural, community-based enterprise based on social interaction. Yet to 
acquire new knowledge and skills, this must be achieved through changing brains. The 
interaction between neuroscience and education occurs along two main pathways (Thomas, 
Ansari & Knowland, 2019). The first is an indirect link, where neuroscience findings inform 
psychological theories, which inform education practices. These might concern specific 
educational domains, such as literacy or numeracy, or more general aspects of cognition 
that impact learning, such as executive function skills, emotion, or motivation. The second 
route is a direct one, where insights from neuroscience help to optimise the brain for 
learning when the child enters the classroom, such as the impact of diet, sleep, exercise, or 
stress. 
 
The second framework we will use is neuroconstructivism (Mareschal et al., 2007; 
Westermann et al., 2007). This is a theory of cognitive development that combines a 
Piagetian constructivist approach – that more complex knowledge and skills are constructed 
on the basis of simpler knowledge and skills via the child’s experience of the world – with a 
contemporary understanding of functional brain development. The development of 
functional brain systems is viewed as heavily constrained by multiple interacting factors that 
are both intrinsic and extrinsic to the developing child. Cognitive development occurs in the 
context of the constraints operating on the development of the brain that span multiple 
levels of analysis: from genes and the individual cell to the physical and social environment 
of the developing child. Neuroconstructivism integrates different views of brain and 
cognitive development including probabilistic epigenesis (emphasising the interactions 
between experience and gene expression in shaping development), neural constructivism 
(focusing on the experience-dependent elaboration of small-scale neural structures), the 
interactive specialisation view of brain development (stressing the role of interactions 
between different brain regions in functional brain development), embodiment (highlighting 
the role of the physical body in cognitive development), Piagetian constructivism (focusing 
on the child’s pro-active acquisition of knowledge), and the role of the social environment 
for the developing child. 

 
1 For example, see reservations of Rodney Brooks, a leading artificial intelligence and 
robotics researcher: https://www.edge.org/response-detail/25336B. Brooks argues that 
planetary orbits around the sun can be described and simulated in computational terms, but 
no one would argue that planets are computers. 
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Cognition, computation, education, and the brain 

 
The view of cognition as computation has been a mainstay of cognitive psychology since the 
1980s. It leads to research methods that seek to identify mental representations and 
processes that manipulate those representations. Cognitive psychology has a long 
relationship with artificial intelligence research, which constructs machines that can operate 
in intelligent ways. The collaboration of these fields has led to the identification of possible 
ways that cognition could work, either in humans or in machines. However, there is only 
one way that cognition actually works in humans, and that is constrained by how the brain 
works. There are things that the brain does that a conventional (symbolic, rule-based, von 
Neumann) computer cannot do, and vice versa. From a computational perspective, the goal 
of neuroconstructivism is to identify how the constraints of being implemented in the brain 
shape the cognitive processes of the mind. The properties of the brain originate in its 
biology, and its biology is the outcome of a long evolutionary history. This means the way 
the brain does things may not necessarily be the best, but it will be optimised (by 
evolutionary selection) given what was available in ancestor species. For example, a 
biological constraint is that cognition will be performed by neurons. Neural activity 
produces metabolic waste products which must be cleared away, and changes in neural 
properties and connectivity require consolidation to be stabilised as robust memories. 
Together these factors mean that organisms need to sleep – humans are off-line for a third 
of their lives. On the face of it, this is not an optimal solution for a cognitive system, and it is 
a limitation that symbolic computers do not suffer from. 
 
What, then, are the implementation constraints of performing computation in the brain? 
The basic unit of computation is the neuron, and knowledge is stored in the strength of the 
connections between neurons. This means knowledge is built into structure. It means that 
neural processing systems will be content-specific. The brain, then, is built of a set of 
content-specific systems (be they motor or sensory). It then requires a separate, specialist 
system whose job it is to modulate the activity of the various content-specific systems, to 
make sure that the appropriate parts are activated and inhibited based on the current 
context and goals (the role of the pre-frontal cortex). The content-specific systems must be 
linked by translators, for example between sensory and motor information, and their 
content integrated by hubs (such as the hippocampus for episodic memory, or anterior 
temporal lobe for semantics). The bread and butter of the brain are its sensory and motor 
systems. These content systems are hierarchical, a sequence of layers each picking up 
increasingly higher order invariances (conceptual structure) in the information to which they 
are exposed, from immediate low-level motor actions to long-term high-level plans in the 
motor system, and from low-level perceptual features to high-level objects in sensory 
systems. Activity travels simultaneously up and down these hierarchical systems so that 
expectations (e.g., of the object you will see) can influence low-level processing. The brain 
exists to serve the body, and there are brain structures dedicated to the evolutionary goals 
of the organism (eating, sleeping, detecting threats, bonding, mating, fighting). The emotion 
(limbic) system interacts with the modulatory system to influence its goals; it influences 
regional properties of processing in the cortex through altering neurotransmitter levels 
(e.g., to alter arousal); and it conditions the body to be in the appropriate state for the 
current situation (e.g., fight or flight responses). 
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With respect to education, there is a many-to-one mapping between content-specific 
systems of the brain and concepts utilised in psychology. So for example, ‘addition’ in 
mathematics class involves multiple representations of knowledge in different brain systems 
(visual symbols, representations of quantity), motor sequences (of pencil movements), and 
strategies (retrieval, execution of procedures), in a complex sequence of activity over time, 
and sometimes involving iterations of physical interaction with the environment (move 
head and eyes to look at problem, write with pencil, look back to problem). “Learning” as an 
educational concept involves the on-going interaction between perhaps eight different 
neural systems, including reward-based processing systems and a system involved in the 
automatization of movements (Thomas, Ansari & Knowland, 2019). Notably, educational 
psychology tends to focus on the acquisition of abstract knowledge underpinned by cortical 
mechanism (e.g., to learn multiplication, the system must link language-encoded times 
tables to procedural knowledge for linking number symbols, and to the semantic 
underpinning of quantity). However, from the biological perspective of the social primate 
sitting in the classroom, this function is probably only the brain’s fourth most important 
priority. Before it come, respectively, movement, emotion, and social relations (e.g., leaning 
on the desk and fiddling with your pencil, feeling anxious about maths, wanting to whisper a 
question to your friend to find out why Sienna doesn’t like you anymore). Learning is 
optimised when the first three priorities are aligned in the service of the fourth (e.g., motor 
activities are relevant to the topic, there is excitement and curiosity for learning, and 
learning is supported by the peer group and the relationship with the teacher). 
 
There are multiple methodological approaches to investigate this complex interactive 
system within developmental cognitive neuroscience. Computational modelling represents 
a set of formal methods to specify the representations and processes involved in various 
components of the cognitive system. Computational methods are widely used in other 
scientific fields to simulate the behaviour of complex systems, such as in meteorology or 
astrophysics. Formal models have certain virtues. For example, they enforce precision on 
sometimes vague implicit or verbal accounts of how systems work; if a theory is 
implemented as a working system, it can test the viability of the theory to produce the 
observed behaviour it claims to explain; and models able to unify diverse phenomena 
provide parsimony. Computational models are particularly important in studying systems 
with multiple interacting components, where the behaviour of the whole system emerges 
through complex interactions. Once a model is constructed, it can be applied to new 
situations, and generate novel testable predictions, for example, when its parameters are 
set to atypical values (e.g., as we’ll see later, to capture disorders such as dyslexia or 
Attention Deficit Hyperactivity Disorder for models of reading and decision-making, 
respectively). 
 
The main disadvantage of models is that, by definition, they require simplification. As Box 
and Draper (1986) say, ‘all models are wrong, some are useful’. This both poses the 
challenge of ensuring only irrelevant details are simplified away in building a model, and 
also finding a balance between building a model complex that is enough to capture the 
target phenomenon but not too complex so that the model’s own functioning cannot be 
understood (Lewandowsky, 1993; McCloskey, 1991). The ultimate goal of modelling, after 
all, is to progress theoretical understanding. 
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Computational models of cognition have used different types of computational formalism. 
Some of them rely on explicit rules for encoding knowledge (IF x THEN y) (e.g., Ritter, 
Tehranchi & Oury, 2018). Some employ formalisms from probability theory, where cognition 
is viewed as updating a probabilistic understanding of the state of the world in the light of 
new data (the Bayesian approach; Gopnik & Bonawitz, 2015). Models that focus on the 
computations that can be performed by neural systems can differ depending on whether 
they focus on the temporal dynamics of the system (dynamical systems theory; Spencer, 
Perone & Buss, 2011); or the information encoded in representations (connectionism or 
artificial neural network models; Thomas & McClelland, 2008; Spencer, McClelland & 
Thomas, 2009). In the following section, we focus on artificial neural network models, 
applied to education-relevant cognitive abilities. We do so, because these machine-learning 
systems have the attractive property of learning their knowledge representations by 
exposure to a structured learning environment; they are therefore ideally suited to studying 
learning, development, and mechanisms of change (Mareschal & Thomas, 2007). 
 

Artificial neural network models of education-relevant cognitive abilities 
 
Artificial neural network models (henceforth ANNs) have been applied to modelling a range 
of phenomena in cognitive development, from sensori-motor processing in infancy (e.g., 
object recognition), routine motor sequences, categorisation, aspects of language such as 
vocabulary, morphology, and syntax, and reasoning on Piagetian problems (Botvinick & 
Plaut, 2004; Elman et al., 1996; Mareschal & Thomas, 2007; Shultz, 2003). Models target 
development in particular cognitive domains and for restricted behavioural phenomena 
(e.g., the ability to sort rods of different lengths into serial order; Mareschal & Shultz, 1999). 
The approach is therefore an analytical one, pulling cognition apart into component parts, 
and is as a consequence reliant on theories of developmental cognitive neuroscience to 
identify the relevant components. 
 
The parts of an ANN are as follows. The basic elements are simple processing units with 
activity levels, analogous to neurons and electrical neural firing rates. A unit’s activity level 
alters the activity levels of other units to which it is connected, based on the strength of the 
connections between them. The connections are analogous to axons, synapses, 
neurotransmitters and dendrites. Units have an activation function that determines how 
much they will alter their activation level depending on the level of stimulation (excitation, 
inhibition) they are receiving from other units. Units are typically organised into layers. A 
layer represents information through a pattern of activations across its units. In neural 
models, models are tested against their ability to simulate neural activity. In cognitive 
models, representations correspond to concepts and models are tested against their ability 
to simulate behaviour. 
 
Layers are usually defined as inputs, outputs, and intermediate layers that facilitate the 
mapping between inputs and outputs. The layers and pathways in a model are referred to 
as the architecture (e.g., the architecture of a model of the reading system is shown in Box 
1). An untrained ANN has small random connection weights. The ANN is exposed to a 
structured learning environment (or training set), which specifies the sets of input-output 
mappings it must learn. Input-output pairs are presented to the network, and a learning 
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algorithm is used to adjust the connection strengths so that the network gradually learns all 
the input-output pairs through multiple exposures to the mappings. There are a variety of 
learning algorithms, which generally serve to alter the network connections to optimise 
some function, be it the accuracy of input-outputs, the conciseness of a set of 
representations, or how accuracy the network can predict the reward gained by a particular 
action. In agent-based models, the system is an agent whose actions alter the subsequent 
experience of the environment (for more detail, see Elman et al., 1996; McLeod, Plunkett & 
Rolls, 1998; Thomas & McClelland, 2008). These components are summarised in Table 1, 
left-hand column. 
 
 
Table 1. Components of two different types of model, those used to simulate cognitive 
mechanisms, and those used as theoretically informed artificial intelligence tools to support 
learning and teaching 
 

Cognitive model components Artificial Intelligence in Education 
model components 

Stipulation of Theoretical domain of relevance 
– what is to be modelled (e.g., reading 
development) and what is to be simplified 
(e.g., vision and audition) 

Domain model responsible for 
representing the knowledge and related 
operations that are the object of learning 
(e.g., maths) 

Architecture of model specifying inputs, 
outputs, pathways, internal layers, parameter 
settings (e.g., pathways linking orthographic, 
phonological and semantic representations) 

Model of the learner which represents 
what the learner knows at any given 
point as well as their emotions and 
motivational states 

Learning algorithm specifying how structure 
and parameters of the model will change 
based on training experiences or development 

Model of pedagogy taking into account 
the domain to be mastered and the 
pedagogical strategies and tactics that 
are appropriate in that domain 

Representational format for inputs and 
outputs (e.g., code for speech sounds, code for 
written letters) 

Communication model offering 
strategies for how to realise any given 
pedagogical strategy 

Specification of Structured learning 
environment – frequency and nature of 
experiences (e.g., associations between 
written and spoken forms of words); in agent-
based modelling, the agent’s actions 
determine the next input from its 
environment, which may also contain other 
agents 

 

 
 
 
ANNs have been applied to a number of cognitive models relevant to education. Perhaps 
the most attention has been paid to capturing the development of reading (e.g., Seidenberg 
& McClelland, 1989; Harm & Seidenberg, 2004; Plaut et al., 1996; see Box 1 for an example 
model). These models focus on content-specific pathways which learn to translate between 
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structured representations of a word’s written form (orthography), its spoken form 
(phonology), and its meaning (semantics). The model is exposed to a learning environment 
in which it is presented with instances of associations between the written and spoken form 
of words, encountering them with a frequency based on the occurrence of these words in 
naturalistic corpuses. The accuracy of the model in reading depends on how often it 
encounters words, but also on the complexity of the relationship between written and 
spoken forms, which may be fairly transparent (e.g., Italian) or complex (e.g., English). Box 1 
provides an example of some of the implementation details of a specific model, and how 
models have been extended and tested by brain imaging data. 
 
Representations of meaning in cognitive models are usually depicted in terms of sets of 
semantic features that define a concept. More recent models have begun to capture 
semantic representations in terms of a hub, where information from diverse modalities of a 
concept can be unified (e.g., sound, touch, visual features, smell, movement, verbal 
descriptions) (e.g., Chen, Lambon Ralph & Rogers, 2017). Meaning has been represented as 
sequences of associated concepts over time structured into events or episodes (Hoffman, 
McClelland & Lambon Ralph, 2018; Elman & McRae, 2017). And access to semantics has 
been proposed to require external modulatory control processes activating and inhibiting 
content representations (Hoffman, McClelland & Lambon Ralph, 2018). 
 
Such models acquire generalised representations of meaning, gradually extracting patterns 
over multiple exposures to individual instances of, say, dogs or cars. However, the brain also 
has a structure, called the hippocampus, for snapshot learning of individual episodic 
memories, e.g., where and when you saw a specific dog. Knowledge of individual episodes 
must somehow be transferred to the cortical representations of general semantic 
knowledge. This process has been studied in models of complementary learning systems, 
where the hippocampus supports consolidation of knowledge in the cortex, partly by 
replaying memories during sleep (McClelland, McNaughton & O’Reilly, 1995; O’Reilly et al., 
2014). 
 
Models of numerical cognition have focused on capturing basic tasks such as number 
comparison and simple addition, since developmentally, more complex tasks such as 
multidigit arithmetic and symbolic mathematical reasoning build on these simpler tasks 
(Zorzi, Stoianov & Umiltà, 2005). In these types of models, the acquisition of number 
concepts involves the mapping between an analogue code of quantity, representations of 
number symbols (e.g., Arabic numerals) and verbal numerical expressions (e.g., Dehaene & 
Cohen, 1995; Campbell, 1994). Such models have attempted to account for phenomena 
such as the distance effect (that is it easier to select the larger of two numbers when they 
are far apart than when they are close) and the size effect (that for a given distance, it is 
easier to compare small numbers than large numbers) (see Dehaene, 2003, for review). 
Models of simple arithmetic aim to address the fact that competent adults can use a 
combination of fact retrieval from memory and procedures for transforming the problem if 
memory search fails, and therefore must combine multiple pathways (Zorzi, Stoianov & 
Umiltà, 2005). 
 
Models have considered executive functions, for example in cognitive control (Botvinick et 
al., 2001), in short-term memory (Haarmann & Usher, 2001), and even switching between 
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the bilingual’s two languages (Filippi, Karaminis & Thomas, 2014). These models include 
modulatory mechanisms that influence or retain activation states in the content-specific 
systems to which they are connected. However, control of behaviour is also sometimes 
construed within a reinforcement learning framework, where decisions about behavioural 
choices depend on a history of the rewards received for different actions. Models of 
reward-based decision making have been influenced by a growing understanding of the 
role of the dopamine neurotransmitter system in the striatum, where neural activity has 
been found to follow the accuracy of the individual’s predictions of the rewards they will 
receive for their actions (Zeigler et al., 2016). These models have been extended to consider 
the possible origins of impulsivity in Attention Deficit Hyperactivity Disorder, construed in 
terms of changes to the model’s initial computational parameter settings, for example in the 
weight given to small short-term versus larger longer-term rewards (Zeigler et al., 2016, for 
a review). 
 
Findings from ANN models of the acquisition of education-relevant abilities point to the 
importance of the quality of the representations for driving the learning of more complex 
abilities (e.g., phonology for reading, an analogue code of quantity for numeracy); the 
importance of sufficient capacity and plasticity in processing systems to acquire target skills; 
the importance of context-appropriate control of the activation states in content systems, 
and the importance of representative exposure to the problem domain. 
 
Finally, low-level sensory systems do not tend to be the focus of education-relevant 
computational models. Nevertheless, they can sometime be relevant because education is 
seeking to shape brain systems that have evolved for other purposes (so-called neuronal 
recycling; Dehaene, 2005). The computational constraints of these brain systems may 
influence behavioural patterns as new culturally determined skills are acquired. For 
example, in some scripts, written letters can be mirror reversals or rotations of each other 
(e.g., b, d, p, q in English). The visual system develops to recognise objects irrespective of 
their orientation, a constraint that must be overridden to separate these orientation-
specific letters. The result is initial characteristic errors of confusion of these letters (and 
numbers such as 2 and 5) (see, e.g., Blackburne et al., 2014). Recently, ANN models have 
been successfully applied to capturing the development of visual object recognition. 
Advances in deep neural networks have enabled computer scientists to produce much more 
powerful systems for recognising complex objects within visual scenes. These models have 
multiple layers, with each higher layer extracting more complex features from the visual 
input. Deep networks are very powerful learning systems but very specific to the content on 
which they are trained. Two points are notable. First, the types of representations 
developed in the sequence of layers in the artificial neural networks appear to capture the 
types of representations found in the hierarchy of processing areas in the ventral (object 
recognition) stream of the human cortex, validating deep learning as a useful perspective on 
brain function (e.g., Rajalingham et al., 2018). Second, the similarity of the ANN’s 
representations to the brain’s representations depends on how many layers the model has. 
Beyond a certain number of layers, the ANN’s performance begins to exceed human 
accuracy on image classification, and the layers’ representations cease to be humanlike 
(Storrs et al., 2017). 
 
  



 9 

Box 1. Example of an ANN model of reading development 
 
A great deal of research has focused on developmental models of reading. Initial models 
addressed how ANNs could learn the mapping between orthography and phonology by 
repeated exposure to a word’s written and spoken forms, how such models could 
accommodate both regularity in these mappings (mint, hint, tint) but also exceptions (pint), 
and how they could extract the general function linking spoken and written forms to enable 
them to read aloud nonwords (e.g., gint) (e.g., Seidenberg & McClelland, 1989). 
Subsequently, models extended to consider the possibility that a written word’s meaning 
could be retrieved either by a direct mapping from orthography to semantics, or by 
generating its spoken form and using this to access semantics. Similarly, the spoken form 
could be retrieved either directly from the written form, or the written form could be used 
to retrieve the meaning which could then be used to retrieve the spoken form (Harm & 
Seidenberg, 2004; Plaut et al., 1996). In this way, the reading system therefore has multiple 
pathways, and there may indeed be a division of labour between them. For example, it 
might be more efficient for a system to learn regular mappings via the direct orthography to 
phonology route, and the exceptions (like pint) via the semantic route. 
 
Figure 1 shows the architecture of one implementation of the multiple pathway architecture 
(grey elements depict unimplemented input and output systems) (Harm & Seidenberg, 
2004). Notably, many of the connections between layers of units are bi-directional, so that 
activation can flow around the network. In the model, semantics was represented over 1989 
units, orthography over 225 units, and phonology over 200 units. Intermediate layers 
helped learn the mappings between these codes. The size of the intermediate layers was 
determined merely by what worked, or as the authors put it in one case, ‘the number 500 
was chosen from pilot studies; it is a number large enough to perform the mapping without 
being too computationally burdensome’ (p.677). The model was trained on 6,103 
monosyllabic English words, consisting of all monosyllabic words and their most common 
inflections. The pathways were trained separately, using an algorithm based on 
backpropagation through time. This algorithm adjusts connection weights to reduce output 
errors and also accommodates cycling activation. The model was trained for around 700,000 
word presentations, first learning an oral language system, then linking written forms to it 
(see Harm & Seidenberg, 2004, for full details). One notable finding of this model was that, 
given its multiple pathways, the system initially learned to retrieve meanings from written 
forms through accessing phonology, because this mapping is largely regular, and the 
pathway from phonology to semantics is already established. But gradually, the system 
learned the more complex direct mapping from orthography to semantics, which delivers 
faster reading. 
 
The dynamics predicted by the computational model were subsequently testable by 
advances in brain imaging. Dynamical causal modelling techniques applied to functional 
magnetic resonance imaging (fMRI) data were able to reveal which brain regions 
dynamically drive which other brain regions during reading (Richardson et al., 2011). Figure 
2 shows the strength of the dynamic modulation of the activity between connected regions 
during a reading task, respectively for low-level vision, visual word processing, phonology 
and semantics. It reveals that orthography and phonology interact with each other during 
reading, and both drive semantics; but notably, early visual areas directly drive activation in 
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both orthographic and phonological areas, with phonology also showing some indication of 
top down modulation of low-level visual areas. These data confirm the multiple routes, 
hierarchical nature, and interactivity of the reading system. 
 
Subsequent computational models of the reading system have sought to include further 
constraints from neuroanatomy (e.g., a dorsal route linking auditory perception directly to 
motor output, for repeating words without retrieving their meaning; Ueno et al., 2011); 
have considered how alterations in the computational properties of the system, either in 
the number of units in the mapping pathways or the quality of the phonological 
representations, could produce developmental trajectories resembling dyslexia (e.g., Harm 
& Seidenberg, 1999); how certain kinds of behavioural interventions may ameliorate the 
developmental deficits (Harm, McCandliss & Seidenberg, 2013; Thomas et al., 2019); and 
how variation in network parameters may produce individual differences in development 
and potentially provide a mechanistic link to both genetic levels and environmental 
variables such as socio-economic status (SES; Thomas, Forrester & Ronald, 2013, 2016). In as 
much as cognition is viewed as computation, genetic effects must unpack as modulation of 
neurocomputational parameters; and correlates of SES include variations in the growth of 
brain structures and variation in the level of cognitive stimulation. 
 
 
Figure 1. Architecture of the Harm and Seidenberg (2004) model of reading, showing the 
specified representations (semantics, phonology, orthography), pathways, and directions of 
activation flow between them. Greyed elements (motor, auditory, visual systems, context) 
were unimplemented, but assumed, components. 
 

 
 
 
Figure 2. Summary of dynamic causal modelling of functional magnetic resonance imaging 
data, showing which brain regions involved in reading appeared to causally drive other 
regions (Richardson et al., 2011). Values show probabilities for modulatory connections 
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during the reading task. Connections above threshold are indicated by solid black arrows. 
Strong trends are indicated by black dashed arrows. 
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Part 2. Technology as a tool for supporting learning and teaching 
 
The study of human learning using computational modelling dates back at least to the 1970s 
and the formal advent of what is now known as Artificial Intelligence in Education – a 
research field that lies at the intersection of the broader studies in Artificial Intelligence and 
the Learning Sciences (e.g., Woolf, 2007). Given that computational modelling of learners in 
context represents a defining characteristic of AIEd technologies (with Intelligent Tutoring 
Systems providing one example of such technologies), there is a natural overlap between 
the preceding computational modelling approaches used in educational neuroscience 
(henceforth EdN) research, and those used in AIEd systems. 
 
However, there are also some fundamental differences between the primary motivation 
and goals of AIEd and EdN. These differences relate specifically to the emphasis that each 
field puts on the importance of neuro-cognitive vs behavioural fidelity of its models, as well 
as their respective reliance on access to and their immediate application in pedagogical 
practices at the front-line. In particular, while the primary goal of EdN is to gain 
fundamental understanding of neural processes related to learning in order to inform a 
general theory of how the brain works, AIEd is concerned with creating environments which 
form an explicit part of educational interventions from their inception to their delivery in 
real-world educational contexts. In other words, in AIEd systems, neurocognitive fidelity of 
the models is a highly desirable but not a necessary condition for their successful 
implementation in educational practices.  
 
In the second part of this chapter, we briefly introduce the AIEd perspective as an important 
area in which computational modelling of learning and teaching behaviours forms a central 
part. Our goal is to provide a basis for informed discussion of whether and how the AIED 
and EdN can guide each other for the benefit of their respective aims, and of the extent to 
which AIEd may be able to act as a bridge between EdN research and real-world educational 
practices.  
 

Artificial Intelligence in Education (AIEd) 
 
AIEd is a subfield of Artificial Intelligence (AI) and the Learning Sciences (LS), which seeks 
both to understand the behavioural correlates of learning and teaching processes, and to 
computationally model individual learners as they engage in learning of a particular subject 
domain in real-time. While utilising AI’s techniques and feeding into the Learning Sciences 
theories and practices, such modelling is essential to enabling educational software 
environments to provide adaptive, in-the-moment learning and teaching support, e.g. 
pedagogical feedback to learners, or advice to teachers on how to support individual 
learners in context. AIEd research investigates: (i) how meaningful interactions between 
teachers and learners develop; (ii) what factors in the physical learning environment 
contribute to successful learning (be-it software environment, or a combination of software 
and a broader context in which learning takes place); and (iii) what kind of pedagogical 
feedback may be more or less conducive to learning by particular types of learners within a 
specific learning domain and circumstances (e.g., Porayska-Pomsta & Bernardini, 2013; 
Woolf, 2007).  
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There exists a whole plethora of different forms of AIEd technologies, from Intelligent 
Tutoring Systems that focus on supporting mastery learning in one-on-one learning 
contexts (e.g., Cognitive Tutors – Corbett et al., 1997) to collaborative learning 
environments that support learning interactions amongst groups of learners (e.g., Cukurova 
et al., 2018). Regardless of their specific application, the key common characteristic to all 
AIEd environments is that their functionality is underpinned by mutually informing set of 
modelling components, including: (i) a domain model which is responsible for representing 
the knowledge and related operations that are the object of learning (e.g., maths); (ii) a 
model of the learner which represents what the learner knows at any given point as well as 
their emotions and motivational states; (iii) a model of pedagogy which takes into account 
both the domain to be mastered and the pedagogical strategies and tactics that are 
appropriate in that domain; and (iv) a communication model, which offers strategies for 
how to realise any given pedagogical strategy. The exact way in which these different 
components will be implemented and utilised in any given system will depend on the 
context in which they are to be deployed, the specific intervention goals, hardware 
employed (which may determine what user behaviours can be detected and modelled 
feasibly in real-time), and data available. However, regardless of their exact 
implementations, a learner model is generally considered the essential component of any 
environment that aims to adapt its pedagogy and interaction to individual learners. These 
components are included in Table 1 (right column), and contrasted with those employed in 
cognitive models of learning and development. 
 
Unlike the computational modelling employed in EdN which tends to rely on 
neurocomputational approaches, AIEd environments are a priori agnostic with respect to 
the type of AI that underpins their models. As such, AIEd technologies employ a diverse 
range of AI techniques from the so-called good old-fashioned rule-based AI (GOF AI) to 
machine learning (ML). GOF AI requires explicit representation of knowledge, which reflects 
an ontological conceptualisation of the world and actions that are possible therein, along 
with some well-defined measures of success in terms of concrete goals and goal satisfaction 
constraints. For example, in the context of maths tutoring, the ontological representations 
will relate to the specific sub-domains of maths, say – misconceptions in column 
subtraction, and rules that define the possible operations on the given subdomain. The goal 
satisfaction in this case may be in terms of student’s correct or incorrect answers. The rules 
are typically elicited through questioning of human experts in a given domain, by observing 
their expertise in real contexts or by hand annotating data (video recordings, interaction 
logs, etc.) of humans engaging in specific tasks of interest. By contrast, machine learning 
(ML), such as implemented by neural networks, learns solutions from first principles by 
applying statistical classification methods to large data sets, as discussed in the first part of 
this chapter. Both of these broad approaches have their strengths and weaknesses in terms 
of the extent to which they lend themselves as a basis for enhancing our theoretical 
understanding of learning and teaching processes, or for supporting teaching and learning 
practices.  
 
Specifically, the key advantage of knowledge-based systems is that they require a detailed 
understanding of the domain, in order for knowledge ontologies to be constructed, thus 
also potentially leading to a greater understanding of the domains represented, and the fact 
that the resulting ontologies are transparent, inspectable, and often understandable by 
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humans (Davis, 1993; Russell & Norvig, 1995). For example, in Cognitive Tutors (henceforth 
CTs; Corbett et al., 1997), which were originally created as a testbed for the ACT-R cognitive 
theory of rational thought and problem solving (Anderson et al., 1990), this transparency is 
key for delivering fine-grained and tailored moment-by-moment feedback to students, and 
to performing diagnoses (sic learner modelling) of learners’ developing knowledge and 
understanding. Here, learner modelling involves keeping track of (i) the learner’s progress 
through a solution and (ii) the growth of learner’s knowledge over time. In CTs, the 
diagnoses are based on the specification of declarative knowledge, e.g.: 
 
“When both sides of the equation are divided by the same value, the resulting quantities are 

equal” 
 
and procedural knowledge expressed as production rules that apply to a particular stage in 
a problem-solving episode, e.g.: 
 

“IF the goal is to solve an equation for variable X and the equation is of the form aX =b, 
THEN divide both sides of the equation by a to isolate X” 

 
(Corbett et al., 1997). The production rules are annotated for correctness and specificity of 
the solutions that they offer. During problem solving a CT keeps track of all the solution 
steps committed by the learner and identifies the production rules in its database that 
correspond to learner’s solution steps. The annotations associated with each production 
rule provide the basis for the assessment of the quality of the learner’s steps and their 
problem-solving strategies, which in turn allows the system to choose appropriate feedback. 
These decisions can be examined in detail and, if necessary or desired, full traces of the 
diagnoses performed by the CT can be given back to the teachers or learners as an 
explanation of the system’s assessments and of its choices of pedagogical feedback.  
 
CTs provide but one example of how knowledge can be represented in an AI tutoring system 
and of how learners’ knowledge growth can be modelled and supported using a GOF AI 
approach. Other successful examples of knowledge and learner modelling include 
constraint-based models which describe a given subset of a knowledge domain in terms of 
constraints and constraint satisfaction conditions which can be matched to student actions 
to guide the system’s adaptation of its feedback (Ohlsson & Mitrovic, 2007). Topic networks 
can be also used to represent specific areas of a subject domain taught, allowing the system 
and the students the flexibility to choose which topics should be covered next (Beale, 2013). 
On the other hand, models of learners’ emotional and motivational states during learning, 
often rely on probabilistic approaches (Conati et al. 2018; Porayska-Pomsta & Mellish, 2013; 
Mavrikis, 2008), with the corresponding Bayesian network representations typically being 
constructed by hand, based on limited, but fine-grained, observational and interaction data, 
rather than being machine learned. While offering a relatively high degree of inferential 
transparency, the disadvantage of knowledge-based systems is that they are cumbersome 
and time consuming to construct; they are by their very nature limited to small subsets of 
domains modelled; they may reflect practitioners’ theories about their own practices rather 
than the actual practices; and the data on which they operate may be inaccurate or 
incomplete, as they rely on directly observable teachers’ and learners’ behaviours – and 
these in turn may be difficult to detect and diagnose reliably. Any of these factors 
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individually or in combination may affect the educational efficacy of the GOF AI based 
systems. 
 
By contrast, ML carries substantial promise both in terms of reducing the effort required to 
specify knowledge ontologies and in being able to go beyond the knowledge we have 
ourselves, and in so doing (the questions of bias and correctness of the base models 
notwithstanding) – in driving more accurate decision-making than our own capabilities allow 
for. Here, one of the most exciting aspects of ML is that it can discover new associations in 
the world and predict future outcomes based on prior data in complex domains which may 
be otherwise hard for us to grasp and analyse efficiently. Recently, given growing availability 
and access to voluminous educational data (e.g., from MOOCs and commercial educational 
apps), these advantages of ML have been seized on in the context of learning analytics and 
educational data mining research (Baker, 2009; 2010; Macfadyen et al., 2014). As well as 
being very valuable in shedding light onto various relationships between learner behaviours 
and learning outcomes, these methods are increasingly used to underpin systems that aid in 
situ pedagogical decisions of teachers, for example through dashboards (Martinez 
Maldonado et al., 2014), i.e. reporting tools which offer teachers data and metrics related to 
learners’ activities at an individual student or group levels. Given the disadvantage of ML 
approaches is their lack of inferential transparency and explainability, there is also a growing 
tendency to combine ML and GOF AI approaches at different stages of system 
implementation and levels of functionality to compensate for each of those paradigms’ 
limitations (Li et al., 2011). For example, cognitive tutors described previously, utilise ML to 
learn any new problem-solving strategies employed by students as they interact with the 
systems, thus increasing their diagnostic flexibility and reducing both the effort and 
potential inaccuracies that are involved in constructing such systems.  
 

Cognitive Fidelity vs Computational Efficiency 

One critical difference between computational models employed in cognitive neuroscience, 
including EdN, and those used within AI, including in AIEd, is that the key criterion for the 
success of the latter is not whether they are able to model human brain exactly, but rather 
whether they can autonomously engage in decision-making, and/or semi-autonomously – in 
a contingently credible interaction with humans. The goal of such systems is not to replace 
the human and human decision-making (e.g. as driverless cars might do), but to enhance 
such decision-making either by offering insights that might be otherwise difficult for the 
human to gain without the help of technology, or by triggering some desired thinking and 
behaviour (e.g., Porayska-Pomsta & Rajendran, 2019). Hernandez-Orallo and Vold (2019) 
refer to the latter function of AI models as cognitive enhancers, which they propose can vary 
in terms of their autonomy and coupling with the human. For example, dashboards that 
offer learning analytics to teachers may be considered cognitive enhancers that are loosely 
coupled with humans, since the decisions that are made on the basis of the information 
given, and indeed whether such information is considered at all, are left entirely to their 
users. By contrast, Intelligent Tutoring Systems such as Cognitive Tutors, could be 
considered as relatively tightly coupled enhancers, since their decisions are autonomous 
and they impact directly on the course of their interactions with the users through accurate 
learner modelling, while also seeking to optimally compensate or enhance the learners’ 
skills, knowledge, and behaviour.  
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The emphasis on computational efficiency as opposed cognitive fidelity is a necessary 
compromise that, arguably, accompanies all AI models, of which AIEd models are a 
specialised subtype. The tension between cognitive fidelity and computational efficiency 
was always present in AI developments, leading to two conceptions of AI. The first is a 
general view of AI where the aim is to replicate humanly thinking and behaviour exactly, 
and which is presently still considered unattainable. The second is a narrow view where the 
aim is for an AI agent to act in a sufficiently humanly manner by emulating to some extent 
rational thinking and behaviour, given a set of known constraints and constraint satisfaction 
conditions that define the world within which such an agent operates, i.e., in an 
environment in which thinking/computation can be accomplished (Russell & Norvig, 1995, 
Davis et al., 1993). The kind of AI systems that are presently developed belong to the 
narrow AI category, where there is an explicit understanding that the AI models are neither 
exact replicas of the human brain, nor are they complete. Although from the EdN point of 
view, this lack of cognitive fidelity or completeness may be considered a limitation, in 
educational contexts, provided that the models lend themselves to being inspected and 
modified by the users, these seeming limitations can offer important benefits for learning 
and teaching. This is because such dependency requires an active effort from the users to 
engage in completing or correcting those models, which in turn relies on and further 
develops the users’ critical thinking and metacognitive competencies (Bull & Kay, 2016; 
Conati et al., 2018). The branch of the AIEd research which focuses on this affordance 
relates to the so-called Open Learner Models (OLMs), with research to date demonstrating 
how OLMs can be used both as a mirror by the learners to help them improve self-
monitoring and self-regulation skills (Azevedo & Aleven, 2013; Long & Aleven, 2013; 
Porayska-Pomsta & Rajendran, 2019), and as a magnifying glass by educational practitioners 
who want to gain a better understanding of their learners for the purpose of improving their 
pedagogy (Martinez Maldonado et al., 2014; Bull & Kay, ibid; Porayska-Pomsta, 2016). We 
consider and exemplify different forms of OLMs further in the following subsection.  

Open Learner Models (OLMs) 

OLMs are student models, i.e., representations of student cognitive and/or affective states, 
that allow users to access their content with varying levels of interactivity and control (Bull, 
1995; Bull & Kay, 2016). Originally, OLMs have been designed to improve model accuracy by 
enabling students to adjust the models’ diagnoses and predictions, if such were deemed 
inaccurate by the students. Over time, the use of OLMs revealed substantial educational 
potential in encouraging learners to self-assess, reflect and ultimately self-regulate, because 
engagement with such models requires the students to understand and evaluate their own 
decisions and behaviours. Different types of OLMs include models that are:  

(i) scrutable, i.e. users may view the models’ current evaluation of relevant 
student’s states and abilities;  

(ii) cooperative or negotiable, where the user and the system work together to 
arrive at an assessment of student performance;  

(iii) editable: users can change directly the models’ assessments and even the 
underlying knowledge representations at will.  
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In the cognitive tutors’ tradition, Long and Aleven (2016) designed a scrutable OLM to help 
students to self-assess their knowledge in order to share with the system the responsibility 
for selecting the next problem to work on. Their system employs similar domain knowledge 
representation and problem selection mechanism to those employed by the Cognitive 
Tutors, as described earlier. The system evaluates student’s problem-solving steps against a 
set of example solutions and based on this, using Bayesian Knowledge Tracing, it determines 
which knowledge components the student needs to learn (Aleven & Koedinger, 2013). The 
probabilities generated over the knowledge components are visualized for the students in 
terms of ’skill bars’ (Figure 3), which they can compare with their own self-assessments. In 
this approach, student self-reflection constitutes an explicit learning goal, which has been 
shown to be key in significantly improving learning outcomes for the students who used this 
OLM. 

 

  

 

 

 

Figure 3. Long and Aleven’s (2016) skills meter bars indicating the level of student skill 
mastery. 

 

An example of a negotiable model is offered by Mabbott and Bull (2006) who created an 
OLM that allows the learners to ‘persuade’ the system to change its assessment of their 
knowledge. To do so, the learners can register their disagreement with the system’s 
assessment and propose a change. At this point, the system will explain why it ’believes’ its 
current assessment to be correct and will provide evidence to support these beliefs, e.g. by 
showing samples of the learners’ previous responses that may indicate a misconception. If 
the learner still disagrees with the system, they have a chance to ’convince’ the system by 
answering a series of targeted test questions from the system, which keeps a detailed 
representation of the user on-task interactions and its assessments of the user’s 
understanding given their behavioural patterns and correctness /quality of their solutions.   

Basu et al. (2017) designed a fully editable OLM which allows students to construct models 
of their knowledge by exploring concepts, properties and relations between them in open 
ended exploratory learning environments. This OLM is underpinned with hierarchical 
representation of tasks and strategies (implemented as a directed acyclic graph) that may 
be needed to solve a problem. The system allows for the expression of a particular construct 
or strategy in multiple variations that relate to each other, which in turn gives the system an 
ability to assess both desired and suboptimal implementations of a strategy by the learner. 
Based on this, the system can analyse learners’ behaviours by comparing their action 
sequences and the contexts associated therewith against the strategy variants to offer 
targeted support when the users seem to flounder. This representation allows for a 
conceptual support to be given to the user at a fine-grained level of detail, e.g., low-level 
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objects description in terms of their properties, relations between them and temporal 
ordering of actions that could be performed on them. In turn, this allows the system to 
guide the user in editing the model through relatively simple step-by-step interfaces for the 
different modelling tasks, gradually building users’ confidence in their abilities, their buy-in 
to the system’s advice and prompts, ultimately significantly increasing the learning 
outcomes for the users (Basu et al., 2017).  

In the TARDIS system, we implemented a scrutable OLM, in the context of emotional self-
regulation in job interview simulations involving AI agents acting as recruiters. TARDIS 
collects evidence from the simulations, based on low-level signals such as the users gaze 
patterns, gestures, posture, voice activation, etc., and uses machine learning techniques to 
predict from this evidence the quality of behaviours known to be important for effective 
interviews, such as appropriate energy in the voice, fluidity of speech, and gaze 
management (Porayska-Pomsta et al., 2014). Figure 4 shows how the data are displayed to 
the user, with the pie charts referring to four qualities of interest such as energy manifested 
in the users’ interactions (which may indicate engagement), fluidity of the interaction 
(which may be indicative of user confidence), spatial extent which evaluates expansiveness 
of gestures (these may need to be controlled during a job interview) and overall activation 
(i.e., users initiations of interaction and responses to agents’ initiations). 

 

 

Figure 4. TARDIS scrutable OLM showing synchronised recordings of the learners 
interacting with the AI agents along with the interpretation of the learner’s low-level 
social signals such as gaze patterns, gestures, voice activation in terms of higher-level 
judgements about the quality of those behaviours, e.g., energy in voice. 

 

The model’s assessment over these behaviours is then visualised to the learner as shown by 
the pie charts in Figure 4, as a way to provide the users with a concrete and immediate basis 
for reflecting on how they may improve their verbal and non-verbal behaviours in 
subsequent interviews. A time-lined view of learner actions that the system detected and 
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interpretation of those actions is also given. This OLM provides a detailed basis for more 
nuanced discussion about learners’ job interview performance and specific behaviours with 
human practitioners than would otherwise be possible. The evaluation of this OLM showed 
significant improvements in key behaviours targeted, including the quality of the responses 
to interview questions, non-verbal behaviours such as gestures, voice modulation and eye 
gaze, as well as leading to learners’ decreased levels of anxiety and increased levels of self-
efficacy and confidence (Porayska-Pomsta & Chryssafidou, 2018). Interestingly, in line with 
existing OLM research, the accuracy of TARDIS’ diagnoses does not seem a pre-requisite of 
the success of the intervention. Indeed, some inaccuracies in the model may even be 
desirable, if the explicit goal of the interaction with an OLM is to provoke to student to self-
reflect, self-explain or argue with the system about its diagnosis. Here, the potential of 
OLMs as mirrors and as props for metacognitive competencies development is clearly 
apparent, providing a unique opportunity for EdN to study these competencies in a 
systematic and ecologically valid ways, for example by linking the idea of explicitly 
separating learners’ subjective experience from the observation of the behaviour and thus, 
through OLM turning such observation into a more objective, almost vicarious experience. 

Humanly AI and the social brain 

Another important question related to cognitive fidelity of the AI models that is of relevance 
to EdN is that related to the definition of the ‘sufficiently humanly behaviour’. In the 
broader context of AI, this question is central to progressing the state of the art in the field 
and one which has been asked since the idea of systems that both support and depend on 
an interaction with humans has emerged in the 1960s (e.g., Licklider, 1960; Englbart, 1962).  
In this context one of the more intriguing hypotheses is the uncanny valley hypothesis 
(Mori, 1970, 2005), which states that humanlike objects, for example some forms of robots, 
elicit our emotional responses, e.g., empathy, similar to those that are elicited in response 
to other humans. Although, the degree of the emotional responses to such objects tends to 
be proportionate to the degree of human likeness, beyond a certain degree of similarity and 
realism, such responses can suddenly become extremely negative (Misselhorn, 2009). Over 
decades, this hypothesis has led to substantial AI research investigating the questions of AI 
models’ socio-emotional and behavioural credibility in human-computer interaction and of 
the relationship between human users’ empathy towards and social affinity with 
technological objects that may be attributed some human qualities (e.g., Slater, 2006). AI 
researchers have focused on finding the necessary and sufficient human-like characteristics 
(their appearance as well as verbal and non-verbal behaviours) of AI agents in a variety of 
application contexts and with different users, including different educational applications 
(e.g., Moreno et al., 2001; Baylor & Kim, 2004), social interactions (e.g., Pelachaud & Andre, 
2010), and special needs interventions such as autism (e.g., Porayska-Pomsta et al., 2018).   
 
The questions of credibility relate to both the physical appearance and behaviour of the 
agents, as well as their seeming trustworthiness as experts in a given learning domain and 
as educational practitioners. For example, with respect to physical appearance of 
educational AI agents, Baylor investigated the impact of gender (female, male) and ethnicity 
(e.g., White, Black), role (e.g., expert, motivator, mentor), and realism (e.g., realistic, 
cartoon) of the agents on learning transfer, self-regulation and self-efficacy. Their results 
showed that students had greater transfer of learning when the agents were more realistic 
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and when they were represented non-traditionally (as Black versus White) when in the 
“expert” role. Many studies also suggest that when agents are perceived by the learners as 
less intelligent, this can lead to significantly improved self-efficacy, whereas the use of 
motivational messages, as employed through the motivator and mentor agent roles, can 
lead to enhanced learner self-regulation and self-efficacy (Baylor, 2004).  
 
Neuroscience research is also beginning to shed light on the apparent similarities between 
the neural processes that occur when we engage with other humans vs. when we interact 
with human like AI. Here the questions tackled also relate to the sufficiently humanly 
behaviour that is needed to trigger our attributing human intentionality, i.e., theory of mind 
(ToM) to AI (Howard-Jones, 2009). For example, an fMRI study by Krach et al. (2008) 
suggested that visual appearance is critical in increasing such attributions, showing 
increased activation in the participants’ brain regions that are associated with ToM (Figure 
6) the more a piece of technology appears to be human. Here the experimental conditions 
included a computer, a functional robot, an anthropomorphic robot, and a human – see 
Figure 5. While the study did not address the questions related to the uncanny valley 
hypothesis, namely whether and at what point increased realism may lead to deactivation 
of the ToM regions and occurrence of feelings of negativity towards hyper-realistic agents, it 
does suggest that investment in human-like qualities may be important to learners’ mental 
engagement with AIEd as tools for supporting learning. 
 
 

 
 
Figure 5. Four conditions examined by Krach et al. (2008). 
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Figure 6. Regions associated with ‘theory of mind’ grow more active as the appearance of a 
technological opponent becomes more human-like, even when it is clearly not human 
(Krach et al. 2008).  

However, more realistic agents may not be desirable in all learning contexts. For example, in 
the ECHOES project, which developed an interactive system for supporting social interaction 
skills acquisition by children with autism, a cartoonish agent was employed (Figure 7). Here, 
we placed the emphasis on creating a socially credible, but evidently non-human agent in an 
attempt to remove some of the social anxiety associated with autism, while at the same 
time exaggerating some of the features such as the agent’s eyes and emotional displays 
(e.g., surprise, happiness). The ECHOES agent proved to be an effective social partner to 
children leading to increases in their initiations of and responses to bids for social 
interaction during the use of the ECHOES environment (Porayska-Pomsta et al., 2018). 

The same types of cartoonish agents as used in ECHOES are presently employed in another 
project, called unLOCKE, where we investigated the impact of a computerised neuroscience 
intervention on primary school children’s ability to learn counterintuitive facts in maths and 
science (main intervention) and on their understanding of socially challenging scenarios 
(active control) (e.g., Wilkinson et al., in press). In both conditions, children observe agents’ 
actions: in the main intervention four agents are placed in a TV-like game show settings 
where they have to answer questions related to counterintuitive science and maths 
problems. Three agents act as contestants, whereas one agent acts as the show‘s host. 
Children first observe how the contestant-agents respond to the challenges posed to them 
by the host-agent, who also confirms which answer is a correct one. Following this 
observation phase, children can attempt some problems of their own. In the active control 
condition, the agents engage in social interaction with one another around key topics such 
as bullying, or social exclusion, before the child is asked to analyse the social scenarios they 
observe using targeted prompts from the system. In both ECHOES and unLOCKE, the 
computational modelling relates to agents’ behaviours, which must be contingent on the 
pedagogical goals of any given learning scenario, on the state of the world inhabited by the 
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agents (other agents, objects, etc.), and in the case of ECHOES – on the actions of the users 
on the environment. This is achieved through the application of GOF AI planning 
architecture, which responsible for managing the agents’ immediate reactions and 
deliberative actions, as well their emotional displays (Dias & Paiva, 2005).  

 

Figure 7. A child playing with the ECHOES agent through the multi-touch screen 
interface (Left). The agent points to a flower that it wants a child to pick and put in 
the basket in a bid for attention and interaction with the child (Right). 

Both ECHOES and unLOCKE facilitate vicarious engagement with the respective systems, 
with ECHOES further allowing children to imitate the agent’s actions within the environment 
and to engage in joint attentional activities with the agent. There is emergent evidence from 
EdN research supporting the value of both human-like technologies, which aligns with AI 
research to date, and of employing such technologies to facilitate vicarious learning such as 
facilitated in ECHOES and unLOCKE. Specifically, studies have shown that observing others 
performing actions causes the neural activation in the same cortical areas (the mirror 
neuron system activation) as those that occur when we are carrying out actions ourselves 
(Rizzolatti & Craighero, 2004). However, the mirror neuron activation seems to be restricted 
to human movement, suggesting that animation is most conducive to learning when it 
involves human movement (Tversky & Morrison 2002; Howard-Jones, 2009). What is not 
clear from these studies, and what might become an interesting area of study at the 
intersection of AIEd and EdN, is where the boundaries between credibly human and clearly 
non-human movement and behaviours lie, and how the different degrees of humanness can 
be used to support learning in different learning contexts and with different learner 
populations. Additionally, there is a scope for substantial research involving EdN methods 
which focuses on the neural activations of learners engaging in self-inspection and self-
regulation with the help of OLMs. 
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Conclusion 
We have presented two complementary approaches to learning and teaching that both 
employ computational methods. The first approach, building computational models of 
cognition, is analytical, in that it relies on developmental cognitive neuroscience theories to 
identify key components involved in education-relevant abilities. Modelling brings 
theoretical advances through clarity at the expense of simplification, and provides a 
platform to consider how the constraints of brain function impact cognition. The multiple 
components identified in the analytic approach hint at the true complexity of learning in the 
classroom, while the mechanistic understanding that is the goal nevertheless still requires 
pedagogic insights to achieve translation into classroom practices. 
 
The second AI approach demands a fuller picture of the learner, the domain to be learned, 
an appropriate pedagogy for teaching the domain, and ways communication can deliver 
those aims. As in the first approach, the net result is a push for explicitisation and 
clarification of theory. We saw a range of computational tools available to support teaching 
and learning, with less need that the computational systems are faithful to constraints of 
neurocomputation, but a much greater need that systems respect the reality of real-world 
learning situations. AI in education, in that sense, has the potential to act as a bridge 
between educational neuroscience research and real-world educational practices.  
 
Computational methods in cognitive science are one tool amongst many, a tool with 
strengths (rigour) and weaknesses (simplification). We need to ensure that the 
simplifications intrinsic in computational models do not impact on breadth of questions that 
are considered within educational neuroscience, in service of its ambition to utilise a 
mechanistic understanding of mind to achieve wider evidence-informed approaches to 
educational methods and policy making. 
 

 

 

 

  



 24 

References 
 
Aleven, V., & Koedinger, K.R. ( 2 0 1 3 ) .  Knowledge component approaches to learner 

modeling. In Design Recommendations for Adaptive Intelligent Tutoring Systems, 
volume 1 of Learner Modeling, pp. 165–182. US Army Research Laboratory, Orlando, 
Florida, R. Sottilare, A. Graesser, X. Hu, & H. Holden (eds.), 2013. ISBN 978- 0-
9893923-0-3. 

Aleven, V., McLaren, B M., Sewall, J., van Velsen, M., Popescu, O., Demi, S., Ringenberg, 
M., & Koedinger, K R. (2016) .  Example-Tracing Tutors: Intelligent Tutor 
Development for Non-programmers. International Journal of Artificial Intelligence in 
Education, 26(1):224– 269, March 2016.  ISSN 1560-4306.  doi: 10.1007/s40593-
015-0088-2. URL  

Azevedo, R., & Aleven, V. (eds). (2013). International Handbook of Metacognition and 
Learning Technologies, Springer International Handbooks of Education. 

Baker, R. (2010). Data mining for education, International Encyclopedia of Education 7(3), 
112-118. 

Baker, R., & Yacef, K. (2009). The state of educational data mining in 2009: A review and 
future visions. Journal of Educational Data Mining 1(1), 3-17. 

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding 
in a computational thinking-based science learning environment. User Modeling and 
User-Adapted Interaction, 27(1):5–53, March 2017.   ISSN 0924-1868.   doi:  10.1007/ 

Baylor, A., & Kim, Y. (2004). Pedagogical Agent Design: The impact of agent realism, 
gender, ethnicity, and instructional role, in Proceedings of the International 
Conference on Intelligent Tutoring Systems, pp. 592-603, Springer. 

Beal, C. R. (2013). AnimalWatch: An Intelligent Tutoring System for Algebra Readiness, in 
International Handbook of Metacognition and Learning Technologies, Springer 
International Handbooks of Education 26, DOI 10.1007/978-1-4419-5546-3_22. 

Blackburne, L. K., Eddy, M. D., Kalra, P., Yee, D., Sinha, P., & Gabrieli, J. D. (2014). Neural 
correlates of letter reversal in children and adults. PloS one, 9(5), e98386. 
doi:10.1371/journal.pone.0098386 

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict 
monitoring and cognitive control. Psychological Review, 108(3), 624-52. 

Botvinick, M., & Plaut, D. C. (2004). Doing without schema hierarchies: A recurrent 
connectionist approach to normal and impaired routine sequential action. 
Psychological Review, 111, 395-429. 

Box, G.E.P. & Draper, N.R. (1986). Empirical Model-building and Response Surface. John 
Wiley & Sons, New York, NY. 

Bull, S. (1995). ’Did I say what I think I said, and do you agree with me?’: Inspecting and 
questioning the student model, in Proceedings of the 7th World Conference on 
Artificial Intelligence in Education, 1995. 

Bull, S. & Kay, J. (2016). SMILI: a framework for interfaces to learning data in open learner 
models, learning analytics and related fields. International Journal of Artificial 
Intelligence in Education, 26(1):293– 331, Mar 2016.  ISSN 1560-4306.  doi:  
10.1007/s40593-015-0090-8. URL https://doi.org/10. 1007/s40593-015-0090-8. 

Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1-44. 



 25 

Chen L., Lambon Ralph, M. A., & Rogers, T. T. (2017). A unified model of human semantic 
knowledge and its disorders. Nat Hum Behav. 2017 Mar;1(3). pii: 0039. doi: 
10.1038/s41562-016-0039. Epub 2017 Mar 1. 

Conati, C., Porayska-Pomsta, K., & Mavrkis, M. (2018). AI in Education needs interpretable 
machine learning: Lessons from Open Learner Modelling, CML Workshop on Human 
Interpretability in Machine Learning (WHI 2018), Stockholm, Sweden. 

Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). “Intelligent tutoring systems.” In 
Handbook of Human-Computer Interaction, by M. G. Helander, T. K. Landauer and P. 
Prabhu. Amsterdam, The Netherlands: Elsevier Science. 

Cukurova, M., Luckin, R., Millán, E., & Mavrikis, M (2018). The NISPI framework: Analysing 
collaborative problem-solving from students’ physical interactions, Computers and 
Education, vol. 116, pp. 93-109, Pergamon 

Davis, R., Shrobe, H., Szolovits, P. (1993). What is knowledge representation? AI Magazine 
14(1), 17–33. 

Dehaene, S. (2003) The neural basis of the Weber–Fechner law: a logarithmic mental 
number line. Trends in Cognitive Sciences, 7, 145-147. 

Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The 
“neuronal recycling” hypothesis. In S. Dehaene, J.R. Duhamel, M. Hauser, G. Rizzolatti 
(Eds.), From Monkey Brain to Human Brain, (pp. 133-157). Cambridge, MA: MIT Press. 

Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number 
processing. Mathematical Cognition, 1, 83-120. 

Dias, J., & Paiva, A. (2005). Feeling and reasoning: A computational model for emotional 
characters. In: Progress in Artificial Intelligence. pp. 127–140. 

Elman, J. L. & McRae, K. (2017). A model of event knowledge. In Gunzelmann, G., Howes, A., 
Tenbrink, & T., Davelaar, E. (Eds.), Proceedings of the Thirty-Ninth Annual Meeting of 
the Cognitive Science Society (pp. 337-342). Austin, TX: Cognitive Science Society. 

Elman, J.L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett K. (1996). 
Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: 
MIT Press. 

Engelbart, D. C. (1962). Augmenting human intellect: a conceptual framework. Summary 
Report AFOSR- 3233, Stanford Research Institute, Menlo Park, CA.  

Filippi, R., Karaminis, T., & Thomas, M. S. C. (2014). Language switching in bilingual 
production: Empirical data and computational modelling. Bilingualism: Language and 
Cognition, 17(2), 294-315. 

Gopnik, A., & Bonawitz, E. (2015). Bayesian models of child development. WIREs Cogn Sci 
2015, 6:75–86. doi:10.1002/wcs.1330 

Haarmann, H., & Usher, M. (2001). Maintenance of semantic information in capacity-limited 
item short-term memory. Psychonomic Bulletin & Review, 8, 568-578. 

Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: 
Insights from connectionist models. Psychological Review, 106, 491–528. 

Harm, M. W., & Seidenberg, M. S. (2004). Computing the Meanings of Words in Reading: 
Cooperative Division of Labor Between Visual and Phonological Processes. 
Psychological Review, 111(3), 662–720. DOI: 10.1037/0033-295X.111.3.662 

Harm, M. W., McCandliss, B. D., & Seidenberg, M. S. (2003). Modeling the successes and 
failures of interventions for disabled readers. Scientific Studies of Reading, 7, 155–182. 



 26 

Hernandez-Orallo, J., & Vold, K. (2019). AI Extenders: The Ethical and Societal Implications of 
Humans Cognitively Extended by AI, Association for the Advancement of Artificial 
Intelligence. 

Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and 
context: A connectionist account of normal and disordered semantic cognition. 
Psychological Review, 125(3), 293-328. doi: 10.1037/rev0000094. 

Howard-Jones, P. (2009). Neuroscience, learning and technology (14-19), BECTA Report. 
Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., & Kircher, T. (2008). Can Machines 

Think? Interaction and Perspective Taking with Robots Investigated Via Fmri', PLoS ONE, 
3.7, e2597. 

Lewandowsky, S. (1993). The rewards and hazards of computer simulations. Psychological 
Science, 4, 236-243. 

Li, N., Cohen, WW., Koedinger, KR., & Matsuda, N. (2011). A machine learning approach for 
automatic student model discovery, Proceedings 4th International Conference on 
Educational Data Mining. 

Licklider, J. C. (1960). Man-computer symbio-sis. IRE transactions on human factors in 
electronics (1):4–11.  

Long, Y., & Aleven, V. (2013) Supporting Students’ Self-Regulated Learning with an Open 
Learner Model in a Linear Equation Tutor. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik 
(Eds.), Proceedings of the 16th International Conference on Artificial Intelligence in 
Education, AIED 2013, (pp 219-228), New York: Springer. doi: 10.1007/978-3-642-
39112-5_23. 

Mabbott, A., & Bull, S. (2006) Student preferences for editing, persuading, and negotiating 
the open learner model. In Proceedings of the 8th International Conference on 
Intelligent Tutoring Systems, ITS’06, pp. 481–490, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-35159-0, 978-3-540-35159-7. doi: 10.1007/11774303_ 48. 

Macfdyen LP., Dawson, S., Pardo, A., & Gasevic, D. (2014). Embracing big data in complex 
educational systems: The Learning analytics imperative and the policy challenge. 
Research & Practice in Assessment, 9, 17-28. 

Mareschal, D. & Shultz , T. R. (1999). Development of children’s seriation: A connectionist 
approach. Connection Science, 11(2), 149-186 

Mareschal, D. & Thomas M. S. C. (2007) Computational modeling in developmental 
psychology. IEEE Transactions on Evolutionary Computation (Special Issue on 
Autonomous Mental Development), 11, 137-150. 

Mareschal, D., Butterworth, B. & Tolmie, A. (2013). Educational neuroscience. Oxford, UK: 
Wiley Blackwell. 

Mareschal, D., Johnson, M., Sirios, S., Spratling, M., Thomas, M. S. C., & Westermann, G. 
(2007). Neuroconstructivism:  How the brain constructs cognition. Oxford: Oxford 
University Press. 

Martinez Maldonado, R., Kay, J., Yacef, K., & Schwendimann, B. (2014). An Interactive 
teachers’ dashboard for monitoring groups in a multi-tabletop learning, International 
Conference on Intelligent Tutoring Systems, 482-492, Springer. 

Mavrikis, M. (2008). Data-driven modelling of students’ interactions in an ILE, Educational 
Data Mining. 

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary 
learning systems in the hippocampus and neocortex: Insights from the successes and 



 27 

failures of connectionist models of learning and memory. Psychological Review, 102, 
419–457.  

McCloskey, M. (1991). Networks and Theories: The Place of Connectionism in Cognitive 
Science. Psychological Science, 2(6), 387–395. https://doi.org/10.1111/j.1467-
9280.1991.tb00173.x 

McLeod, P., Plunkett, K., & Rolls, E. T. (1998). Introduction to connectionist modelling of 
cognitive processes. New York, NY, US: Oxford University Press. 

Misselhorn, C. (2009) Empathy with Inanimate Objects and the Uncanny Valley, Minds & 
Machines (2009) 19:345–359 DOI 10.1007/s11023-009-9158-2.  

Moreno, R., Mayer, R E., Spires, H. A., Lester, J C. (2001), The Case for Social Agency in 
Computer-Based Teaching: Do Students Learn More Deeply When They Interact with 
Animated Pedagogical Agents? Cognition and Instruction 19(2), pp. 177-213, 
Lawrence-Erlbaum Associates, Inc. 

Mori, M. (1970). Bukimi no tani, Energy 7(4), 33–35, translated into English by K.F. 
MacDorman and T. Minato (2005). Proceedings of the Humanoids-2005 workshop: 
Views of the Uncanny Valley, Tsukuba, Japan. 

Mori, M. (2005). On the uncanny valley. Proceedings of the Humanoids-2005 workshop: 
Views of the Uncanny Valley, Tsukuba, Japan. 

O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., & Ketza, N. (2014). Complementary 
learning systems. Cognitive Science, 38, 1229–1248. DOI: 10.1111/j.1551-
6709.2011.01214.x 

Pelachaud, C., & Andre, E. (2010). Interacting with Embodied Conversational Agents, in 
Speech Technology, pp. 123-149, Springer Verlag. 

Plaut, D. C., McClelland, J. L., Seidenberg, M., & Patterson, K. E. (1996). Understanding 
normal and impaired word reading: Computational principles in quasi-regular 
domains. Psychological Review, 103, 56–115. 

Porayska-Pomsta, K. (2016). AI as a methodology for supporting educational praxis and 
teacher metacognition, International Journal of Artificial Intelligence in Education, 
Vol.26(2), 679-700. 

Porayska-Pomsta, K., & Bernardini, S. (2013). Learner Modelled Environments, in The SAGE 
Handbook of Digital Technology Research (pp. 443-458), doi: 
10.4135/9781446282229.n30 

Porayska-Pomsta, K., & Chryssafidou, E. (2018), Adolescents’ Self-regulation During Job 
Interviews Through an AI Coaching Environment, International Conference on Artificial 
Intelligence in Education, 281-285, Springer Cham. 

Porayska-Pomsta, K., & Mellish C. (2013). Modelling human tutors’ feedback to inform 
natural language interfaces for learning, International Journal of Human-Computer 
Studies, 71(6), pp. 703-724, Academic Press. 

Porayska-Pomsta, K., & Rajendran, T. (2019). Accountability in human and artificial 
intelligence decision-making as the basis for diversity and educational inclusion. In the 
Speculative Futures for Artificial Intelligence and Educational Inclusion, Springer 
Nature – AICFE Future Schools 2030 book series. 

Porayska-Pomsta, K., Alcorn, A. M., Avramides, K., Beale, S., Bernardini, S., Foster, M-E., 
Frauenberger, C., Pain, H. Good, J., Guldberg, K., Kea-Bright, W., Kossyvaki, L., Lemon, 
O., Mademtzi, M., Menzies, R., Rajendran, G., Waller, A., Wass, S., & Smith, T. J. 
(2018). Blending human and artificial intelligence to support autistic children’s social 
communication skills, ACM Transactions on Human-Computer Interaction, in press. 



 28 

Porayska-Pomsta, K., Rizzo, P., Damian, I., Baur, T., André, E., Sabouret, N., Jones, H., 
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