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We evaluate the potential of connectionist models of developmental disorders to offer insights into the
efficacy of interventions. Based on a range of computational simulation results, we assess factors that
influence the effectiveness of interventions for reading, language, and other cognitive developmental
disorders. The analysis provides a level of mechanistic detail that is generally lacking in behavioral
approaches to intervention. We review an extended program of modeling work in four sections. In the
first, we consider long-term outcomes and the possibility of compensated outcomes and resolution of
early delays. In the second section, we address methods to remediate atypical development in a single
network. In the third section, we address interventions to encourage compensation via alternative
pathways. In the final section, we consider the key issue of individual differences in response to
intervention. Together with advances in understanding the neural basis of developmental disorders and
neural responses to training, formal computational approaches can spur theoretical progress to narrow the
gap between the theory and practice of intervention.
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In this article, we consider the application of connectionist
networks to modeling interventions to remediate developmental
deficits, focusing on disorders of speech, language, communica-

tion and literacy. Recent connectionist models have made progress
in simulating patterns of acquired deficits by incorporating neu-
roanatomical constraints into their architectures. For example, in
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Ueno et al.’s (2011) model of the reading system, a dual pathway
model of reading was constrained to include the ventral and dorsal
anatomical routes linking primary auditory cortex to motor cortex,
and was able to simulate patterns of acquired deficits in word
repetition, word comprehension, and word naming. Chen, Lambon
Ralph, and Rogers’ (2017) model of the semantic system em-
ployed a spoke and hub architecture, constrained by the hetero-
modal integrative function of anterior temporal lobe, the hub
linking representations of concepts in different sensory and motor
systems, and was able to capture patterns of deficits in semantic
dementia and visual agnosia in picture naming (see also Hoffman,
McClelland, & Lambon Ralph, 2018). These models simulated
deficits by removing connections from certain regions or pathways
in their architectures guided by cognitive neuroscience data, and
were then able to simulate patterns of recovery by relearning in the
impaired model. In some cases, the effects of interventions were
considered by altering patterns of subsequent retraining (e.g.,
Plaut, 1996, 1999). Modeling of developmental disorders, how-
ever, is less advanced, to date mainly focusing on single network
models of individual abilities. Nevertheless, because such models
focus on mechanisms of change as a cause of disorders, they offer
a good foundation to consider interventions.

Developmental disorders differ from acquired disorders, in that the
cause of the deficit is not removal of structures supporting established
functionality but a developmental process that occurs under atypical
constraints. The developmental process is characterized by complex
and interacting cascades, by effects of timing, and by plasticity that
affords opportunities for compensation (Karmiloff-Smith, 1998,
2009; Thomas & Karmiloff-Smith, 2002; Woollams, 2013). Over 30
years, a range of developmental connectionist models has advanced
explanations for behavioral deficits in disorders such as dyslexia,
developmental language disorder (DLD), autism, and attention-defi-
cit/hyperactivity disorder (ADHD) (see Mareschal & Thomas, 2007;
Thomas, Baughman, Karaminis, & Addyman, 2012; Thomas &
Karmiloff-Smith, 2003a, for reviews). Having established this foun-
dation, some authors foresaw an influential role for connectionism in
intervention research. Daniloff (2002, p. viii) argued that connection-
ism “will . . . form the backbone of much of language therapy in the
near future,” whereas Poll (2011, p.583) argued that “insights from
connectionist research on the acquisition of early morphology and
syntax can provide theoretical guidance for language intervention.”
Despite the enthusiasm, this potential has yet to be realized, with very
few models of developmental deficits being extended to address
behavioral interventions (see Best et al., 2015; Harm, McCandliss, &
Seidenberg, 2003, for exceptions).

One should not see this as a failure of connectionist approaches
per se. The gap between theories of deficit and theories of inter-
vention is a more general phenomenon (see e.g., Michie & Prest-
wich, 2010). To take one example, developmental disorders of
language, it has been argued that despite extensive theories about
the causes of behavioral deficits, such theories have played a
relatively small role in the intervention practices of speech and
language therapists; and indeed, theories of treatment have often
developed relatively independently of theories of deficit (Law,
Campbell, Roulstone, Adams, & Boyle, 2008). There are multiple
reasons for the gap. These include (a) the complexity of the
intervention situation, which involves treatment of the whole child
via a social interaction with the therapist, and where the techniques
employed are often dependent on the characteristics of the indi-

vidual child, their response to intervention, and the therapist’s
experience and intuitions; (b) the diverse real-world constraints on
interventions, including resources like time and cost; (c) the pri-
mary focus of intervention on behavioral outcomes, which do not
in themselves necessitate an understanding of cause; (d) frequent
lack of an evidence-based consensus on the most effective treat-
ment for a given deficit; (e) the fact that children often do not have
a single ‘deficit’ either behaviorally or in terms of underlying
mechanisms; and (f) even when a theory of deficit exists, the
difficulty of moving straightforwardly from that theory to a pre-
diction of best treatment. As Byng (1994) argued, although theo-
ries of deficit are a necessary precursor to developing interven-
tions, “simply having a detailed analysis of the deficit does not by
itself suggest the formulation of specific therapeutic procedures to
effect change” (p.270). What is needed is a theory of intervention.

In what follows, we review contributions from existing connec-
tionist models and our own work to assess whether any general
principles of intervention can be identified from this approach. The
following broad principles will emerge: the exact nature of the com-
putational deficit matters for the success of intervention, as does its
location in more complex architectures; the timing of the intervention
matters, and its content with respect to the target behavior; computa-
tional methods have not revealed ways to trigger new engagement of
compensatory mechanisms; as yet relatively unexplored are the im-
plications of dosage, duration, intensity and regimes of behavioral
interventions, and how to ensure both generalization beyond training
items and persistence of intervention effects. In the following sec-
tions, we characterize the nature of the intervention process, to estab-
lish the challenge of building a computational model of how this
process may act on cognitive mechanisms; we summarize how de-
velopmental disorders are captured within connectionist approaches;
and we outline two previous models of interventions, for dyslexia and
for word-finding difficulties.

The Intervention Process: The Example of Behavioral
Interventions for Developmental Disorders

of Language

Intervention is a broad term that encompasses a wide range of
activities. One definition, in the context of improving the language
skills of children with speech, language, and communication
needs, describes an intervention as “an action or technique or
activity or procedure (or indeed combinations of these) that re-
flects a shared aim to bring about an improvement, or prevent a
negative outcome . . . this can also include the modification of
factors that are barriers or facilitators to change and the modifica-
tion of an environment to facilitate communication development”
(Roulstone, Wren, Bakopoulou, & Lindsay, 2012, p. 327). Roul-
stone et al. identify several terms that are sometimes used inter-
changeably, including treatment, therapy, intervention, and reme-
diation.

One principal determining factor influencing choice of interven-
tion method is the child’s age. Implicit techniques are employed
with younger children, whereas explicit techniques are frequently
employed with older children (Law et al., 2008; Stokes, 2014). For
younger children (less than 6 years), the main aim is skill acqui-
sition. Techniques are informal and naturalistic, with implicit goals
and methods embedded in child-directed learning contexts. For
older children (more than 6 years), intervention also targets meta-

2 THOMAS ET AL.



cognitive abilities and the development of compensatory strate-
gies. There is greater use of formal methods, employing explicit
goals and instruction in a therapist-directed learning context. Al-
though there is a general view that targeting causal processes early
in disordered development may be more effective than waiting
until outcomes are established (Wass, 2015), systematic evalua-
tions of timing-of-intervention effects are less common. Important
dimensions of the intervention method include the precise nature
of the intervention itself; who delivers the respective components
of the therapy (e.g., a speech and language therapist [SLT], an SLT
assistant, a teaching assistant, teacher, parent, or a computer); if the
therapy is delivered one-to-one, or in a group; and the dosage of the
intervention, including intensity and duration (Ebbels, 2014).

To give a concrete example of an intervention in a specific
domain, Seeff-Gabriel, Chiat, and Pring (2012) evaluated an in-
tervention to improve performance in producing regular English
past tenses for a 5-year-old child with speech and language diffi-
culties. The intervention was delivered one-to-one by an SLT, with
carryover from the mother and the school. Facilitation methods
were used, including modeling and elicitation, to help the child
produce the correct past tenses, combined with visual symbols to
provide metalinguistic support. The intervention dose was 30 min
a week for 10 weeks with the SLT for a total of 5 hr, plus the
additional input from the mother and school. This pattern is rep-
resentative of a single block of intervention: in a survey of over
500 SLTs in the U.K., Lindsay, Dockrell, Law, Roulstone, and
Vignoles (2010) reported the most common frequency of delivery
of a language therapy was once a week for 6 weeks or more, with
42% asking teachers and parents to deliver the intervention more
frequently between visits to increase the dosage. Blocks may be
repeated. This typical dose and duration can be contrasted with the
much larger dosages sometimes used with other developmental
disorders, for instance to address the wider sociocommunicative
deficits in autism. In one form of the early intensive behavioral
intervention (EIBI), intervention begins by 2 years of age, with a
range of 20 to 40 hr per week across one to four years of the child’s
life, for a range of intervention dose of between 1000 and 8000 hr
(Eikeseth, 2009; Smith, 2010).

Children can vary widely in their response to interventions.
Apart from the age of the child, other characteristics are relevant
to intervention outcome, including the severity of the developmen-
tal deficit and the presence of other comorbid deficits (Ebbels,
2014). The relationship between dosage and the effect size of the
behavioral improvement produced by the intervention also varies,
and depends on the target ability. For example, Lindsay et al.
(2010) summarized meta-analysis data to indicate that for inter-
ventions targeting phonology, intensive interventions were more
effective than those of long duration; for those targeting syntax,
interventions of long duration were more effective than short
intensive ones; for vocabulary, long duration was important but
not intensity—children did better with short bursts over an ex-
tended time. In a well-controlled study of a grammar treatment for
5-year-olds with DLD, Smith-Lock et al. (2013) found that the
same dose of 8 hr was more effective delivered weekly over 8
consecutive weeks than daily over 8 consecutive days. Differences
in optimal regimes presumably depend on the functional plasticity
of the underlying mechanisms, including time for consolidation
and opportunities for practice.

Approaches vary as to whether the primary aim of intervention
is to remediate the deficit or to encourage development of potential
compensatory strengths. To give an example, word-finding diffi-
culties (WFD) represent a developmental vocabulary deficit where
children struggle to produce words that they can nevertheless
comprehend. WFD is viewed as a heterogeneous disorder, with
possible causes either in phonological access or impoverished
semantic representations (Best, 2005; Faust, Dimitrovsky, & Da-
vidi, 1997). In a survey, Best (2003) reported that SLTs listed
phonological awareness difficulties as co-occurring with WFD
46% of the time, whereas semantic problems co-occurred only
13% of the time. However, intervention approaches that targeted
semantics were used more frequently than those that targeted
phonology (79% of the time compared with 54%). In this case,
therefore, SLTs often sought to buttress areas of strength within
the child to improve word-retrieval skills.

The order of targeting skills within a domain may also be
important. For example, in the usage-based approach to remediat-
ing developmental problems in syntax, grammatical structures are
targeted in the same order that they develop in typically develop-
ing children (e.g., Riches, 2013); that order of acquisition reflects
the interaction between the challenges of the particular domain and
the constraints of developmental mechanisms.

A key question is which intervention the therapist should choose.
The decision is influenced by multiple factors. A key factor, of course,
should be the intervention’s effectiveness. However, Roulstone et al.
(2012) noted that evidence for effectiveness incorporates clinical
experience or local evaluations, in addition to research evidence.
Roulstone et al. identified several other factors influencing interven-
tion choice, including reference to underlying theoretical positions,
and pragmatic reasons related to efficiency, accessibility, popularity,
and cost. Other researchers have taken a wider perspective on the
factors influencing the design and success of interventions aiming to
change behavior. For example, Michie and colleagues (e.g., Michie,
van Stralen, & West, 2011) constructed a framework that incorporates
not just the internal cognitive mechanisms able to deliver behavioral
change (which they termed capability), but also motivation and op-
portunity to change. The framework identifies environmental influ-
ences and structures, such as resources and policy, which operate as
constraints on or incentives for success.

There are two important dimensions in the evaluation of interven-
tions. The first is the extent to which the intervention generalizes to
other items or skills beyond those targeted in the intervention itself.
The second is the persistence of the benefits of intervention after the
intervention has ceased. Using our example study of Seeff-Gabriel et
al. (2012) that targeted English past tense, the 5-hr intervention was
found to generalize to untrained regular verbs but not to other irreg-
ular verbs, while progress was maintained at follow-up 8 weeks later.
Generally, achieving generalization and persistence of interventions
has proved challenging. For example, in her review of interventions
for grammar difficulties in school-age children, Ebbels (2014) con-
cluded that follow-up generally shows that the progress produced by
the intervention is maintained, but does not prompt acceleration in
development after the intervention has ceased. The gains are retained
but no further gains are stimulated. Bailey, Duncan, Odgers, and Yu
(2017) identified the diminishing effect of an intervention after its
cessation (so-called fade-out) as a characteristic of many interventions
targeting cognitive and socioemotional skills and behaviors.
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Other important factors include: (a) the child preferences (e.g.,
a child’s willingness to work on target A but not B); (b) parental
involvement (what are appropriate activities for home practice to
maximize dose); (c) context (e.g., selecting vocabulary items to
mirror those currently being taught in the school curriculum); and
(d) outcome of intervention (such that the therapist may modify
targets, methods, and feedback according to the response to inter-
vention).

Lastly, even if an intervention has been shown to be effective,
unless its key active ingredient has been understood, it is not
guaranteed that the effect will be similar when applied to new
children, when delivered by less expert practitioners, or when
adapted to new contexts. Identification of the active ingredient in
turn is facilitated by comparison to a control group whose treat-
ment differs only in the active ingredient. And this in turn requires
a theory about how the intervention remediates the deficit or
supports a compensatory strategy.

In summary, this concrete example of interventions for devel-
opmental disorders of language illustrates the complexity of the
process and the multiple factors involved. Interventions involve
activities to improve developmental outcomes in children, out-
comes are variable depending on the characteristics of the child
and therapist, both the design and the dosage of the intervention
are important for outcome, and outcomes need to be evaluated
against key criteria of (a) generalization to other items or skills
beyond those targeted in the intervention itself and (b) mainte-
nance of gains once the intervention has ceased.

Connectionist Models of Interventions

How Disorders Are Simulated: Monogenic Versus
Polygenic Approaches

In theory, the recent neuroanatomically constrained connection-
ist models of the language system (Chen et al., 2017; Ueno et al.,
2011) lend themselves readily to simulating developmental defi-
cits, via initial restrictions to the pathways or mechanisms taken to
underlie a given behavior. For example, Seidenberg (2017) sum-
marized recent cognitive neuroscience hypotheses that develop-
mental dyslexia may be the result of four types of deficit: anom-
alies in myelinization affecting the speed and reliability of signal
transmission within and between reading/language areas of the
brain, neuronal hyperexcitability within areas, anomalies of neural
migration impacting the functionality of neural networks, and
increased variability/noise in neural representations impacting the
functional connectivity between regions of the reading network
and the ability of the system to benefit from learning experiences
(see also Hancock, Pugh, & Hoeft, 2017). Much of the existing
work on developmental disorders, however, has focused on con-
nectionist models of individual mechanisms acquiring single target
behaviors. In this latter work, a distinction can be drawn between
monogenic and polygenic models of disorders.

In a single network model, changes in behavior are the result of
experience-dependent alterations to the structure of the network,
caused by its interaction with a learning environment with partic-
ular informational content. Artificial neural networks have intrin-
sic constraints that affect what input–output mappings they can
learn and how quickly. These constraints include properties such

as the number of internal (hidden) units, the pattern of connections
between units, the rate at which connection strengths change in
response to experience, and the way external or environmental
inputs are encoded for processing. Models of developmental def-
icits propose that these constraints are atypical in some children,
deflecting developmental trajectories outside the normal range of
variation (Thomas & Karmiloff-Smith, 2003a, 2003b). For in-
stance, in an early model of developmental dyslexia, the deficit
was simulated by attempting to learn the mappings between or-
thography and phonology in a model with too few hidden units
(Seidenberg & McClelland, 1989); in a model of autism, overde-
tailed categories were simulated by increasing the number of
hidden units in a semantic network (Cohen, 1994).

The Seidenberg and McClelland model of dyslexia (1989; see
also Harm & Seidenberg, 1999; Plaut, McClelland, Seidenberg, &
Patterson, 1996) illustrates what might be called the monogenic
approach. Connectionist models usually have several free param-
eters, such as the number of internal or hidden units, the learning
rate, and the momentum. Values for these parameters are deter-
mined so that the model captures the trajectory of typical devel-
opment. In the disordered case, just one parameter is set to a
different value. The disorder, then, has a single cause, against a
background of very small or zero variation in all other computa-
tional parameters across individuals (Thomas, 2003).

More recent models have adopted a polygenic approach (e.g.,
Thomas, Forrester, & Ronald, 2016; Thomas & Knowland, 2014;
Thomas, 2016a). Individual variation in the development of cog-
nitive abilities is viewed as arising from the combined influence of
small variations in many neurocomputational parameters, includ-
ing those involved in the construction, activation dynamics, adap-
tation, and maintenance of network architectures. The approach
involves simulating development in large populations of individ-
uals. The cumulative effect of many small contributions produces
a normal distribution of the development of behavior in the pop-
ulation, against which a normal range of variation can be defined,
and cases of developmental delay identified (Thomas, 2016b).
Disorders are thus viewed as the lower tail of a continuous distri-
bution of developmental variation in a population.

The monogenic and polygenic approaches are not mutually
exclusive. For example, Thomas and colleagues demonstrated how
autism might combine two groups, monogenic cases with a genetic
mutation causing a given neurocomputational parameter to take up
extreme values, and polygenic cases with the same parameter
falling in the upper normal range but having its effect on behavior
amplified by a combination of risk factors that vary across the
whole population (Thomas, Davis, et al., 2016; Thomas, Knowl-
and, & Karmiloff-Smith, 2011; see Leblond et al., 2019, for recent
genetic results). Furthermore, interaction of a monogenic cause
and population-wide polygenic individual differences can give rise
to apparent subgroups within the developmental disorder despite it
having a single pathological cause: individual differences that
produce small effects normally can be exaggerated by the atypical
parameter, causing divergent manifestations of the disorder
(Thomas, Davis, et al., 2016; Thomas, 2016b).

How Interventions Are Simulated

Where a developmental deficit is identified in a child, it is
presumed that naturalistic experience (or typical educational ex-
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perience) has not been sufficient to enable the emergence of
age-appropriate behaviors. In a single network model, two types of
intervention are suggested: the additional of new information to
the structured learning environment (in simulation terms, new/
replacement patterns in the training set); or manipulations to the
computational properties of the system (equivalent, say, to phar-
macological treatments, transcranial magnetic stimulation, or neu-
rofeedback). In some types of models, changes in computational
properties might subsequently serve to alter the system’s sampling
of its learning environment (such as in reinforcement learning
models; e.g., Richardson & Thomas, 2006). In a model that sim-
ulates a range of behaviors in a larger architecture, such as in a full
reading system, the possibility exists not only of intervening to
remediate atypical mechanisms/pathways, but also to exploit path-
ways without atypical processing constraints. As we saw previ-
ously, actual interventions vary as to whether they target remedia-
tion of deficit or support of compensatory strengths, perhaps
depending on the severity of the deficit (Woollams, 2013). How-
ever, the exact nature of the interaction between processing com-
ponents may be important in understanding the effects of either
type of intervention.

How could one select further training items—an intervention
set—for an atypically developing network, which would be more
successful in driving development than natural experience? The
statistical learning perspective of which connectionism is a part
has generated a growing understanding of environmental factors
that produce stronger or weaker learning in typical development
(Borovsky & Elman, 2006; Gomez, 2005; Onnis, Monaghan,
Christiansen, & Chater, 2005). This includes the importance of
factors such as the frequency of training items, their variability,
and the provision of novelty in familiar contexts. For example, one
heuristic that arises from this approach is that to improve acqui-
sition of compositional domains, where concepts are made up of
different combinations of the same primitives, the system should
be exposed to the component primitives, either in isolation or in
many different combinations (see, e.g., Fey, Long, & Finestack,
2003). This also encourages subsequent generalization to novel
instances. Potentially, these kinds of lessons can provide guidance
on how to design intervention sets to achieve the best behavioral
outcome for a model with atypical computational constraints.
However, this would be to assume that an understanding of the
experiences that improve or hinder learning in typically developing
systems is informative about how to influence developmental
outcomes in cognitive systems with atypical constraints (an as-
sumption that drives, for example, the usage-based approach for
grammar deficits; Riches, 2013). If principles of typical develop-
ment are a guide, connectionist approaches to language acquisition
highlight several factors (Poll, 2011): that the structure and quan-
tity of the input is important in driving development, that language
development does not occur through passive exposure but via
experiences related to the child’s own expectations, and that lan-
guage development concerns learning the relationship between
language form and language meaning so that contextual cues
which narrow the hypotheses will aid learning. However, it re-
mains to be demonstrated in implemented models that the factors
producing best development in typical models also hold for those
with atypical processing properties.

Cognitive computational models point to an important distinc-
tion between two types of behavior in evaluating interventions.

The first is performance on the training set, that is, the range of
experiences the system encounters in its structured learning envi-
ronment. The second is performance on a generalization set, that
is, items which are novel to the system but which bear similarity
to those with which it has experience. This echoes the concern in
actual interventions on whether the intervention generalizes to
other items or skills beyond those targeted in the intervention
itself. Computational systems with a so-called inductive bias
(Mitchell, 1997) can take advantage of their existing knowledge to
produce responses to novel inputs. If—externally, as model-
ers—we stipulate that the structured learning environment in fact
contains some underlying regularity or function, we can assess the
generalization performance of a system depending on whether it
has extracted this underlying function from its training examples,
and is then able to apply it appropriately to novel items. In models,
the distinction between training and generalization is important
because developmental deficits may operate differentially across
performance on the training set and the generalization set, because
actual interventions are often assessed specifically on their ability
to produce generalization beyond the treated items, and because
interventions can be chosen which differentially target training set
or generalization performance.

Two previous models have given serious consideration to the use of
models of atypical development (respectively, in dyslexia and in
word-retrieval difficulties) to evaluating potential interventions. Harm
et al. (2003) extended the triangle model of reading (Harm & Seiden-
berg, 1999; Plaut et al., 1996; Seidenberg & McClelland, 1989) to
address an apparent paradox that, although a phonological deficit is
often viewed as the primary cause of developmental dyslexia, inter-
ventions that target spoken language (phonology) alone are relatively
ineffective at remediating reading deficits once a child has learnt to
read. Instead, interventions to facilitate reading aloud need to combine
work on phonology and on decoding, that is, learning the mapping
between print and sound (Bus & van Ijzendoorn, 1999). Harm et al.’s
(2003) model of reading involved a phonological component, which
first learned a lexicon of English words. An orthographic component
then provided representations of the written forms of words, which
had to be associated with the existing phonological representations.
Dyslexic versions of the model were produced by applying atypical
constraints to the phonological component, which impacted on its
initial phase of acquisition. Specifically, prior to training, 50% of the
connection weights were set to and held at zero, and weight decay was
applied to the remaining weights, thereby limiting the maximum
magnitude that they could reach during training. Before reading
acquisition commenced, phonology was atypical. The outcome of
reading acquisition was a system with a particular deficit in its
nonword reading, that is, its generalization of reading to novel forms.
Such a deficit has been termed phonological developmental dyslexia
(Castles & Coltheart, 1993).

Harm et al. (2003) then compared two interventions, each applied
at two different points in training. One intervention simply alleviated
the phonological deficit—unfroze the 50% of weights and removed
weight decay. One could view this as an intervention that directly
targeted neurocomputational properties. The second intervention
added new items to the training set, to simulate a particular behavioral
intervention (the Word Building Intervention; McCandliss, Beck,
Sandak, & Perfetti, 2003). This took the form of extra lessons on an
ordered sequence of words each of which differed by changing or
moving only one grapheme (e.g., sat, sap, tap); where the model made
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an error, extra training was given on the individual component
grapheme-phoneme mappings of a word (for “sat,” s ¡ /s/ in first
position, a ¡ /a/ in second position, etc.). Both interventions pro-
duced benefits to nonword reading, albeit without fully remediating
the deficit to the levels observed in the typically developing model.
The timing of intervention was also important. Alleviating the pho-
nological deficit alone only showed benefits when applied early in
training, whereas the simulated behavioral intervention that targeted
decoding showed benefits across training. The explanation for this
age-related effect, paralleling the observed empirical data, was that
once the network began to learn mappings between orthography and
impoverished representations of phonology, these were hard to undo
even if phonology was remediated later on. An apparent sensitive
period for remediation by training phonology alone, therefore, was
explained by entrenchment: the difficulty of resetting inappropriately
configured connection weights (Thomas & Johnson, 2006). Viewing
Harm et al.’s (2003) model as representing two components in the
larger reading architecture (Ueno et al., 2011), these timing effects
speak to the importance of understanding the developmental interac-
tions between multiple components with the architecture.

In this model, then, the initial developmental deficit was mainly in
generalization rather than performance on the training set. The deficit
was remediated by showing the network the component parts of
holistic representations (in line with the heuristic identified in statis-
tical learning approaches) through the particular sequence of presen-
tation of items in the lesson, and the addition of new information to
the training set in the form of individual grapheme-phoneme corre-
spondences. Lastly, there was a contrast between an intervention that
directly targeted computational properties, and a behavioral interven-
tion, which added something new to the training set and/or changed
the frequency distribution within the training set.

The second model by Best et al. (2015) explored interventions for
children with word-finding difficulties (WFD). Naming was imple-
mented as the activation of a semantic representation of the word’s
meaning activating its phonological form. Developmental deficits in
productive vocabulary may be caused in at least two ways: by im-
pairments in the semantic representations driving naming, or by
impairments in accessing phonological output forms. Evidence sug-
gests remediation of both semantic and phonological knowledge can
produce benefits for these children (Best et al., 2017). The connec-
tionist naming model had two components: a semantic component
and a phonological component, each of which underwent its own
developmental process to establish its internal representations; and
two pathways to learn the mappings between these representations as
they developed, from semantics to phonology to simulate naming, and
from phonology to semantics to simulate comprehension. Constraints
applied to either of these components, or to the pathways between
them, produced developmental naming deficits. The model was
used to predict the outcome of interventions on two individual
6-year-old children diagnosed with WFD. Two atypical models
were calibrated to resemble the developmental profiles of the
individual children, according to measures of the children’s
phonological knowledge, semantic knowledge, naming, and
comprehension abilities. The model manipulations involved
removing connections, reducing the number of hidden units, or
altering the activation dynamics of the simple processing units,
either in the components or the pathways, but always prior to
training.

The individual models were then given either a semantic or a
phonological intervention. The semantic intervention involved addi-
tional training for the semantic component to improve its internal
representations, whereas the phonological intervention involved ad-
ditional training for the phonological component. The interventions
were interleaved with the normal training regime for vocabulary
development. The result was a prediction for which type of interven-
tion would work best for each child. The model predictions were then
tested in reality by giving each child both a semantic and a phono-
logical intervention in turn (one session of 30 min per week for 6
weeks, for a total of 3 hr for each intervention type, and a 6-week
wash-out period between interventions). It was then determined
which intervention improved naming skills more. For one child, the
model’s prediction was correct (only the phonological intervention
benefited naming performance); for the other child it was not (the
model predicted both interventions would work; the child only ben-
efited from the semantic intervention).

In this model, a behavioral intervention was again simulated by
modifying the training set, here altering the relative amount of training
on different components of the system, but without the addition of
new information. Intervention success was measured against perfor-
mance on the training set, although the intervention occurred only on
a subset of the full training set. The model focused on differential
effects of intervention type and did not report whether deficits were
fully remediated in either case.

Table 1 summarizes some of the key concepts identified in the
introduction.

Outline of Modeling

We review an extended program of modeling work (see author
note), in four sections. In the first, we consider long-term outcomes.
Developmental disorders are diagnosed in childhood, when a child is
flagged as not meeting age-appropriate performance expectations.
Computational models allow consideration of the long-term out-
comes, if these systems are left to develop without interventions. We
ask: (a) in the absence of intervention, what compensatory outcomes
can be reached? And (b) do some early delays resolve, and if so under
what conditions? In the second section, we address methods to reme-
diate atypical development in a single network. We consider (a) where
the disorder arises through insufficient early stimulation of the target
system; (b) how to choose better training items to achieve learning in
a system with atypical processing properties; (c) how better perfor-
mance can be achieved from an atypical network by targeting im-
provement of its input and output representations; and (d) how inter-
ventions might instead alter the computational properties of the
learning system. In the third section, we address interventions to
encourage compensation via alternative pathways. In the final sec-
tion, we consider the key issue of individual differences in response to
intervention.

Computational Modeling

Simulating the Long-Term Outcome of Atypical
Development Without Intervention

Compensated outcomes. An implemented model of a devel-
opmental deficit provides the foundation to investigate different
possible interventions applied in childhood. But the modeler can
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also refrain from intervening, and use the model to predict the
ultimate developmental outcome. For some computational limita-
tions, sufficient exposure to the training set eventually permits
performance to reach the normal range on this set. However, close
inspection of these networks indicates that the underlying process-
ing itself has not normalized. This can be demonstrated by observ-
ing a persisting deficit on generalization. Such an effect was
observed in a connectionist model of English past tense formation
simulating children with DLD.

The model of Thomas (2005) explored the theoretical proposal
of Ullman and Pierpont (2005) that children with DLD might have
a particular deficit in morphosyntax because of a more general
deficit in their procedural memory systems. The so-called proce-
dural deficit hypothesis addressed the observation that children
with DLD often exhibit greater impairment in grammar develop-
ment than vocabulary development. According to the hypothesis,
the disparity stems from a differential reliance of the normal
language system on two separate, more domain-general memory
systems: grammar development on the procedural memory system,
whose characteristics are slow acquisition, fast automatic execu-
tion, and sequence processing, and vocabulary development on the
declarative memory system, whose characteristics are parallel pro-
cessing and slow recall. Notably, the hypothesis proposed a central
role for compensation in explaining observed behavioral impair-
ments in DLD: the profile of language skills is a consequence of
the procedural system’s suboptimal attempts to acquire the struc-
tural aspects of language combined with the attempts of the de-
clarative memory system to compensate for this shortcoming
through lexical strategies.

Thomas (2005) explored this idea with a model of English past
tense acquisition in which the production of phonologically en-
coded past tense forms at the output was driven by integrating
lexical-semantic and phonological information about the verb pre-
sented at the input (Joanisse & Seidenberg, 1999). DLD was
simulated as a monogenic disorder, altering the activation function
in the internal processing units prior to training to decrease their
discriminability, in line with more recent neural noise accounts of
developmental language deficits (Hancock et al., 2017). Unit dis-
criminability was reduced such that units were less able to make
large changes in their output for small changes in their input,
implemented by reducing the temperature parameter in the sig-
moid activation function from 1 to 0.25. This impaired the net-
work’s ability to form sharp categorical boundaries in its internal
representations. Figure 1 demonstrates the match of model data to
empirical data in a past tense elicitation task for children of 10–11

years of age, either with or without DLD. As well as capturing the
profile of reduced accuracy, the model captured a key compensa-
tory feature identified by Ullman and Pierpont in the inflection of
regular verbs in children with DLD: increased frequency effects
(2005; see van der Lely & Ullman, 2001). Ullman and Pierpont
took these frequency effects to be a key hallmark of the operation
of declarative memory rather than procedural memory and to
reflect its unusual involvement in morphosyntax in DLD. The
connectionist model also captured the compensatory hallmark. In
the model, it was instantiated as a greater role for lexical infor-
mation in driving past tense formation, rather than learning the
phonological regularities relating base and inflected verb forms
that capture the past tense rule in the emergentist account of
acquisition. Removing lexical-semantic input in the DLD model
impaired regular verb performance, but did not in the typically
developing model.

Figure 1 now shows what happened when the atypical model
was allowed to run to its adult state. Performance on the training
set, on both regular and irregular verbs, reached ceiling. Notably,
however, there was a residual deficit on generalization, the exten-
sion of the regular past tense rule to novel forms. The model, with
its atypical processing properties, had not managed to extract the
general function within the training set, but with enough exposure
to the training set, had eventually managed to produce normal-
looking behavior on that set. Even in the adult state, the atypical
network relied more on lexical information at input to drive its
inflections.

Reducing the discriminability of processing units particularly
impacted on generalization because it affected the formation of
sharp category boundaries. Categorical functioning allows novel
forms to be treated in the same way as existing category members.
In unpublished work, the simulations reported in Thomas (2005)
were run with other monogenic causes of the initial deficit. For two
other deficits, processing noise and a purely lexical strategy for
producing inflections, a similar pattern was observed of resolving
delay on the training set and a residual generalization deficit; for
restricted numbers of internal processing units, there was a residual
generalization deficit but also no resolution of the early deficit on
the training set; for a very slow learning rate, there was no
generalization deficit but a residual deficit in irregular verb per-
formance within the training set. It is evident, then, that the nature
and possibility of long-term compensatory avenues within this
single mechanism model were sensitive to the type of initial
processing deficit.

Table 1
Key Concepts

Cause of disorder Intervention outcomes Interventions in developmental models Types of simulated interventions

Monogenic (single
cause)

Does the intervention generalize
beyond the treated items to
other items or skills?

Does intervention improve performance
on the training set?

Behavioral (add new items to/change
frequency distribution of training
set)

Polygenic (multiple
causes)

Is there maintenance of gains
after the intervention ceases?

Does intervention improve performance
on the generalization set (novel
items)

Computational (alter the
computational properties of the
learning mechanisms)

Compensatory (encourage alternate
mechanisms/pathways to acquire
target behaviors)

7MODELING MECHANISMS OF INTERVENTION



In one sense, one might view long-term deficits in extracting
regularities in the problem domain as examples of a well-known
characteristic of suboptimal artificial neural networks: overfitting
the training data. We wish to emphasize an alternative view,
however: that atypical processing properties may still allow some
parts of the problem domain to be acquired with enough training.
Another aspect of language and another type of neural network
architecture illustrate this point. Thomas and Redington (2004)
used a simple recurrent network to investigate the impact of
atypical processing constraints on syntax processing. Given suffi-
cient training, they observed that simple recurrent networks with

atypical sequence processing properties could eventually find
compensatory solutions in classifying syntactic constructions, but
only for those constructions that could be comprehended via
locally available lexical cues, not those relying solely on sequenc-
ing information for decoding.

In sum, a system that exhibits early delays through atypical
processing properties may be forced through massive exposure to
show normal-looking behavior on the training set—the items that
are intensely practiced. However, this does not normalize process-
ing properties. Residual deficits may remain, such as in general-
ization or in more demanding aspects of the task. This pattern of

Figure 1. Simulation of typical and atypical past tense acquisition predicting long-term compensated out-
comes. (a) Empirical data (per cent accuracy) for typically developing children from Thomas et al. (2001) for
a group of typically developing children on a past tense elicitation task for regular verbs, irregular verbs, novel
verbs, and overgeneralization errors; and for a group of children with DLD from van der Lely and Ullman
(2001), using the same elicitation task. Error bars show standard error of the mean. (b) Simulation data from
Thomas (2005) for a connectionist past tense model, either in a typical condition or an atypical condition where
the discrimination of the simple processing units was reduced by lowering the temperature of the sigmoid
activation function (1 ¡ 0.25). Model data are shown at a point that approximately matched the performance
of the children (250 epochs of training). (c) Simulation data for the projected ‘adult’ outcome of typical and
atypical trajectories (5000 epochs of training). The projected adult model reached ceiling on the training set but
retained atypical generalization. Error bars show standard error over 10 replications with different initial random
seeds.
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eventual good accuracy on practiced items along with subtle
residual deficits is observed in some developmental disorders. For
example, large dosages of reading experience can sometimes re-
mediate reading accuracy deficits in dyslexia, but residual deficits
can be found in reading speed and in spelling, both of which
suggest the internal representations have not been normalized
(Hulme & Snowling, 2009). These deficits may even be subtle:
Leong, Hämäläinen, Soltesz, and Goswami (2011) found that
highly compensated adults with dyslexia (undergraduate students
at the University of Cambridge) showed significantly lower sen-
sitivity to syllable stress than adults without dyslexia.

Resolution of early delays. Sometimes, for a subset of chil-
dren, early observed developmental deficits can resolve apparently of
their own accord. The resolution of deficits has been reported in
several developmental disorders, including language (e.g., Dale,
Price, Bishop, & Plomin, 2003), autism (e.g., Charman, 2014b; Fein
et al., 2013), and ADHD (e.g., Biederman, Petty, Evans, Small, &
Faraone, 2010) and has generated theoretical debate in each case.
What does resolution of delay imply about underlying cause?

Thomas and Knowland (2014) used the same connectionist
model of past tense acquisition as Thomas (2005) to investigate
why early identified delay sometimes resolves. They argued that
limitations in the plasticity of developmental mechanisms can
initially produce similar behavioral patterns as limitations in com-
putational capacity. Systems with limited plasticity require more
exposure to learning events to produce an equivalent improvement
in performance. Mechanisms exhibiting early delays through lim-
ited plasticity should therefore respond to interventions that simply
enrich the level of naturalistic experience. Such systems should
remediate to the normal range just through greater practice, with-
out requiring specially designed interventions.

Unlike the Thomas (2005) model of past tense formation,
Thomas and Knowland (2014) took a polygenic approach to lan-
guage delay. Variation in rates of development was modeled in a
large population of simulated children (N � 1000). Variation was
caused by simultaneous small differences in 14 computational
parameters, as well as in the richness of the language environment
in which the child was raised. The computational parameters
influenced properties of the learning mechanism such as network
construction (e.g., number of internal units), network activation
(e.g., unit discriminability, processing noise), network adaptation
(e.g., the learning algorithm, the learning rate), and network main-
tenance (e.g., the level of pruning to eliminate unused connectiv-
ity, weight decay).1 Across the 14 parameters, Thomas and Know-
land identified four broad types of processing role that parameters
might serve. These roles were capacity, plasticity, signal, and
regressive events. Parameters contributing to capacity influence
the potential dimensionality of learned representations, and include
the number of units and connections; for plasticity, contributing
parameters modulate the size of the weight changes produced by
experience; for signal, it is noise added to unit activations or
thresholds for driving behavioral responses; for regressive events,
it is parameters influencing maintenance of connectivity, such as
pruning and weight decay. Some parameters contribute mainly to
one role, such as number of processing units and denseness of
connectivity contributing to capacity. Other parameters contribute
to more than one role: the nature of the learning algorithm deter-
mines both what can be learned and also how quickly; the unit
discriminability influences the quality of the signal propagating

through the network but also modulates the rate of connection
changes and therefore plasticity. A system with low capacity has
a reduced ability to learn complex information, one with low
plasticity requires more experience to learn, one with poor signal
struggles to acquire an accurate rendition of knowledge, while one
with regressive events will lose plasticity and potentially knowl-
edge across development.

Of the 1000 networks in the simulated population, 287 were
diagnosed with language delay at an early point in development,
based on falling 1 standard deviation below the population mean.
The subsequent developmental trajectories of these delayed net-
works were followed, and 169 networks later resolved back into
the normal range. Persisting deficits were observed in the remain-
ing 118. Figure 2 shows the mean trajectories of the typically
developing and delayed groups. The proportions are similar to
those reported in the empirical literature, where early diagnosed
language delay (e.g., aged 3–4) resolves in more than half of cases
(e.g., by age 6; Bishop, 2005; Dale et al., 2003; see also Ukou-
munne et al., 2012, for resolution at younger ages).

If the nature of intervention should be differentiated according
to whether delay resolves or persists, it is important to be able to
predict outcomes for children with early diagnosed delay as soon
as possible (Chiat & Roy, 2008). However, researchers have found
this challenging. For example, in a large empirical study, Dale et
al. (2003) explored whether it was possible to predict if children
would fall in the persisting delay (n � 372) or resolving delay (n �
250) group on the basis of their Time 1 profiles at 2 years of age,
compared against Time 2 outcome at 4 years. Children whose
delays would persist scored reliably lower across a number of
parental rating measures, including vocabulary, grammar, dis-
placed reference (use of language to refer to past and future
events), and nonverbal skills, as well as scoring reliably lower for
maternal education and showing a greater incidence of ear infec-
tion. Nevertheless, the effect sizes were small (.01–.06), and lo-
gistic regression analyses found that children’s profiles at age 2
offered only modest classification of outcome at age 4. The sta-
tistical regression model including vocabulary, displaced refer-
ence, and nonverbal scores at Time 1 correctly predicted only 45%
of cases of persisting delay (chance � 50%), but 81% of cases of
resolving delay. Addition of gender and maternal education level
brought up the prediction of persisting delay to 52%.

A similar analysis was possible in Thomas and Knowland’s
(2014) connectionist model. Here, Time 1 behavioral measures
were broadly similar across persisting and resolving delay groups.

1 The choice of parameters to vary was based on previous connectionist
models that had used individual parameter variations to explain individual
differences or disorders. These models were pursuing hypotheses that, for
instance, differences in cognition may arise from neural plasticity or from the
actions of certain neurotransmitters. Variations in architecture have been used
to explain dyslexia: Zorzi, Houghton, and Butterworth (1998); in hidden units
to explain intelligence: Richardson, Baughman, Forrester, and Thomas (2006),
Richardson, Forrester, Baughman, and Thomas (2006) and autism: Cohen
(1998); in sparseness of connectivity to explain autism: McClelland (2000); in
processing noise to explain DLD: Joanisse and Seidenberg (2003); in unit
threshold function to explain schizophrenia: Cohen and Servan-Schreiber
(1992) and aging: Li and Lindenberger (1999); in connection pruning to
explain autism: Thomas et al. (2011); and in learning rate to explain general
intelligence: Garlick (2002). Here, individual differences were produced by
simultaneous small variations in all parameters.
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There were subtle differences in past tense accuracy, with the
persisting delay group performing reliably worse on regular verbs
and generalization of the past tense rule to novel verbs (that is, in
extracting the underlying regularities of the domain) compared
with the resolving group. But although these effects were highly
reliable, as with the empirical data, they were of small effect size.
A logistic regression model entering just Time 1 behavioral pro-
files was 80% accurate in predicting persisting delay but only 54%
accurate in predicting resolving delay. In the model, variations in
the richness of the training environment implemented one pathway
by which differences in maternal education have been proposed to
influence language development (see Thomas, Forrester, & Ron-
ald, 2013). Accuracy was not increased by adding in the richness
of the language environment to which each network was exposed.
As per Dale et al. (2003), measures of the environment didn’t help
to predict developmental outcome. In one sense, this is quite
surprising: in the model, experience of the language environment
was the primary driver of development itself. Despite this central
role, it was a weak predictor of individual differences.

Computational implementations provide the opportunity to in-
vestigate the mechanistic reasons why a model captures a given
behavioral profile. In the current case, we can identify which of the
computational parameters in fact predicted whether delay would
resolve or not. Table 2 indicates which parameters had predictive
power on developmental outcome. Limits on capacity tended to
predict persisting delay, whereas limits in plasticity predicted
resolving delay. When the full set of computational parameters
was added into the logistic regression, a combination of Time 1

behavior and information about processing properties was able to
predict persisting delay at 72% accuracy and resolving delay at
84%. (In clinical practice, 80% sensitivity and specificity is some-
times viewed as the requirement of a good screening test for
developmental disabilities; it is less than 100% because clinical
science is accepted as often imprecise; Charman et al., 2016;
Glascoe, 1999.) It is notable that, in the model, sensitivity and
specificity levels did not reach 100%. Failure to predict all the
variance in outcome in a relatively simple and well-controlled
model points to the complex dynamics involved in development of
nonlinear learning systems.2 More importantly, the model sug-
gested that to predict behavioral outcomes in cases of atypicality,
measures of behavior need to be complemented with measures of
processing, as argued by Fernald and colleagues (e.g., Fernald &
Marchman, 2012).

Predictions derived from a computational model need to be
mapped to cognitive or brain processes in the child. How do the
properties of the model map to real children? Practically, capacity
can be operationalized as the quantity of information that can be
integrated online, such as in a phonological awareness task. Plas-
ticity, by contrast, can be operationalized as performance on a
learning task, such as in auditory statistical learning. The compu-
tational perspective suggests these properties are likely to be
related but potentially distinguishable by focusing on change over
time, either in experimental tasks or in longitudinal trajectories.

In sum, resolution of an early identified developmental deficit
can occur if the atypicality in the system is a limitation in plasticity
rather than capacity. In this case, natural experience may drive the
resolution. The implication is that intervention need only increase
the dosage of naturalistic experience, for example by encouraging
more frequent language interactions in the home, rather than
employ a specially designed intervention. However, identifying
early on whether an emerging delay is attributable to a plasticity
rather than a capacity limitation is challenging and requires atten-
tion to processing properties rather than just behavioral profiles
and environmental measures.

Simulating Methods to Remediate Atypical Development
in a Single Network

From a computational standpoint, behavioral interventions seek-
ing to ameliorate deficits can be construed as changing the expe-
riences the system is exposed to, for example through a discrete
block of intervention. This could either amount to reweighting of
information available in previous experience, to blocked practice
of certain skills, to alterations in salience or feedback; or it could
be different experiences to those encountered before. The starting
point is the assumption that naturalistic experience (or the usual
range of educational experiences) has not been sufficient for the
system to acquire age-appropriate abilities; and this is because the
learning mechanism has atypical processing properties. If a system
has limitations, why should adding further or different experiences
improve the situation? Intervention might cause a beneficial re-
structuring of representations, and do so by using feedback or
concentrated practice to emphasize certain dimensions or associ-

2 Predictive power is lost because of the interactions between the com-
putational parameters in such mechanisms, where many of the effects are
nonlinear (Thomas et al., 2016).

Figure 2. Simulation of resolution of early delay. Group averaged de-
velopmental trajectories for 1000 simulated children in a model of English
past tense formation, assuming a polygenic model for language delay
(Thomas & Knowland, 2014). Delay was defined at Time 1 as networks
whose performance fell more than 1 standard deviation below the popu-
lation mean. Networks were defined as having resolving delay if their
performance fell within this normal range by Time 5; and as having
persisting delay if their performance remained below the normal range by
Time 5 (see Thomas & Knowland, 2014, for further details). Error bars
show standard deviations.

10 THOMAS ET AL.



ations within the task domain. Of course, this is predicated on the
assumption that the mechanism, and indeed the child more broadly,
has indeed been exposed to the appropriate range of experiences prior
to diagnosis of the disorder. We begin by considering the possibility
that this is not the case.

Disorders from insufficient early stimulation. Although cli-
nicians usually attempt to rule out environmental causes in diag-
nosing developmental disorders, language disorders are often ob-
served with increased frequency in children from low SES
backgrounds (All Party Parliamentary Group on Speech and Lan-
guage Difficulties, 2013; Locke, Ginsborg, & Peers, 2002; Nelson,
Welsh, Vance Trup, & Greenberg, 2011). One factor associated
with low SES that impacts language development is the richness of
the language environment in which children are raised (Hart &
Risley, 1995). A number of longitudinal studies have shown that
differences in the richness of linguistic input result in an increasing
gap in children’s language development (Hoff, 2013; Hutten-
locher, Waterfall, Vasilyeva, Vevea, & Hedges, 2010; Reilly et al.,
2010; Rowe, Raudenbush, & Goldin-Meadow, 2012), whereas
brain imaging evidence has suggested that young children regu-
larly engaged in conversation by adults have stronger structural
connectivity between two language regions, Wernicke’s area and
Broca’s area (Romeo et al., 2018).

From the point of view of a single mechanism embedded within
a wider cognitive system, the deficit in input need not be a property
of the external environment, but could stem from deficits in other
parts of the system. For instance, one theory of why components of
the social–cognitive system (such as those underlying face recog-
nition) do not develop typically in autism is that the infant as a
whole does not pay attention to the relevant social cues that are
nevertheless present in his or her environment (e.g., Elsabbagh et
al., 2011; though see Elsabbagh & Johnson, 2016). Thus a face
recognition system might not develop appropriately because it is
not exposed to sufficient information about faces.

Behavioral intervention should therefore involve enriching the
learning environment from the perspective of the relevant mech-
anism, to ensure sufficient information is present to acquire the
target ability. In the domain of language, there are initiatives to
encourage parents from lower SES backgrounds to talk more to
their children (e.g., Leffel & Suskind, 2013; Suskind & Suskind,
2015); within autism, interventions are being developed that spe-
cifically train infants at familial risk of autism to pay attention to
social cues (Wass & Porayska-Pomsta, 2014).

Restoration of an enriched input should bring atypically devel-
oping systems back toward the typical range of development.
There is one caveat that concerns timing. Certain domains, partic-
ularly those involving low-level perceptual skills, may exhibit
sensitive periods in development, such that later acquisition does
not reach the same ultimate levels of proficiency (Huttenlocher,
2002). Restoration of enriched input that occurs after the plasticity
of the system has begun to reduce may not be as successful; in
effect, the early disadvantage will be imprinted on the structure of
the system. One example of such an account is the proposal that
DLD is caused by an early auditory deficit even though not all
children with DLD show auditory deficits. The idea is that an early
auditory deficit may resolve in some children, but because of
sensitive periods in the development of the language system, the
now-enriched auditory input cannot bring the development of
the language system (and specifically, its phonology) back onto the
typical trajectory (Bishop, 1997).

Table 3 shows data from a polygenic model of individual differ-
ences (Thomas, 2016a), again employing the example domain of
English past tense. Here, development is simulated in 1000 children,
with individual differences arising from two sources: variation in
multiple computational parameters and variation in the richness of the
information present in the learning environment. The population
depicted in Table 3 experienced wide variation in the richness of
individuals’ learning environments, whereas the variation in compu-
tational learning parameters was more restricted, so that environment
was the main driver of individual differences (see Thomas, 2016a, for
simulation details; GNEW population). Variation in the environment
was implemented by a one-time filter on the training set applied to
each family, analogous to the effects of SES on language input
(Thomas et al., 2013). The top line of each section in Table 3 shows
how the population mean and distribution of performance changes
across development (in this case, a life span of 1000 epochs of
training, where one epoch was a single exposure to the individual’s
family training set).

At epoch 50, relatively early in development, every simulated
child’s environment was fully enriched to provide the maximum
possible training set. Table 3 shows the effect on population means
and standard deviations following the onset of intervention. Reg-
ular verbs immediately showed an acceleration in response to this
whole-population intervention, with variation reducing and the
lowest performers eventually performing above the 50th-centile of
the original population. Irregular verbs took more time to exhibit

Table 2
Use of Internal Computational Parameters to Predict Developmental Outcomes (Persisting
Delay, Resolving Delay) in a Polygenic Model of Language Delay

Computational parameter Processing role
Effect size of PD versus

RD comparison

Number of internal units Capacity .031��

Pruning threshold Capacity/Regressive events .021�

Learning algorithm Capacity/Plasticity .104��

Lexical-semantic learning rate Plasticity .024��

Unit discriminability Plasticity/Signal .025��

Processing noise Signal .026��

Note. PD � persisting delay; RD � resolving delay. Scores show �p
2 effect sizes from ANOVA comparing PD

and RD groups (see Thomas & Knowland, 2014, Table 2, for parallel analyses using logistic regression
methods).
� Effect reliable at p � .05. �� Effect reliable at p � .01.
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the acceleration, indeed initially showing a decline, but eventually
exhibited large gains. In general, acquisition of irregular verbs in
these associative models tends to be more sensitive to the compu-
tational properties of the network. For irregular verbs, variation in
computation properties continued to produce consistent individual
differences in performance despite the enriched environment and
population standard deviation did not change in the developmental
phases following enrichment (Table 3, middle section, distribu-
tions after 50 epochs). In other words, the gap between simulated
children did not close following enrichment. Instead, the whole
population increased its performance level. In contrast, gaps did
close for the easier regular verbs, where computational properties
did not constrain performance so strongly; poorer performing
children caught up once the hindrance of a disadvantaged envi-
ronment was lifted. In short, the effects of universal enrichment on
narrowing gaps between children depended on the extent to which
internal computational properties constrained development.

Functional plasticity can reduce in associative networks with
age via a number of mechanisms (Thomas & Johnson, 2006). In
connectionist models, age may be indexed by the amount of
training the system has experienced or by a maturational schedule

acting on computational properties. Among the mechanisms that
can reduce plasticity are the loss of resources, reductions in the
malleability of connections in response to training signals, en-
trenchment of connectivity (that is, well established connections
take longer to reset), and assimilation (whereby top down pro-
cesses reduce the detection of differences in an altered learning
environment, thereby mitigating the responsiveness of the system
to the new conditions).

The population under consideration here experienced aged-
related reductions in plasticity through pruning of connectivity,
which reduced available resources (or capacity). Pruning had its
onset at around 100 epochs. The bottom section of Table 3
shows the effect of population-wide enrichment on irregular
verb performance at 250 epochs compared with, respectively,
normal (untreated) development and early intervention. Inter-
vention had reduced effectiveness when it commenced after the
onset of pruning. For regular verbs, by the end of training, the
mean improvement in population accuracy following early en-
richment was 22%, whereas that following later enrichment was
16%. For irregular verbs, the improvement following early
enrichment was 31% and after later enrichment 13.5% (t test,

Table 3
A Simulated Intervention That Produced Different Effects on Population Mean Performance and Standard Deviations, Depending on
Timing and Target Behavior

Measure Early intervention (epoch 50) mean population accuracy and variation

Epoch 25 50 55 60 75 100 250 1000
Epoch postintervention �5 �10 �25 �50 �150 �950
Regular verbs

Untreated
Mean .47 .60 .61 .62 .65 .67 .73 .75
SD .29 .27 .27 .27 .26 .26 .25 .23

Treated
Mean .67 .73 .81 .86 .94 .97
SD .22 .19 .14 .11 .07 .05

Irregular verbs
Untreated

Mean .07 .15 .17 .19 .23 .27 .41 .49
SD .07 .13 .14 .15 .17 .19 .23 .26

Treated
Mean .13 .16 .24 .36 .64 .80
SD .13 .15 .17 .20 .23 .22

Late intervention (250 epochs) mean population accuracy and variation

Irregular verbs
Epoch 250 255 260 275 300 350 500 750 1000
Postintervention �5 �10 �25 �50 �100 �250 �500 �750
Untreated

Mean .41 .41 .41 .42 .43 .44 .46 .48 .49
SD .23 .23 .23 .24 .24 .24 .25 .26 .26

Treated early
Mean .64 .64 .66 .67 .70 .75 .79 .80
SD .23 .23 .23 .23 .23 .23 .22 .22

Treated late
Mean .34 .34 .37 .41 .46 .55 .60 .63
SD .24 .25 .26 .27 .28 .29 .30 .31

Note. A population of 1,000 networks learning English past tense experienced an intervention either early (after 50 epochs) or late (250 epochs) in
development. During intervention, differences in the richness of the environment between individuals were removed and all networks given the most
enriched training set. Early intervention improved the population mean for regular verbs and reduced variation attributable to ceiling effects. Early
intervention improved population mean for irregular verbs but did not alter variation—gaps between individuals did not narrow. Late intervention improved
population mean for irregular verbs (though less so than early intervention) but increased population variation—gaps between individuals widened after
intervention.
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both p � .001). Notably, the late intervention increased the
population standard deviation for irregular verbs: intervention
increased the gaps between individuals.

If early impoverished environments cause deficits, the size of
the treatment effect available through enrichment should be in-
versely proportional to the quality of that early environment. In
other words, children who are held back more by an impoverished
early environment should have greater scope for improvement
following enrichment. In the simulation of early enrichment, this
correlation was observed both for regular and irregular verbs, with
correlations between environmental quality and treatment effect
of �.86 and �.77, respectively (Figure 3a).

However, sensitive periods in development eventually translate
the consequence of being raised in a poor environment into a
deficit in the structure of the network, which later enrichment is
less able to undo. In this scenario, the greater the early impover-
ishment, the greater the impact on the development of processing
structures, and the poorer the predicted treatment effect. One might
thus expect the inverse correlation of early environmental quality
and treatment effect to weaken or even reverse. In line with this
expectation, the equivalent correlations following late enrichment
were �.76 and �.25 for regular and irregular verbs, respectively
(Figure 3b). The reduction in scope for treatment across develop-
ment for networks raised in poorer environments was larger for
irregular verbs than regular verbs, because they are more sensitive
to the processing capacity of the network (in a fully factorial
ANCOVA of treatment effects with factors of verb type and
timing, and environmental quality as the covariate, all main effects
and interactions were highly significant).

The pattern of more sustained early deprivation leading to less
easily remediated deficits can be seen in data from a recent
follow-up study of Romanian orphans exposed to severe early
deprivation but then adopted into enriched environments. Sonuga-
Barke et al. (2017) found that, when followed up into young
adulthood, Romanian adoptees who experienced less than 6
months in an institution had similarly low levels of symptoms as
typically developing controls. By contrast, compared with con-
trols, Romanian adoptees exposed to more than 6 months in an
institution had persistently higher rates of symptoms of autism
spectrum disorder, disinhibited social engagement, and inattention
and overactivity through to young adulthood.

Thus, enrichment interventions to alleviate deficits caused
purely by a lack of appropriate experience need to pay attention to
possible timing effects impacting plasticity. If plasticity reduces,
enrichment alone will be insufficient as an intervention. How
should interventions alter if plasticity has reduced? The best be-
havioral intervention method in the case of late intervention will
depend on the particular mechanism causing the plasticity loss for
the domain and mechanism in question (see, e.g., McClelland,
Thomas, McCandliss, & Fiez, 1999; Thomas & Johnson, 2006). It
may involve more intense practice, more feedback, or perceptually
exaggerated stimuli. The key message, however, is perhaps an
obvious one. Where a theoretical understanding of development in
the target domain suggests reductions in plasticity with age in key
mechanisms, early interventions to alleviate impoverished experi-
ence become more important. If environmental factors (such as
SES) inversely predict response to treatment in younger but not
older children, this is the hallmark of the operation of sensitive
periods.

Lastly, behavioral deficits produced by impoverished learning
environments will not necessarily act independently of differences
in intrinsic learning properties. Figure 4 shows the difference
between impoverished and enriched learning environments for the
simulated population, stratified by their unit discriminability. The
effect of learning environment interacted with this internal com-
putational constraint, such that the less optimal computational
constraint tended to exaggerate the impact of the impoverished
environment, albeit this was a marginal effect against the variation
of other computational parameters in the population (main effect
of environment: F(1, 996) � 89.61, p � .001, �p

2 � .083; main
effect of temperature: F(1, 996) � 10.73, p � .001, �p

2 � .011;
environment � temperature: F(1, 996) � 3.51, p � .061, �p

2 �
.004). This interaction occurred because both influences act on the
strengthening of network connections, which in turn drives behav-
ior. An increase in the incidence of developmental disorders in low
SES families may, therefore, represent an interaction between risk
factors, rather than resulting from pure environmental effects.

In sum, interventions to remediate deficits stemming from in-
sufficient stimulation of a developing cognitive system may either
target the external environment, or the internal environment of the
system by seeking to alter those aspects of the external environ-
ment to which the child attends. Enrichment interventions will
eliminate gaps between children unless the target behaviors are
sensitive to other (independently occurring) individual differences
in computational properties of learning mechanisms. In the latter
case, enrichment can improve the whole population level of per-
formance without narrowing gaps between children. Lastly, envi-
ronmental effects may interact with and exacerbate underlying
computational risk factors.

Choosing better training sets to support atypical processing
properties. In the first section, we observed how a processing
system with atypical computational properties could eventually
reach ceiling performance on the training set but show residual
deficits in generalization. Supporting generalization is an example
where specific additional experience can be used to restructure
representations.

Fedor, Best, Masterson, and Thomas (2013) explored how the
addition of specially designed input–output mappings could sup-
port generalization in networks with atypical processing proper-
ties. These authors also employed a feedforward connectionist
model drawn from the field of language development, in this case
acquisition of the Arabic plural (Forrester & Plunkett, 1994). The
aim was to visualize the formation and mediation of atypical
representations of categories. The model was trained to learn
categorizations defined over a two-dimensional input space using
high-dimensional internal representations. Fedor et al. considered
different categorization problems, in each case only giving the
network a limited sample of the categorization problem, and test-
ing its ability to acquire (generalize to) the full function.

Developmental disorders were then simulated by initial changes
to parameters such as the denseness of connectivity, numbers of
internal processing units, the learning rate, the unit discriminabil-
ity, and processing noise. Next, cases of developmental deficits
were rerun and interventions applied early in development. Inter-
ventions comprised additional input-output mappings (no more
than 10% of the size of the training set), which offered different
information about the categories. For example, interventions might
mark out prototypical members of categories, or demarcate the
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Figure 3. Individual differences in response to an enrichment intervention. Plot shows the relationship between
treatment effects (change in proportion correct assessed at end of training) and the quality of the early
environment for each simulated child (varying between 0 and 1) for (a) regular and (b) irregular verbs. Poorer
family language environment predicted a larger treatment effect. This effect reduced for interventions later in
development, and more so for irregular verbs. Early enrichment � 50 epochs, Late � 250 epochs, treatment
effects assessed at 1000 epochs. Linear fits are shown for all conditions. Early enrichment for regular verbs was
better fit by a log function (R2 � .87), whereas linear functions explained more variance for the other three
conditions. See the online article for the color version of this figure.
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edges of category boundaries in the input space. The results of
these exploratory simulations indicated that the best interventions
either sampled the whole problem space or provided a represen-
tative ‘slice’ across all categories. There was also some evidence
that interventions were differentially effective depending on the
problem domain (mapping problem) and depending on the type of
deficit.

Figure 5 illustrates one example of a training problem used by
Fedor et al. (2013). It shows the architecture, the full categoriza-
tion problem, the training set (which represents a subset of the full
problem), and then an example intervention set. Here, the network
had to learn a category that spanned a zone around a diagonal of
the two-dimensional input space, with different categories either
side. The training set only provided examples at either end of the
diagonal, and the network had to learn to interpolate the general

function linking the two ends. Figure 6 demonstrates an example
of a network learning this general function successfully. Although
the internal representations of the network had high dimensional-
ity, their structure could be visualized by determining the net-
work’s categorization of all 10,000 possible locations in the input
space. Figure 6 shows that in the typical case, there was quick
formation of the diagonal category but with fuzzy boundaries,
which were then progressively sharpened through further training.
The figure also shows the formation of atypical representations in
a case of a developmental deficit, in this case, a network with only
30% of the normal level of connectivity. Interpolation was unsuc-
cessful, and eventual performance retained accuracy only in the
region of the training set. Finally, the figure demonstrates the
consequence of adding an effective intervention (a slice across all
categories) early in training. These additional input–output map-
pings improved performance on the training set, but crucially were
also able to support acquisition of the general function despite the
atypical processing properties. This is an important demonstration
that atypical processing properties may require the design of
special intervention sets to support generalization, even in cases
where high accuracy on the training set can eventually be reached
through extended exposure. Alleviation of the deficit cannot be
achieved by more naturalistic experience, but requires bespoke
additional training to restructure representations based on a theo-
retical understanding of the target domain.

Simplifying the problem the atypical system has to solve.
Where a cognitive mechanism is struggling to acquire a target
ability, a behavioral intervention might seek to reduce the com-
plexity of the problem the system is trying to solve. It might do so
by altering the input and output representations, or restricting
training to a subset of the task.

From a computational perspective, a task domain is defined by
the set of input–output mappings. The complexity of the problem
is specified by the way the domain is encoded, with respect to the
input representations and the output representations, and the num-
ber of mappings to be learnt. Where a learning mechanism has
insufficient computational resources to solve the problem, devel-

Figure 4. The interaction of processing deficits with richness of early
language environment. The plot depicts population performance on regular
verbs early in development (50 epochs), split by individuals in impover-
ished or enriched environments, and stratified by individuals with different
unit discriminability (temperature values 0.5–1.5). Interaction effect was at
trend level (p � .06). Error bars show standard deviations.

Figure 5. Network architecture and problem domain for a model designed to explore how bespoke intervention
sets can support learning in systems with atypical properties, in this case reduced connectivity: (a) network
architecture; (b) example categorization problem, with 10,000 data points; the network is required to learn the
category boundaries; (c) the training set given to the network, sufficient to learn the problem under typical
conditions; (d) an example intervention set added to the training set to aid development under atypical
conditions. Networks had 50 internal units (backpropagation network; learning rate � .1, momentum � .3,
temperature � 1) See the online article for the color version of this figure.
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opment occurs more slowly, may asymptote at a lower level, show
acquisition of some parts of the domain but not others, or show
generalization deficits. We have so far considered behavioral in-
tervention as adding some further information to the structured
environment or altering its frequency distribution. However, a
behavioral intervention could serve to alter the nature of the input
or output representations. Changing the representations might sim-
plify the problem that the learning mechanism has to solve, and
bring it within what can be achieved with the existing computa-
tional constraints. That is, a less powerful mechanism may be able
to learn a simpler problem.

Behavioral interventions for dyslexia and word-finding difficul-
ties both appeal to this idea. For reading, some interventions target
the structure of the phonological representations, the output of the
decoding system. For WFD, interventions additionally target im-
provements in semantic representations, the drivers of naming.
Computational models of intervention have also appealed to this
method. Seidenberg and McClelland’s (1989) original connection-
ist model of reading was later deemed to be closer to the perfor-

mance of a dyslexic, because it had representations that didn’t
show sufficient similarity between written letters or between
speech sounds to allow the learning mechanism to generalize the
reading problem to novel words. The presentation of the problem
domain made it too hard for the learning mechanism to solve. A
later implementation utilized more componential input and output
representations and was taken to be a better model of typical
development (Plaut et al., 1996). One of the interventions consid-
ered to alleviate dyslexia in the Harm et al. (2003) model was to
improve the output representations developed by the phonological
component. Best et al.’s (2015) model considered interventions to
improve naming—captured as the mapping between semantic and
phonological representations—by treatments that improved the
representations of semantics or phonology in isolation, rather than
simply more practice in using the compromised pathway linking
these representations. Lastly, Harm et al. demonstrated that im-
provements stemming from changes in input or output represen-
tations may be subject to timing effects; previous learning may
cause entrenched connections that mean the mechanism responds
less readily when representations are changed later in develop-
ment.

The Best et al. (2015) model used fairly idealized depictions of
semantics and phonology. Figure 7 shows results from a model
with more realistic representations (Alireza, Fedor, & Thomas,
2017). Using the same architecture as the Best et al. model, this
implementation employed a training set of 400 English words
taken from the Masterson, Stuart, Dixon, and Lovejoy (2010)
corpus of words found in children’s books. Phonology was en-
coded in a slot-based scheme using articulatory features, while
semantics used a feature-based scheme of more than 1000 features
drawn from Vinson and Vigliocco’s (2008) adult ratings of word
meanings. Figure 7a depicts the typical model in its development
of semantic knowledge, phonological knowledge, single word
comprehension, and single word naming; and an atypical network,
which had a computational restriction to the naming pathway that
linked emerging semantic and phonological representations. For
the atypical network, Figure 7b–7d depicts the effect on naming of
a relatively short intervention early in training (between 100 and
200 epochs, in a life span of 1000 epochs, depicted by the shaded
area). Intervention was triggered at a point when the typical model
had acquired a productive vocabulary size of 67 words, whereas
the atypical models had a vocabulary size of 36 words. Five
different interventions were contrasted, of three types: (a) reme-
diating the weakness—the model was provided with additional
training on the naming pathway; (b) improve the strength—the
model was provided with additional training to improve the (oth-
erwise typically developing) semantic representations, the phono-
logical representations, or both at once; (c) both Types 1 and 2
were combined into an intervention that sought to simultaneously
improve strength and remediate weakness.

The intervention designed to target the naming weakness, extra
practice for the semantics-to-phonology pathway, improved per-
formance initially, but served only to propel the system further
along its atypical trajectory. The final level of performance was no
higher; eventually, the untreated condition caught up with the
treated condition. Interventions to target strengths, the semantic
and phonological representations, produced more gradual im-
provements (little during the intervention period itself), but sub-
sequent improvements were long-term and raised the final level of

Figure 6. Developmental trajectories and internal representations in a
typical case (TD), an atypical case with low connectivity (30%, C � 0.3)
and the same atypical case experiencing an intervention. Top panel: De-
velopmental trajectories; intervention commenced at 100 epochs. The
intervention set was added to the training set for the duration of training.
Vertical lines show epochs at which snapshots were taken. Lower panels:
snapshots of the activation pattern of the unit for output category 2 in the
three cases, which should respond only to the central band (see Figure 6).
Hot colors represent more activity. (Fedor et al., 2013). See the online
article for the color version of this figure.
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performance. This is because extra training on the input and output
representations for naming served to make them more distinguish-
able, and therefore make the task of learning the arbitrary map-
pings between meaning and sound easier for the restricted path-
way. The largest benefit occurred when both semantic input and
phonological output representations were improved (Figure 7c).
When the input/output intervention was combined with extra train-
ing on the semantics-to-phonology pathway, both short-term and
long-term benefits were observed (Figure 7d).

Alireza et al. (2017) also considered the effects of timing, contrast-
ing interventions at 100, 250, and 750 epochs. In all models, unused
network connections were pruned away with a small probability from
100 epochs onward, reducing the plasticity of older networks. Later in
training, improving strengths became less effective and remediating
weaknesses became more effective. Echoing the findings of Harm et
al. (2003), the benefit of improving input and output representations
was more marked early in development, and reduced once pathways
had committed to utilizing the (potentially poor) initial representa-
tions. At that point, maximizing the performance of the pathway
through intense practice became the best recourse.

In sum, behavioral interventions that improve either the input or
output representations involved in acquiring a cognitive domain
may improve the ultimate level of performance that is attainable by
the system with atypical computational constraints, but such im-

provements may be subject to timing effects. Remediating weak-
ness did produce improvements, but these only propelled the
system more quickly along the same atypical trajectory. In this
model, long-term benefits of an early intervention arose from
improving strengths, not from focusing on weaknesses. However,
the opposite was true of a late intervention.

If input and output representations cannot be altered, how can
the problem be simplified to help an atypical mechanism? If the
model is unable to learn the training set to a given performance
level through limitations in processing capacity, adding further
input–output mappings to the training set is unlikely to enhance
accuracy on the patterns in the original training set. What one
might call normalization through behavioral intervention is there-
fore difficult if one conceives of developmental deficits as arising
from limitations in individual systems. We define normalization
here as the acquisition of the abilities and knowledge that any
typically developing system acquires through exposure to the
normal training set.

However, one might take the view that, for adequate functioning
of a child in his or her day-to-day environment, learning the full
repertoire of behaviors in the target domain is not necessary.
Perhaps it is sufficient to learn just some items in the training set,
the most frequently required, the most prototypical? This more
modest objective might suggest interventions that focus only on a

Figure 7. A model comparing interventions to remediate weaknesses or to improve strengths. (a) Develop-
mental trajectories for naming and comprehension in a model acquiring the meanings (semantics) and word
names (phonology) of 400 vocabulary items (averaged over 3 replications). The typical model shows the usual
comprehension-production asymmetry. In the Word-Finding Difficulty (WFD) model, there was a restriction in
the capacity of the pathway linking semantics to phonology (from 175 to 70 hidden units), which impacted on
the development of naming, while comprehension trajectories did not reliably differ from normal. (b) Early
intervention targeting the naming pathway (weakness). (c) Early intervention targeting the development of the
phonological representations, the semantic representations, or both (strengths). (d) An intervention combining
training on strengths and weakness. Intervention comprised training at five times the frequency on acquisition
of these representations compared with naming and comprehension, beginning at 100 epochs and lasting for 100
epochs, shown by the shaded area. (Alireza et al., 2017).
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subset of the training set. For example, in the past tense domain,
one might select the most frequently used verbs, be they regular or
irregular. Alternatively, one might take the view that what the
atypical system needs to learn is not the training set per se (even
though this is what typical systems acquire), but a general function
implicit in the items in the training set. Acquisition of this general
function can be assessed by performance on generalization sets
rather than the training set. There may then be input–output
mappings that can be added to the training set which could im-
prove the network’s ability to extract the general function, even if
performance on the original training set did not improve (or even
worsened for those parts inconsistent with the general function). In
contrast to normalization, we could term this approach compensa-
tion, because the aim is to optimize a subset of behaviors present
in the original training set. In the past tense domain, such an
approach might seek to improve acquisition of the regular past
tense rule by showing its use across a variety of verb forms.

The distinction between these two intervention aims—improving
performance on the full training set versus on a subset or a function
implicit in the training set—allows us to draw a formal distinction
between normalization and compensation, with respect to our single-
mechanism perspective. It poses the challenge of how one might
derive interventions that achieve these goals. So far, we have con-
ceived of a behavioral intervention as the addition of training patterns
to the network’s training set for some duration. Which additional
patterns would support normalization, under our definition? Which
additional patterns would support compensation?

Yang and Thomas (2015) explored one method to derive inter-
vention sets within a machine-learning framework. The method
assumes the availability of an artificial neural network that is able
to successfully acquire the target domain through exposure to the
training set. A genetic algorithm technique is then used to identify
which input units were most important for generating good learn-
ing on, respectively, the training set or the generalization set.
Intervention items can be produced which embody the features that
support either training set acquisition or generalization. An inter-
vention set then comprises a selection of these items, for example
which span the internal representational space of typically devel-
oping models. The internal representational space can be charac-
terized by principal component analyses of hidden unit activations
produced by the training set. Davis (2017) used this method to
derive intervention sets to encourage either normalization or com-
pensation, and applied them to a model of autism. Intervention sets
contained around 10% the number of patterns as the training set.
The results in that case indicated that compensation was more
effective than normalization for networks with compromised con-
nectivity, because in artificial neural networks, regularity is less
demanding on representational resources.

The Yang and Thomas method for deriving intervention sets is
model dependent. It requires the availability of a fully specified
training set, and commitment to the representational format in
which the problem is specified. Moreover, compensation requires
specification of the implicit function to identify the key input
dimensions that embody the function—in other words, a theory of
the information that is most important in a domain.

In sum, behavioral interventions may be successful in mecha-
nisms with atypical computational constraints if the goal of interven-
tion is revised from normalization (fully behavioral competency) to a
subset of skills, which we termed compensation. Machine-learning

methods suggest possible ways of identifying items that will support
normalization and compensation.

Altering the computational properties of the system. If the
atypical computational constraints limiting acquisition of a target
cognitive domain cannot be remediated by altering or complementing
training experiences, intervention may instead seek to change the
computational constraints. Not all theoretical approaches to develop-
ment view the computational properties of learning mechanisms in the
cognitive system as fixed. If computational properties can be influ-
enced by experience, this opens up the possibility that behavioral
intervention could alleviate computational limitations and enable suc-
cessful remediation. In its development, the brain undergoes a phase
of elaboration of connectivity followed by regressive events that
prune away connectivity; in addition, some existing connectivity is
enhanced by myelination (Huttenlocher, 2002). It is as yet unclear
what direct bearing such brain-level changes have on cognitive de-
velopment. Researchers have sometimes included both increases in
connectivity and decreases in connectivity in their developmental
cognitive models. For example, constructivist approaches employ
networks that can increase the number of processing units and con-
nections in an experience-dependent manner (see, e.g., Quartz &
Sejnowski, 1997; Mareschal & Shultz, 1999; Westermann & Ruh,
2012). Other models have included pruning of connectivity, where the
connections removed are those that have not been strengthened by
experience (e.g., Thomas, 2016a). Yet other models have included the
assumption that some computational properties alter according to a
maturational schedule. For example, Munakata (1998) captured age-
related differences in a connectionist model of the infant A-not-B task
partly through a maturational increase in the system’s ability to
maintain active representations, implemented by a gradual increase in
the strength of recurrent connections.

In principle, then, one could conceive of a behavioral interven-
tion modulating a mechanism’s computational properties through
altering the way certain parameters change across development.
For example, this might equate to stimulation causing greater
elaboration of connectivity in the target mechanism, or greater
resistance to loss of connectivity during pruning of connectivity.
To illustrate how this might work, consider a model of autism
proposed by Thomas et al. (2011). This account initially focused
on the regressive subtype. It proposed that autism is caused by an
exaggeration of the normal phase of pruning of connectivity oc-
curring from infancy onward; overpruning occurs and particularly
impacts long-range connectivity. Thomas, Davis, et al. (2016) later
showed how differences in the timing of onset of overpruning
could link early onset, late onset, and regressive subtypes of autism
(Landa, Gross, Stuart, & Faherty, 2013). Davis (2017) then con-
sidered whether the behavioral deficits shown by the atypical
connectionist models could be remediated by interventions of
different types and applied at different times. Behavioral improve-
ments were on the whole relatively small, and individual networks
show variation in their response to intervention. However, some
networks did show a marked behavioral benefit from a short,
discrete intervention applied early in development.

Figure 8 shows the mean performance of a group of such
networks that exhibited a strong response to early intervention.
Networks were trained for 1000 epochs, with the onset of pruning
between 25 and 50 epochs; atypical networks were exposed to an
intervention at epoch 30, lasting 40 epochs; the intervention was
designed to enhance generalization by including novel examples of
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items following the implicit rule present in the training set, with
the intervention set approximately 10% the size of the training set.
Figure 8a shows the behavioral deficit of the impaired networks,
compared with a control condition of the same networks trained
without the atypical setting of the pruning parameter. The short
intervention showed a marked benefit on accuracy, which sus-
tained until the end of training. The size of the intervention effect
was highest in midtraining, and did not increase at the later
measurement point. Figure 8b shows the total number of connec-
tions in the atypical networks in the untreated and treated condi-
tions. Notably, during the intervention, connection loss accelerated
as the internal representations underwent reorganization. Thereaf-
ter, the treated condition retained a greater proportion of connec-
tions (t test: 250 epochs t[8] � 3.91, p � .004, Cohen’s d � .43;
1000 epochs, t[8] � 3.85, p � .005, d � .37). Connection number
is associated with improved computational power.3 The behavioral
intervention for these atypical networks, then, served to improve
their computational properties during subsequent development
compared with the untreated condition. Here, the stimulation of the
intervention produced greater resistance to loss of connectivity.

Under a maturational view, computational properties may alter
with development, but the schedule is not influenced by behavioral
interventions, or more broadly, by experience. (Under such an
account, it is not that the experience plays no role in development;
it is just that experience is not the limiting factor on rates of
growth.) In such a scenario, behavioral interventions could be
rendered successful by waiting until the computational properties
have improved. Maturational accounts have been proposed in
disorders such as DLD (Bishop & McArthur, 2004) and ADHD
(Batty et al., 2010; Shaw et al., 2007). Evidence from neuroscience
has been used to argue that interventions for anxiety disorders may
be more effective after adolescence due to the developmental state
of the underlying mechanisms (Hartley & Casey, 2013). Within
the field of education, the broader notion of school readiness is
predicated on the assumption that development of skills such as
executive function needs to have reached a certain level before the

classroom-based behavioral methods can be properly effective
(Noble, Tottenham, & Casey, 2005).

A further alternative would be to directly manipulate the com-
putational properties of the processing mechanism. We refer to
these as biological interventions, because they need not involve
behavioral methods directly relevant to the target skill. Biological
interventions most obviously would include pharmacological treat-
ments that alter the levels of neurotransmitters (e.g., dopamine for
ADHD, Volkow, Fowler, Wang, Ding, & Gatley, 2002; serotonin
for repetitive behaviors in pervasive developmental disorders, Mc-
Dougle, Kresch, & Posey, 2000; oxytocin in autism, Preckel,
Kanske, Singer, Paulus, & Krach, 2016). More speculatively,
biological methods might target neural activity via electrical meth-
ods (e.g., direct cortical stimulation for dyscalculia; Iuculano &
Cohen Kadosh, 2014) or brain plasticity via drug treatments (e.g.,
valproate acid for auditory learning; Gervain et al., 2013). Biolog-
ical methods might also employ behavioral practices that do not
directly target cognition but influence brain function, such as
exercise and diet (e.g., for treating ADHD: alterations of diet,
Konikowska, Regulska-Ilow, & Rǒzańska, 2012; use of exercise,
Silva et al., 2015). Or they might employ methods that indirectly
target cognition, for example through the effect of sleep on mem-
ory consolidation, or mindfulness training on attention, or action
video game playing on visual attention (e.g., role of sleep in
developmental disabilities: Ashworth, Hill, Karmiloff-Smith, &
Dimitriou, 2017; Dodge & Wilson, 2001; mindfulness treatments
for autism, dyslexia, ADHD: Sequeira & Ahmed, 2012; Tarrasch,
Berman, & Friedmann, 2016; video game playing for dyslexia:
Franceschini et al., 2013).

It should be possible to construe all such biological effects in
terms of manipulations to parameters within computational

3 In an equivalent population of 1000 networks without atypical pruning,
the number of connections in a network correlated .134 with behavior at
epoch 250 and .163 with behavior at epoch 1000 (both p � .001).

Figure 8. A behavioral intervention to alter computational properties, in this case, to protect against over-
pruning of connectivity. (a) Performance of a group of 9 networks with a disorder caused by greater-than-usual
loss of connectivity (red [dark gray]), compared with control networks (blue [middle gray]). Also shown are the
disorder networks following an early behavioral intervention (green [light gray]), lasting between epochs 30 and
70. Effects of the intervention sustain to the end of development. (b) The number of network connections for the
disorder group in untreated and intervention conditions. The intervention caused initial acceleration of loss but
final preservation of a greater proportion of connections, associated with improved computational power.
Midtraining � 250 epochs; End of training � 1000 epochs. See the online article for the color version of this
figure.
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models of development. For example, impulsivity in ADHD has
been modeled in terms of a computational constraint on reward-
based or reinforcement learning. Williams and Dayan (2004,
2005; Richardson & Thomas, 2006) used one form of reinforce-
ment learning, Temporal Difference learning, to simulate a
developmental profile of impulsivity in ADHD, based on a
model of the role of dopamine in operant conditioning. In this
model, the agent (child) had to learn to delay an immediate
action that gained a small reward in favor of a later action that
gained a larger reward. Williams and Dayan simulated ADHD
by altering the ‘discounting rate’ parameter, which determined
the relative weighting of immediate versus long-term rewards in
guiding action. The atypical setting of the parameter corre-
sponded to the lower levels of dopamine found in the brains of
children with ADHD. A system that discounted long-term re-
wards developed impulsive behavioral patterns, by allowing
small immediate rewards to guide action. Although this model
was not extended to consider intervention, the common phar-
macological treatment for ADHD, methylphenidate hydrochlo-
ride, is a stimulant that operates by increasing levels of dopa-
mine in children’s brains (Gottlieb, 2001). In the model, the
effects of the biological intervention could be simulated by
altering the discounting rate parameter, thereby removing the
atypical constraint on subsequent development of impulse con-
trol in reward-based action decision-making.

Harm et al.’s (2003) reading model in effect included a
biological intervention. In one of its conditions, an initial com-
putational limitation in the phonological component (lower
connectivity and restrictions on weight size) was simply elim-
inated by an intervention. Lost connections were restored and
weights were allowed to take on larger sizes. It is worth noting
that in this model, this biological intervention was subject to
timing effects. Later interventions were less effective because
they could not reverse entrenched weight values produced by
earlier learning in the network connecting orthographic inputs
to atypical phonological outputs. On the face of it, biological
interventions might seem more powerful, but they too may be
subject to limitations.

Interventions to Encourage Compensatory Responses
Through Other Pathways and Mechanisms

We have thus far construed intervention as targeting the
mechanism exhibiting the developmental deficit. However, be-
havioral interventions might seek instead to encourage the
recruitment of other mechanisms or pathways able to deliver or
support the target behavior. Models of deficits frequently make
reference to pathways outside of the single implemented mech-
anism to explain behavioral patterns. For example, in Abel,
Huber, and Dell’s (2009) model of acquired naming deficits, the
authors referred to a range of additional structures not realized
in their implementation as possible sources of naming errors.
These included visual input, the conceptual-semantic system, an
editor component, and a phonetic component. When Plaut
(1996)’s model of acquired deep dyslexia was unable to accom-
modate a certain pattern of reading errors during relearning
after damage, Plaut argued that the pattern originated from the
operation of an unimplemented phonological route. In their
model of developmental dyslexia, Harm et al. (2003) argued

that interventions acting on an unimplemented semantic route
would improve word reading rather than just the nonword
reading improvements shown by the implemented architecture.

Some disorders may even originate from atypical organiza-
tion of pathways, rather than limitations in particular mecha-
nisms. For example, Chang’s (2002) connectionist model of
sentence production demonstrated how inappropriate sharing of
information between mechanisms (in this case, those responsi-
ble for processing sequencing information and message infor-
mation) caused a marked developmental impairment in gener-
alization (Dell & Chang, 2013). The model learned to produce
sentences in the training set, but was poor at generalizing words
to appear in functional roles it had not encountered. In a similar
way to Thomas’s (2005) model of compensated morphosyntax
in DLD, this model had acquired an overly lexicalized approach
to acquiring syntax. More generally, lack of separation of
information can in some cases make the computational task
much harder for a system to solve (see, e.g., Norris, 1991;
Richardson & Thomas, 2006). Disorders may also arise when
the balance between different inputs driving a mechanism is
disrupted. Amblyopia is a well known and much researched
disorder of vision where the input from one eye is weaker than
the other; one eye comes to dominate processing at a cortical
level, to the disruption of binocular vision (Thompson, Chung,
Kiorpes, Ledgeway, & McGraw, 2015; see Crewther &
Crewther, 2015 for a neurocomputational account).

Evidence from functional brain imaging of developmental
disorders has encouraged the view that in some cases of good
developmental outcomes, usually following intensive interven-
tions, compensatory mechanisms have been engaged beyond
normal circuitry, thereby exploiting alternative pathways. For
example, arguments have been made in the case of dyslexia
(compensatory activation in right inferior frontal gyrus; Hoeft
et al., 2011) and autism (compensatory activations in several
left- and right-lateralized regions identified in a language com-
prehension task; Eigsti et al., 2016). Researchers hope that
identification of these alternative brain pathways can be trans-
lated into new interventions that will encourage adoption of
compensatory strategies.4

Similar claims for compensatory outcomes have been made
on behavioral evidence alone. For example, De Haan (2001)
pointed out that in children with autism, despite evidence that
individuals processed faces atypically (such as the unusual
absence of categorical perception of facial expressions), some
nevertheless performed in the normal range on expression-
recognition tasks. These individuals tended to have higher IQs.
De Haan argued that there must be “a degree of plasticity in the
developing system that allows for development of alternative
strategies/mechanisms in face processing” (2001, p. 393).

4 For example: https://www.nih.gov/news-events/news-releases/brain-activity-
pattern-signals-ability-compensate-dyslexia, retrieved 17 August 2016: “Un-
derstanding the brain activity associated with compensation may lead to
ways to help individuals with this capacity draw upon their strengths.
Similarly, learning why other individuals have difficulty compensating
may lead to new treatments to help them overcome reading disability”
(Alan E. Guttmacher, M.D., director of the NIH’s Eunice Kennedy Shriver
National Institute of Child Health and Human Development, commenting
on Hoeft et al., 2011).
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The proposal that alternative combinations of mechanisms
can deliver similar behaviors, which underpins hopes of com-
pensatory outcomes, requires a certain kind of developmental
theory to be true—that there is a suite of cognitive mechanisms
with differential properties, and development partly involves
selecting a combination that will deliver behavioral mastery. In
this way, Price and Friston (2002) have argued for degeneracy
in the brain’s realization of cognition. Degeneracy is a biolog-
ical concept, whereby elements that are structurally different
can perform the same function or yield the same output. For
example, objects can be recognized either on the basis of their
global shape or by the presence of distinguishing features. The
different cognitive functions of either global form or local
feature processing can therefore deliver the same output: accu-
rate object recognition. How well a processing component
performs a task then depends on the fit of its structure (i.e., its
neurocomputational properties) to the intended function; and
how much training the component has had in performing the
task. Even within the normal range, individuals may follow
developmental trajectories that harness different combinations
of components to perform the same task. Degeneracy may
therefore explain both individual variation in functional brain
activations, and variation in impairments following the same
localized brain damage (Price & Friston, 2002).

However, relatively few computational accounts have explic-
itly considered how development could integrate multiple
mechanisms to perform complex tasks, let alone how variation
in outcomes could arise between individuals. In the mixture-
of-experts approach (Jacobs, 1997, 1999; Jacobs, Jordan, Now-
lan, & Hinton, 1991), the initial architecture is comprised of
components that have different computational properties. A
specific mechanism gates the contribution of these components
to the output. When the overall architecture is presented with a
task, the gating mechanism mediates a competition between the
set of components, allowing the most successful component for
each training pattern both to drive output performance and to
update its weights to become better at that pattern. Across
training, certain mechanisms come to specialize on sets of
patterns, by virtue of having an initial (perhaps small) advan-
tage in processing those patterns. Why might such a process of
emergent specialization differ between individuals? Presum-
ably, variation in outcomes could arise from differences in the
set of experts, differences in the experts’ respective computa-
tional properties, the operation of the gating mechanism, and
the composition of the training set (see Thomas & Richardson,
2005).

As yet, no computational accounts have considered how an
intervention might alter the organization of a set of mechanisms
to improve accuracy on a given behavior - for our purposes,
directing learning toward mechanisms with fewer restrictions
on their plasticity. We do know that in practice, clinicians tend
to shift from implicit to explicit methods with older children, to
encourage compensatory strategies, suggesting that metacogni-
tion might be efficacious in triggering a reorganization of
mechanisms. However, there is a missing link in the argument.
Although there is evidence of individual variability in the use of
mechanisms, and evidence of compensatory engagement of new
mechanisms in some disorders where individuals show good
outcomes, this does not guarantee that we can generate inter-

ventions to encourage the use of alternative sets of mechanisms.
That is, evidence of different outcomes across individuals is not
the same as evidence that all outcomes are equally accessible to
a single individual. One view is that individual variability in the
use of different mechanisms for a task indexes the scope for
compensatory reorganization (e.g., in the domain of reading:
Kherif, Josse, Seghier, & Price, 2009; Richardson, Seghier,
Leff, Thomas, & Price, 2011; Seghier, Lee, Schofield, Ellis, &
Price, 2008). But evidence from the functional imaging of
compensated brains minimally requires translation to the cog-
nitive level to understand what the compensations represent,
before a facilitatory intervention can be developed.

How might an intervention prompt use of compensatory
mechanisms? Perhaps a behavioral method could emphasize
different task-relevant information, or different modalities; or
encourage differential reliance on motor versus sensory de-
mands of the task; or engagement of different representational
formats, such as gesture to support language, or language to
support spatial cognition. Perhaps atypical overconnectivity
could be discouraged by presenting materials that carried less
information and therefore engaged fewer mechanisms; disor-
ders of disrupted competition could be remediated by blocking
the stronger pathway to allow the weaker to develop, as in the
case of patching the stronger eye in amblyopia. This remains to
be clarified. Thus, although intrinsic computational limitations
in a target mechanism might be overcome by recruiting other
mechanisms able to support task performance, or altering the
competition and cross-talk between mechanisms, a computa-
tional analysis of this strategy is not far advanced, nor an
understanding of how to encourage such recruitment via a
specific behavioral intervention.

Individual Differences in Response to Intervention

One of the most challenging aspects of intervention is the
variation in children’s response to the same intervention, and
the consequent requirement that intervention be tailored to the
individual child. How can the therapist determine which inter-
vention is the best to pursue for a given child?

Monogenic models of disorders give some basis to consider
differential responses to intervention. For example, in their
model of word finding difficulties, Best et al. (2015) were able
to use three different atypical constraints (operating on hidden
units, connectivity, and unit activation function) to simulate the
language profiles of individual children. Figure 9 shows the
response to two different interventions (semantic therapy, pho-
nological therapy) for the three different versions of each child
with WFD. Notably, the different computational deficits to
produce the same atypical behavioral profile were associated
with different responses to intervention. As with Thomas and
Knowland’s (2014) model that sought markers to predict reso-
lution or persistence of delay, the implication here is that measures
of underlying processing are necessary to complement behavioral
profiles. Indeed, using the enrichment intervention (see Figure 3)
but now applied to the Thomas and Knowland (2014) model,
networks whose delay would have resolved anyway were found to
respond better to intervention than those whose delay would per-
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sist. In these associative models, therefore, untreated outcomes are
linked to individual differences in response to intervention.5

Polygenic models of disorders offer a more ready framework to
capture differential response. Using population-level models, atyp-
ical computational constraints can be simulated against a back-
ground of small population-wide variations in many computational
constraints, such as those involved in specifying the network
architecture, processing dynamics, and plasticity, as well as dif-
ferences in environmental stimulation. One might think of this as
the general intelligence of a network. Figure 10 shows distribu-
tions of treatment effects from the simulations of Davis (2017) for
a model of regressive autism. The developmental deficit was
caused by a single atypical parameter affecting connection prun-
ing, against the background of typical population-wide variation in
all other computational parameters. Results were considered sep-
arately for training set performance or generalization performance,
and in response to normalization or compensation interventions.
The treatment effects were generally small, of the order of a few
percentage points of accuracy against deficits of 20% to 40%;
however, they varied widely across individual networks, including
cases of large gains and large losses in response to intervention.
Davis (2017) was then able to explore the parameter sets of
individual networks to predict the size of the treatment effect, to
construct a mechanistic account of the origin of variable response
to intervention.

Table 4 shows a set of standardized coefficients from linear
regressions for each intervention type, assessed on training set and
generalization. The shaded rows represent parameters related to
the pathological process (overpruning), the rest to general intelli-
gence. Several points are notable. First, the main effects of these
parameters explained the minority of the variance in response to
intervention. Although there was a stochastic element to the re-
sponse, replication indicated that the test–retest correlation was

around 0.5, indicating that a fair proportion of the response to
intervention depended on the network’s developmental conditions
(its parameters and its environment). Mostly likely those develop-
ment conditions arose from higher order interactions between
computational parameters, enabling some networks to gain from
intervention, others not to gain, and some to lose. Second, some
predictors of individual response depended on intervention type
(normalization vs. compensation). Third, predictors could be dif-
ferentially important for intervention responses on the training set
versus generalization, that is, dependent on the target behavior.
And last, although some predictors were involved in modulating
the impact of the atypical connectivity pruning process, others
represented parameters unrelated to the pathology, consistent with
the idea that general individual differences factors influence the
effectiveness of behavioral intervention.

The narrow focus on individual cognitive mechanisms feels
particularly restricting in the context of individual differences,
where the intervention situation is influenced by many qualities of
the whole child, including their attention skills, personality, moti-
vation, and engagement with the therapist in a productive social
interaction (or depending on delivery mode, with a teaching assis-
tant, teacher, parent, group of children, or computer). From the
single-mechanism perspective, we are restricted to viewing these
as factors potentially influencing the plasticity of the mechanism,
the information experienced by the child in the therapeutic situa-
tion, and the effective dose delivered by the intervention. The
child’s attention/motivation/engagement in the therapeutic situa-
tion is a necessary precondition for the intervention to gain access
to and alter the functioning of the target mechanism. This is
somewhat unsatisfying, but is a necessary simplifying step in
trying to build a mechanistic account of the sources of individual
variability in response to intervention.

Discussion

We set out to investigate the potential of connectionist modeling
to increase understanding of the mechanisms underlying interven-
tions in developmental disorders. We presented and analyzed a
range of models and results. To evaluate the potential, let us set a
sceptical bar that needs to be cleared. On the one hand, one could
have reservations about the use of computational models to sim-
ulate development and individual differences by arguing that the
models are too complex. Connectionist models have many com-
ponents and components can vary along multiple dimensions (e.g.,
component: hidden units; dimensions: number of layers, units per
layer, pattern of connectivity, activation function). Components
and their dimensions are not independent, and behavior results
from complex interactions among them (Thomas et al., 2016).

5 The enrichment intervention, described in Figure 3, was applied to the
Thomas and Knowland (2014) model, and trajectories of response to
intervention were traced separately for those whose early identified delay
(if untreated) would resolve versus those where it would persist. The
maximally enriched training set was applied to all networks at epoch 50.
For the following 30 epochs, resolvers and persisters improved by the same
amount. Thereafter, resolvers (N � 165) showed a faster rate of improve-
ment than persisters (N � 64; epoch � group interaction, F[1,227] � 5.06,
p � .025, �p

2 � .022), so that there was a reliable difference in treatment
effect between the groups by 80 epochs post-onset of intervention (5.6%
improvement in accuracy for resolvers, 3.4% improvement for persisters,
t[227] � 2.56, p � .011).

Figure 9. Different computational deficits producing the same behavioral
impairment respond differently to intervention. Data show treatment ef-
fects of phonological versus semantic interventions for the Best et al.
(2015) model of word-finding difficulties, where equivalent behavioral
impairments were caused by three different underlying computational
deficits. The atypical language profiles of two individual children were
simulated and then interventions applied (here measured in how much
naming development was advanced). The profile of each child was simu-
lated either by reduced network connectivity (Deficit C), reduced hidden
units (Deficit H), or a shallower sigmoid activation function in the artificial
neurons (Deficit T). Intervention responses differed depending on how the
deficit was implemented. Error bars show standard errors of 10 replications
of each intervention (See Best et al., 2015, for further details).
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These interactions can be difficult to analyze, making it hard to
derive deeper principles or generalizations. Perhaps then, the mod-
els are too complicated to be useful; and the challenge of mapping
from the specific properties of the model to properties of people
too great. On the other hand, one could have reservations that the
computational models are not complex enough. We focused
mostly on individual cognitive mechanisms or limited numbers
of pathways. The actual cognitive system is far more compli-
cated; we did not consider sensorimotor components, emotional
components, social components, executive function compo-
nents, metacognition, and motivation, let alone the dynamics of
the therapeutic situation that we outlined in the introduction.
The computational analysis demonstrates that high-level behav-
iors, and developmental deficits in these behaviors, are deter-
mined by complex, nonobvious interactions among multiple
factors, some of which cannot be directly measured. Moreover,
the modeling suggested that similar looking behavioral deficits

can arise from different underlying causes, which in turn re-
spond differently to intervention. Perhaps the sensible conclu-
sion would be that to intervene, rather than investigating un-
derlying mechanisms, it would be better to focus on the
behaviors in question and improve them by whatever methods
seem effective. Do the findings clear this bar?

Main Findings

A cognitive mechanism exhibiting a developmental deficit in
the behavior to which it contributes does so because exposure to
naturalistic experience or to typical educational experiences has
not been sufficient to acquire age-appropriate skills. Simply driv-
ing this mechanism harder with more experience may not reme-
diate the deficit, just serve to propel it further along an atypical
trajectory. This perhaps chimes with the general difficulty of
treating developmental disorders, particularly those with pervasive

Figure 10. Individual differences in response to intervention, following two types of intervention. Develop-
mental deficits were caused by an overpruning disorder (Davis, 2017). The x axis shows treatment effect in terms
of change in proportion correct. (a) Distribution for performance on the training set following the normalization
or compensation treatment; (b) distribution for performance on the generalization set following either normal-
ization or compensation treatment. [Population of 1000 networks, intervention for duration of 40 epochs applied
early in development, epoch 30 of a life span of 1000, performance tested at 100 epochs]. See the online article
for the color version of this figure.
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effects such as autism (Charman, 2014a). How can an intervention
succeed where naturalistic experience has not?

The simulations we described pursued four lines of investi-
gation. First, we considered long-term outcomes in the absence
of intervention, exploiting the opportunity of a model, matched
to an atypical profile early in development, to project forward
to the adult state. Results indicated that processing mechanisms
could reach compensated outcomes with expertise in skills less
sensitive to the atypical processing constraints but residual
deficits in other areas. Resolution in early delays occurred
where the cause of the initial deficit was a limitation in plas-
ticity, rather than capacity. Plasticity could be operationalized
in terms of a child performance on learning tasks, whereas
capacity could be operationalized as the quantity of information
that the child can integrate online. Resolution might be accel-
erated by a greater dosage of otherwise naturalistic experience
(i.e., practice). However, early behavioral profiles were poor
predictors of these differential outcomes, and measures of pro-
cessing were needed to improve predictive power (e.g., Fernald
& Marchman, 2012).

In the second line of investigation, we considered methods to
remediate atypical development in a single network. These models
addressed, respectively, remediating disorders arising from a lack
of early stimulation, choosing a better training set to support
atypical processing properties, improving input and output repre-
sentations, and altering the computational properties of the system.
If the deficit in fact arises through insufficient stimulation of the
target mechanism, whether externally in richness of the environ-
ment to which the child is exposed or internally in the information
provided to the single mechanism (for instance, by attentional
orienting systems), then the deficit can be treated by alleviating
this shortfall. This might amount to enriching the environment

(e.g., in the domain of language, with more child-directed speech;
e.g., Suskind & Suskind, 2015); or to training attentional mecha-
nisms (e.g., in the case of young children with autism, training
attention to social cues, e.g., Powell, Wass, Erichsen, & Leekam,
2016; Wass & Porayska-Pomsta, 2014).

Several possibilities arose for accommodating the atypical process-
ing constraints of the target mechanism: of supporting generalization
by additional training on experiences that highlight the structure of the
problem domain; of using intervention to alter the quality of the
mechanism’s input and/or output representations, thereby simplifying
the computational problem that the target mechanism is required to
solve; and of training the target mechanism not on the full cognitive
domain but a subset of the problem adequate for everyday function-
ing. Then there were methods that might alter the atypical computa-
tional constraints themselves, perhaps in systems where stimulation
can cause a change in computational properties; or through delaying
intervention in systems where computational properties mature; or
using biological interventions to directly alter computational proper-
ties (e.g., through pharmacological treatments, or behavioral tech-
niques such as changes in diet, exercise, mindfulness training, action
video game playing, and sleep regimes).

In the third line, we considered interventions to encourage com-
pensation via alternative pathways or mechanisms to produce the
same or similar behavior. Here, computational analysis is less far
advanced, mainly because typical models of development have not
articulated how a complex system with a suite of cognitive mecha-
nisms can recruit and integrate the mechanisms for behavioral mas-
tery. It is therefore not clear how an intervention could alter the
organization of mechanisms to improve task performance. The fact
that clinicians shift from implicit to explicit methods with older
children to encourage compensatory strategies suggests that metacog-
nition might be efficacious in triggering a reorganization of mecha-

Table 4
Standardized Beta Values for Linear Regressions Predicting Individual Differences in Treatment Effect Sizes Following Two Different
Types of Intervention, Normalization and Compensation, in Simulated Networks With a Connectivity Over-Pruning Disorder (Davis,
2017)

Intervention type

Normalization Compensation

Parameter Training set performance Generalization performance Training set performance Generalization performance

Number of hidden units �.016 .012 .011 .023
Sigmoid temperature �.040 �.001 �.098 �.127
Processing noise .028 .032 .007 �.012
Learning rate �.065 �.086 �.053 �.016
Momentum �.014 �.011 �.013 �.011
Initial weight variance �.015 �.002 �.031 �.023
Architecture �.110 �.101 �.112 �.092
Learning algorithm �.006 �.059 �.011 .010
Response threshold �.055 �.063 .000 .036
Pruning onset .022 �.007 .057 .045
Pruning rate �.006 .006 �.062 �.075
Pruning thresholda .014 .082 .039 �.047
Weight decay rate .021 .007 .036 .025
Sparseness of connectivity .027 .065 .049 .052
Richness of environment �.030 �.036 �.028 �.028

Note. N � 790 networks (only those from the population showing a behaviorally assessed performance deficit). Separate regressions were carried out for
performance on the training set and generalization set. The shaded area shows parameters related to the pathological process, elevated values of the pruning
threshold, permitting larger connections to be removed following the onset of pruning. Bold shows significant at p � .05.
a This parameter was set to atypical values to produce the developmental disorder.
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nisms. Metacognitive processes are rarely implemented in models
(though see Hoffman et al., 2018, for a recent model of semantics that
includes mechanisms to control retrieval). We take metacognition to
act by altering internal feedback to the target mechanism, using
executive functions to activate or inhibit different pathways and
mechanisms, or altering attention to dimensions of the stimulus or
required response. Future models that capture such processes are
required for a firmer foundation to explore interventions that prompt
reorganization.

In the fourth line of investigation, we considered individual differ-
ences in response to intervention. More recent polygenic models of
developmental disorders were useful here, because they simulated the
atypical mechanism against a background of typical variation in a
range of developmental factors, or indeed captured the developmental
deficit as lying on a continuum of population-wide variation (Thomas,
Davis et al., 2016). A model investigating the causes of language
delay (Thomas & Knowland, 2014) pointed to the limited power of
early behavioral markers in predicting whether delays would resolve,
because early profiles are largely conditioned by the structure of the
task domain. The model suggested that predictive power could be
increased by measures of underlying cognitive processes (see Fernald
& Marchman, 2012). Notably, the computational properties in the
model that led to resolution of early delay also increased responsive-
ness to intervention. A model investigating individual differences in
response to intervention (Davis, 2017) demonstrated that responses
could be highly variable, and that both differences in the severity of
atypical computational constraints and in other population-wide indi-
vidual differences factors predicted the response. However, there were
stochastic factors, and the predictive factors themselves showed
strong interactions such that much variance in outcome remained
unexplained, despite replicable individual differences in response to
intervention. Finally, a lower level of stimulation from the environ-
ment could also play a role, exaggerating the effect of atypical
computational constraints (see Figure 4), or itself causing deficits in
combination with maturational changes in network connectivity (see
Figure 3). Overall, this avenue of modeling is important to support the
search for stratification biomarkers in research on developmental
disorders, work which seeks to isolate measures (e.g., age, gender,
intellectual ability, comorbidity of deficits) that predict developmental
outcomes and response to intervention.

Computational insights need to be translated to actual interventions.
How might the findings translate into clinical advice? Generalization
might be enhanced by an intervention that highlights key cues, or in
compositional domains, component parts of stimuli, which would
normally be extracted by a typically developing system but need to be
included in the experience of a system with atypical properties. If a
behavior requires learning associations between representations in
different domains, improving these representations may aid an inter-
vention targeting the associations themselves. If there is domain
evidence supporting maturation in the target mechanism, waiting to
apply the intervention may yield benefits, since computational limi-
tations may reduce with time. Note that this is at odds with the general
rubric of intervening earlier at a time of purportedly highly plasticity,
but it requires a specific evidence base of the importance of matura-
tion for a given process (see, e.g., Karmiloff-Smith, Casey, Massand,
Tomalski, & Thomas, 2014, for discussion of the efficacy of CBT to
treat anxiety disorders at different ages, depending on the maturation
of fear extinction mechanisms). For older children, explicit interven-
tions may increase the opportunity to engage alternative mechanisms

and pathways to drive the impaired behavior, to the extent that
metacognition is efficacious in enlisting them. An analysis of the
cognitive domain may indicate subsets of behavior that could provide
adaptive functioning in everyday life, and so form a compensatory
intervention. Lastly, where behavior does not improve through be-
havioral means, then opportunities can be explored for interventions
that alter the computational properties by biological or indirect be-
havioral means.

General principles of intervention. The review of computa-
tional work indicates several important factors in the mechanisms
underlying intervention effects. First, the nature of the computational
deficit matters. Similar behavioral deficits can be produced by differ-
ent underlying computational deficits—all characterized by slower
development—but which then respond differently to intervention.
Some computational deficits will allow eventual resolution of behav-
ioral deficits, with more experience required to deliver the same
amount of behavioral change (such as a reduced learning rate). Some
computational deficits will allow partial resolution of behavioral def-
icits, altering the kinds of abilities that can be supported by the
mechanism (such as a less discriminating activation function). Some
computational deficits permit eventual good solutions with adapted
training regimes (reduced connectivity, supported by a wider range of
training examples). Other computational deficits will restrict the ulti-
mate level of behavior that can be supported by the mechanism,
leading to persisting deficits (such as fewer hidden units).

Second, timing matters. Age was represented in two ways in the
models we considered. It could be indexed by an accumulation of
previous experience. The Harm et al. (2003) reading model demon-
strated a negative effect of prior learning on the potential for inter-
vention, to explain why oral language interventions would have
limited success in alleviating difficulties once the child had started to
read. Even if the oral language intervention alleviates a core problem
in phonology, it cannot undo prior learning linking orthography to
atypical phonology. These suboptimal mappings must be overwritten
by a complementary intervention targeting decoding. Alireza et al.
(2017) found a similar effect in their model of word-finding difficul-
ties. Later in the model’s development, improving strengths (the input
and output representations) became less effective and remediating
weaknesses became more effective. Once pathways had committed to
utilizing the (potentially poor) initial representations, maximizing the
performance of the impaired pathway through intense practice be-
came the best recourse. Age could also index maturational changes in
the computational properties of the learning mechanism. In the model
simulating the effects of insufficient stimulation, late interventions
were less successful because maturational pruning of connectivity had
consolidated an environmental disadvantage into a structural deficit.
Researchers have speculated about the cognitive domains in which
maturational constraints may have most impact on training effects
(Jolles & Crone, 2012). Sensitive periods suggest early intervention is
better, but these reducing profiles of plasticity tend to be limited to
lower level sensory and motor domains, rather than high-level cog-
nitive abilities (Huttenlocher, 2002). In some domains, such as atten-
tion, training may indeed be more effective in later childhood—at
younger ages, the target systems may be computationally immature
(e.g., at 4 years instead of 6 years for attention training; Rueda,
Rothbart, McCandliss, Saccomanno, & Posner, 2005). A life span
perspective suggests that while behavior is changeable at all ages,
behavioral changes rely on the brain systems that are most plastic at
the age when training takes place (Bengtsson et al., 2005).
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Third, the content of the intervention matters. We drew a distinc-
tion between additional practice on items in the child’s natural expe-
rience of the domain and the introduction of new items that highlight
key information for the child, such as indicating compositional struc-
ture. We additionally distinguished information intended to support
generalization of implicit regularities of the cognitive domain to new
situations. We distinguished tasks that directly target a behavior
compared with those that enhance representations that drive the be-
havior. We emphasized principles derived from statistical learning
theory as candidates to improve learning: the richness of learning
experiences, their variability, the provision of novelty in familiar
contexts, and the construction of more complex representations from
simpler ones. These principles were caveated by the possibility that
what works in a system with typical computational learning con-
straints may not have the same effect in systems with atypical con-
straints. Lastly, implementation encouraged a focus on the dosage,
duration, and regime of training. In distributed connectionist models,
modification of the training set can cause interference with prior
established knowledge (so-called catastrophic interference; McClos-
key & Cohen, 1989; Ratcliff, 1990). Interference can be reduced by
lowering the dosage of new information, extending its duration, and
interleaving it with training on the old information.

Two important issues in interventions concern persistence of inter-
ventions effects, and generalization beyond items in the intervention
set. Beginning with persistence, in a review of persistence and fadeout
in the impacts of child and adolescent interventions, Bailey et al.
(2017) argued that impacts are likely to persist either for interventions
that build skills influencing future development (especially that allow
the individual to stay on track in home, school, or community), or in
the case of environments that sustain the gains. Skills most likely to
yield long-term impact are those that are fundamental for success,
malleable through intervention, and that would not develop eventually
in the absence of the intervention. The simulations we considered
either implemented intervention as an alteration to the training set for
a discrete period, or as a permanent alteration. The latter could be
viewed as the provision of a sustaining environment for the interven-
tion (such as training parents to permanently altering their interactions
with the child, perhaps in their level of language input). Simulation
results pointed to persisting benefits of the intervention if the change
to the training set was permanent. Discrete interventions could have
persisting benefits, but only when plasticity was reduced during
training (Davis, 2017), not when it was constant across training. When
plasticity was constant, Yang and Thomas (2015) found that early
interventions showed dissipating effects across development once the
intervention was discontinued, with the exact type of intervention
becoming less relevant. In these models, therefore, early discrete
interventions had long-term benefits if the consequent gains were
consolidated in the structure of the target mechanism. This reveals the
double-edged sword of plasticity: if plasticity is consistent across age,
interventions can be applied at any age, but the effects of early
discrete interventions will be lost; if plasticity reduces with age,
interventions must be early, but their effects will persist.

Turning to generalization, because most of the models considered
here focused on individual mechanisms, there was not scope to
consider the wider issue of far transfer/generalization of training
effects to different skills. Nevertheless, when simulating interven-
tions, at no time did we consider improvement on the intervention
items themselves—in a sense, this would be trivial, because in error-
correction networks, performance on the intervention items will al-

most always improve. We instead considered transfer from the inter-
vention set to items either in the network’s usual experience (the
training set) or to previously unencountered items (the generalization
set). This might explain the relatively small size of the intervention
effects in a number of cases (e.g., see Figure 10). Results also pointed
to the importance of the composition of the intervention set in sup-
porting performance on the training set versus generalization. In
networks with atypical computational properties, generalization
(transfer to novel items) needed additional support from intervention
items selected to highlight implicit regularities in the domain, regu-
larities that typical networks could extract from normal experience.
Atypical networks often best generalized through interpolation rather
than extrapolation, since their properties could not support processing
of items very different from those previously encountered.6

The idea of compensation arose in several contexts, and it is worth
distinguishing the differences senses in which it was used. First, we
saw one principled way to define compensation, by contrasting it with
normalization (Yang & Thomas, 2015). In normalization, the aim of
intervention is to provide the full range of abilities and knowledge that
any typically developing system acquires through exposure to the
normal training set. In this sense of compensation, the aim of the
intervention is to optimize a subset of behaviors present in the original
training set. Other models provided alternative senses of a ‘compen-
sated’ system. These were forcing a system to find a partial solution
to the cognitive domain through overtraining, but leaving residual
deficits; and recruiting other mechanisms to deliver the same or
similar behavior. These three senses would translate to three distinct
approaches to intervening upon an atypical system: (a) selecting an
intervention that targets a subset of the target cognitive domain; (b)
providing greater practice to force greater accuracy from an atypical
system, or simply leaving the system to improve through more expe-
rience; (c) employing explicit strategies to encourage the use of
alternative mechanisms.

Modeling limitations. A key aspect of building models is
simplification. We should be clear, then, the ways in which the
computational work we have reviewed falls short with respect to
the practice of interventions for developmental disorders.

On a broader scale, a focus on cognitive mechanism does not
capture the complexity of the intervention situation, which can
depend on dynamics of the interaction between the child and the
speech and language therapist, and where intervention is some-
times a process of discovery of what works for individual children
in the context of their family and school environment. To some
extent, even fairly mechanism-focused interventions involve sub-
stantial behavioral and interactional interchange between the chil-
dren and the therapist (and parent, if also coached), which may
yield collateral benefits. Simulations do not address some of the
complexities, such as distinguishing the effects of explicit instruc-
tion from implicit, the role of the expertise of the therapist, the
effects of adaptive versus nonadaptive instruction, the distinction
between 1-to-1 versus group instruction, the difference between

6 Plaut (1996) found that simulated recovery of reading following ac-
quired damage was better supported by retraining on atypical semantic
category members than prototypical category members. This can be seen as
an example of encouraging training transfer by interpolation. In Plaut’s
implementation, atypical category members surrounded prototypical cate-
gory members in semantic space. Training on the surrounding members
transferred to those lying in between.

26 THOMAS ET AL.



therapist-delivered and parent-delivered interventions. Moreover,
as Beauchaine et al. argue: “opponents of biological approaches to
prevention and intervention also argue that by emphasizing genetic
and neurobiological processes, we divert attention and resources
away from important psychosocial causes of maladjustment, such
as stress, parenting, and family interactions” (Beauchaine, Neu-
haus, Brenner, & Gatzke-Kopp, 2008, p.748). Work in the imple-
mentation sciences has also pointed to wider limiting, enabling,
and incentivizing factors for changing behavior beyond cognitive
mechanisms, such as resources and policy (e.g., Michie et al.,
2011).

On a narrower scale, our focus was on a limited set of compu-
tational architectures: associative networks. It is possible that other
architectures used in cognitive models, such as self-organizing
maps or attractor networks, might provide different plasticity con-
ditions or effects of intervention on generalization. These remain
to be explored. The observation that interventions for different
language skills required different levels of intensity, duration, and
interleaving (Lindsay et al., 2010) is consistent with the view that
different types of mechanism are in play. Speculatively, it may be
that intensity is more important than duration to change sensory
representations (self-organizing systems); that repeated short
bursts over an extended time are necessary to alter access to
representations (associative systems); and that an extended dura-
tion of practice is necessary to extract regularities in complex
sensorimotor sequences (recurrent networks). In addition to dif-
ferent architectures, it is necessary to consider control systems,
mechanisms of executive function and reward-based learning, to
address the origin and malleability of deficits in behavioral regu-
lation, such as the restricted repertoire of interests in autism, or
attentional deficits in Fragile X syndrome, or impulsivity in
ADHD. Lastly, the model framework captures development in
terms of a plastic mechanism exposed to a structured learning
environment. However, this does not readily lend itself to consid-
ering the possibility that the disorder may change the structure of
the learning environment via indirect pathways. For example, poor
reading levels may reduce the child’s motivation to spend time
reading, or parents may respond differently to children with learn-
ing disabilities than they would typically developing children.

As with Plaut’s (1996) influential connectionist model examin-
ing relearning following acquired damage, we took a simplifying
step of first adopting a single mechanism perspective. However,
behavior is generated by the interaction of multiple mechanisms. A
multiple-mechanism framework is necessary to consider, vari-
ously, interventions to encourage alternative strategies, the use of
executive function skills to compensate for weaknesses in domain-
specific systems (Johnson, 2012), and interventions that might
address deficits in functional connectivity between mechanisms
(e.g., as sometimes proposed as a key deficit in autism; see
Thomas et al., 2016, for discussion). The Best et al. (2015) model
holds some promise in this regard, because it captures separate
behaviors stemming from the operation of components (nonword
repetition, semantic categorization) and from the interaction be-
tween components (naming, comprehension), where each behavior
exhibits its own developmental trajectory. Within such a multiple-
mechanism framework, it is apparent that a single mechanism can
nevertheless serve as a limiting factor on performance, even if it is
not the sole generator of behavior.

Integrating models with data from cognitive neuroscience.
Neuroanatomically constrained models of the reading system and
the semantic system have indicated how paying attention to neu-
roscience data can progress computational modeling and provide a
paradigm for the modeling of intact and impaired cognitive abil-
ities (e.g., Chen et al., 2017; Lambon Ralph, Jefferies, Patterson, &
Rogers, 2017; Ueno et al., 2011). This work brought together
models of normal processing of tasks such as word and object
naming, detailed behavioral profiles from a large cohort of pa-
tients, and facts about the nature of the underlying impairment that
could be related to properties the computational models, which
together could explain a wide range of facts about deficit patterns,
bases of recovery of function, and responsiveness to intervention.
Each component—modeling, behavioral evidence, brain evi-
dence—helped to bootstrap the other. The models suggested new
ways of looking at brain and behavior, but the brain evidence also
constrained how the impairments were simulated, yielding new
testable predictions. These models incorporate multiple compo-
nents and pathways, and simulate several target behaviors (e.g., for
the reading model, repetition, comprehension, and naming). They
have been applied to the simulation of acquired deficits, such as
aphasias, semantic dementia, and visual agnosia, by removing
connections from certain regions of the model, while retraining the
model after damage has then allowed investigation of plasticity
related recovery. Models of developmental deficits and interven-
tions are less well progressed, but ideally would develop in the
same direction (Woollams, 2013). What cognitive neuroscience
data could be used to constrain such computational models?

There is a fast-growing literature identifying differences in brain
structure and function in children with behaviorally defined devel-
opmental disorders. These include differences in global brain
structure (e.g., reduced global gray matter in ADHD, Batty et al.,
2010; increased brain size in autism, Waldie & Saunders, 2014);
differences in local brain structure (e.g., thinner cortex in the pars
opercularis in ADHD, a region involved in inhibitory control,
Batty et al., 2010; smaller amygdala in children with Oppositional
Defiant Disorder [ODD] and Conduct Disorder [CD], a region
involved in emotion processing, Noordermeer, Luman, & Ooster-
laan, 2016); and structural connectivity (e.g., abnormal anatomy of
fronto-striatal white matter tracts in autism; Langen et al., 2012).
Research using functional MRI indicates that in disorders, activa-
tion can be either reduced or increased in relevant areas, or
increased in other areas. For example, in developmental dyslexia,
within the normal reading network, the left temporo-parietal region
and ventral occipito-temporal region are often underactivated,
while the left inferior frontal gyrus is sometimes overactivated as
a result of compensatory articulatory effort, whereas some studies
also report increased activation outside the reading network in the
right hemisphere (Barquero, Davis, & Cutting, 2014). Functional
connectivity is sensitive both to individual differences (e.g., in
working memory, in the link between the fronto-parietal network
and visual areas; Barnes, Woolrich, Baker, Colclough, & Astle,
2016) and to disorders (e.g., abnormal resting state cortical con-
nectivity between frontal and posterior regions in autism; Waldie
& Saunders, 2014).

There are two kinds of challenge in adapting these new neuro-
anatomically constrained architectures to developmental disorders.
The first challenge is to identify the relevant computational deficit
to apply to one or more regions of the architecture, in this case
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prior to development rather than in a trained model for acquired
deficits. For example, Seidenberg (2017) identified several candi-
date neural deficits that might be associated with developmental
dyslexia, broadly falling under the view that signal propagation
between and within regions is noisier (Hancock et al., 2017). These
include greater variability in neural responses to stimuli, conse-
quent reduced functional connectivity between regions, and slower
learning from experiences. Implicated in noisier signaling are
potential disruptions to myelination, changes to neural dynamics
(hyperexcitability), and anomalies in neural migration. This is
quite a wide set of computational anomalies, which in imple-
mented models could have diverse effects on development and
diverse responses to intervention.7

The second challenge is to determine how to intervene on larger,
interactive architectures. As we have seen, in architectures with
multiple mechanisms and pathways, there is the scope for alternate
routes to compensate for anomalies in a given component. This
indeed is what occurs during relearning after focal removal of
connections to capture rehabilitation (Ueno et al., 2011). However,
in a developmental deficit, the system is presumed to be plastic
throughout, and the question arises as to why such compensation
would not have taken place already. What intervention procedure
could trigger reorganization in a way that natural experience could
not? Perhaps it is as simple as giving extra practice on behaviors
most closely linked to those brain regions showing reduced acti-
vation, such as phonological awareness training for temporal re-
gions processing phonology in the case of dyslexia. Once more,
preceding results caution us that even in this simple case, there
may be timing effects, such that unless a narrow locus of devel-
opmental deficit is remediated early, the rest of the system may not
be able to adjust without additional intervention. And of course, in
larger architectures, deficits need not be focal, they could be
widespread, or have spread across development from an initially
more restricted locus.

Cognitive neuroscience can also provide data on response to
intervention. In many cases, behavioral intervention leads to in-
creased activation in previously underactivated regions and
changes in functional connectivity that bring individuals closer to
the patterns observed in typically developing controls, so-called
normalization (e.g., in dyslexia: Ylinen & Kujala, 2015; in autism:
Calderoni et al., 2016; Waldie & Saunders, 2014). However,
sometimes individuals respond to intervention with decreased ac-
tivation or compensatory recruitment of different regions, and
regions that respond to intervention are often not localized but
widespread across the brain. It is an area of active research to
uncover whether such neural markers can predict how individual
children respond to intervention (Barquero et al., 2014). In one
study of reading deficits, Simos et al. (2007) found that children
who responded to intervention exhibited normalization while non-
responders exhibited compensation.

Overall, research from neurodevelopment exhibits similar
themes to the computational modeling work described here—
contrasting normalization with compensation, identifying indi-
vidual differences in response to intervention, distinguishing
resolving from persisting delays, interpreting the implications
of good compensatory outcomes. However, the neuroscience
literature is also very mixed—in part because of heterogeneity
in methods, in part because of heterogeneity in participants. For
example, a difference in one direction between disorder and

control group in one study may be contrasted by a difference in
the opposite direction in another (e.g., in the size of the
amygdala in ODD and CD, Noordermeer et al., 2016, for
review; in the activation of inferior frontal gyrus in dyslexia,
Barquero et al., 2014, for review). Patterns of brain responses to
intervention can be complex. The logic of linking activation or
structure to behavior is not always clear: to remediate a behav-
ioral deficit, is more activation or less activation better? Is
thinner cortex or thicker cortex better? Is more connectivity or
less connectivity better? Karmiloff-Smith (2010) argued that
for brain imaging to advance our understanding of develop-
ment, it has to focus on mechanisms of change, rather than
static snapshots of structural or functional properties. The com-
putational models we have considered are orders of magnitude
simpler than real neural systems. Yet they generate a vocabu-
lary to consider how mechanisms of change may cause atypical
development and constrain response to intervention. As we saw
with attempts to link Thomas and Knowland’s (2014) notions of
capacity and plasticity to brain properties, the continuing chal-
lenge is to drive closer links between cognitive models and
brain systems.

Conclusion: The Importance of Narrowing the gap

Advances in mechanistic, computational models of develop-
mental disorders (and more widely, individual variability) set the
foundation for an investigation of intervention. Implementation
can provide a driver for advances in theory, although questions
remain about whether the simplification necessary for modeling
omits key dimensions of the intervention situation, notably its
usual basis in social interaction. It is important to narrow the gap
between theories of deficit and theories of intervention, to place
intervention on an evidence-driven, mechanistic basis. Practice-
based approaches naturally emphasize behavioral consequences of
intervention and are less focused on understanding mechanisms:
for these approaches, what is important is what works behaviorally
and what can enable success. This emphasis on proximate goal is
one of the reasons for the gap. However, understanding the active
agent underpinning a successful intervention is key to understand-
ing what will work in which contexts for what disorders, as well as
the flexibility of the application of a given technique (Law et al.,
2008). As Nathan and Wagner Alibali (2010) argue, to narrow the
gap, we need a combination of scaling-up from the elemental,
mechanistic models of cognitive science and scaling-down from
the complexity of real-life intervention situations. That in turn
requires clinicians to be interested in mechanism, despite it being
an understandably lower priority than behavioral outcomes for the
children they treat.

7 Currently, no straightforward behavioral intervention follows from the
neural noise hypothesis of developmental dyslexia. Hancock et al. (2017)
argue that the hypothesis points to interventions via brain-stimulation
techniques, such as transcranial direct current stimulation and transcranial
magnetic stimulation, or pharmacological agents, to address the hypothe-
sized hyperexcitability of neurons.
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