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Many people think that some 
students can work to high levels 
and some cannot because of the 

brains they are born with, but this 
idea has been resoundingly 

disproved. Study after study has 
shown the incredible capacity of 

brains to grow and change within a 
remarkably short period of time
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Why are children so 
different in how well they 
do at school? … We have 
assumed in education that 
this is all environmental



The bottom line is, genetics 
is incredibly important, it’s so 
much more important than 
anyone ever thought… The 

differences between children 
are substantially due to DNA 

differences



You know, Michael Gove’s 
Phonics Screening Check 
for 6-year-olds is one of 
the most heritable tests 

around. About 70% 
heritable
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due to the environment



So blaming teachers, 
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differences between children 
is unwarranted
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The high heritability of educational achievement
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Because educational achievement at the end of compulsory schooling
represents a major tipping point in life, understanding its causes and
correlates is important for individual children, their families, and
society. Here we identify the general ingredients of educational
achievement using a multivariate design that goes beyond intelli-
gence to consider a wide range of predictors, such as self-efficacy,
personality, and behavior problems, to assess their independent and
joint contributions to educational achievement. We use a genetically
sensitive design to address the question of why educational achieve-
ment is so highly heritable. We focus on the results of a United
Kingdom-wide examination, the General Certificate of Secondary
Education (GCSE), which is administered at the end of compulsory
education at age 16. GCSE scores were obtained for 13,306 twins at
age 16, whomwe also assessed contemporaneously on 83 scales that
were condensed to nine broad psychological domains, including
intelligence, self-efficacy, personality, well-being, and behavior prob-
lems. The mean of GCSE core subjects (English, mathematics, science)
is more heritable (62%) than the nine predictor domains (35–58%).
Each of the domains correlates significantly with GCSE results, and
these correlations are largely mediated genetically. The main finding
is that, although intelligence accounts for more of the heritability of
GCSE than any other single domain, the other domains collectively
account for about as much GCSE heritability as intelligence. Together
with intelligence, these domains account for 75%of theheritability of
GCSE. We conclude that the high heritability of educational achieve-
ment reflects many genetically influenced traits, not just intelligence.

academic achievement | twin studies | behavioral genetics |
general cognitive ability | personalized learning

Education is one of society’s biggest and most expensive en-
vironmental interventions in children’s development, ac-

counting for more than 6% of the gross domestic product in
many countries (1). Differences among children in their educa-
tional achievement, especially culminating at the end of compul-
sory schooling, propel children on different lifelong pathways that
affect higher education, occupation, and even health and mortality
(1–4). Not only are differences in educational achievement im-
portant to society and to children as individuals, they are also
a focal concern for parents (5, 6). For these reasons, it is important
to understand the causes and correlates of differences among
children in their educational achievement.
Educational achievement refers to mastery of specific content,

including knowledge and skills for subjects such as literacy, nu-
meracy, and science. The word achievement, in contrast to
ability, connotes accomplishments by dint of effort. It is often
assumed that effort is relatively more environmentally influenced
than ability and thus that differences between children in their
educational achievement are environmental in origin, reflecting

differences among classrooms, schools, and parents (7, 8). This
assumption is reasonable because, for example, most children will
not learn to read or do arithmetic unless they are taught. How-
ever, genetic research has shown that individual differences in
educational achievement are substantially heritable (9–11). In-
deed, we have shown that educational achievement is significantly
more heritable than intelligence in the early school years (12). We
have recently found high heritability (58%) for the results of
a nationwide examination, the General Certificate of Secondary
Education (GCSE), which is administered in the United Kingdom
at the end of compulsory education at age 16 (13).
The present study asks why individual differences in educational

achievement at the end of compulsory education are so highly
heritable, focusing on children’s characteristics. Most phenotypic
studies of the correlates of educational achievement have in-
vestigated intelligence or working memory (14–16). Correlations
between IQ and educational achievement range between 0.4 and
0.7 (17). However, dozens of other traits have also been shown to
relate to educational achievement, such as self-efficacy and moti-
vation (18–21), emotional intelligence (22–25), personality (26–29),
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Differences among children in educational achievement are
highly heritable from the early school years until the end of
compulsory education at age 16, when UK students are
assessed nationwide with standard achievement tests [Gen-
eral Certificate of Secondary Education (GCSE)]. Genetic re-
search has shown that intelligence makes a major contribution
to the heritability of educational achievement. However, we
show that other broad domains of behavior such as person-
ality and psychopathology also account for genetic influence
on GCSE scores beyond that predicted by intelligence. To-
gether with intelligence, these domains account for 75% of
the heritability of GCSE scores. These results underline the
importance of genetics in educational achievement and its
correlates. The results also support the trend in education
toward personalized learning.
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prosocial behavior (5), well-being (30), goals (31), curiosity (32),
beliefs about intelligence (33), self-efficacy (34), behavior prob-
lems (35, 36), health (37), and children’s perceptions of their
home environment (38) and their school environment (39).
These traits are intercorrelated, which suggests the need for
multivariate studies that can consider their joint and separate
contributions to educational achievement. However, few broad
multivariate phenotypic studies have been reported, although
several studies have included intelligence in addition to another
variable in predicting educational achievement (28, 40, 41).
Recently, a theoretical model that attempted to integrate re-
search on predictors of educational achievement focused on in-
telligence, specific interests, and personality, especially intellectual
curiosity and conscientiousness (42).
Phenotypic correlations between such traits and educational

achievement can be mediated genetically or environmentally,
which is important because environmentally driven associations
may be better targets for intervention. Relatively few studies
have used genetically sensitive designs that can disentangle genetic
and environmental sources of phenotypic correlations between
children’s traits and their educational achievement. Genetically
sensitive studies have largely focused on intelligence, consistently
showing that the phenotypic correlation between intelligence and
educational achievement is mediated genetically to a substantial
extent (43–50). Only a handful of studies have considered genetic
contributions to educational achievement from other traits in ad-
dition to intelligence, such as self-efficacy (51),motivation (52, 53),
personality (54), behavior problems (55–58), and perceptions of
home environment (59) and school environment (60). Because
these behavioral traits are correlated with each other and with
educational achievement, adding up their separate genetic con-
tributions to educational achievement could exceed the heritability
of educational achievement. Multivariate genetic research is
needed that considers the joint and independent contributions of
a wide range of predictors to the heritability of educational achieve-
ment, taking into account the intercorrelations among the predictors.
The only example to date is a twin study of longitudinal stability of
teachers’ grades at ages 11–17 for 800 pairs of twins that also
reported multivariate genetic analyses, in which the heritability of
teachers’ grades at age 11 were largely explained collectively by
genetic factors involved in intelligence, engagement, and exter-
nalizing behavior problems (61). This report led us to hypothesize
that the substantial heritability of test scores at the end of com-
pulsory education could almost entirely be explained by a larger set
of predictors that includes self-efficacy, personality, and well-being.

The Current Study
We included diverse behavioral correlates of educational
achievement in a multivariate genetic design, which allowed us to
consider the joint and separate contributions of these traits to
the heritability of educational achievement, taking into account
the intercorrelations among the traits. Our study was sufficiently
large to achieve adequate power to discriminate genetic and
environmental estimates of variance and covariance between
these behavioral correlates and educational achievement. The
sample was from the UK Twins Early Development Study (62)
and included 6,653 pairs of twins assessed on a set of examina-
tions of educational achievement, called the GCSE, administered
nationwide under standardized conditions at the end of compul-
sory education, typically at age 16. We created a composite GCSE
score based on the three compulsory core subjects of English,
mathematics, and science, which correlated 0.70 on average (see
Methods for details about the sample and measures).
We focused on nine broad domains of candidate correlates of

educational achievement: intelligence, self-efficacy, personality,
well-being, parent-rated behavior problems, child-rated behavior
problems, health, perceived school environment, and perceived
home environment. Each domain is represented by a general

composite rather than analyzing each of the scales within each
domain. The reason for using composite indices is that they make
the multivariate genetic analyses manageable and they provide an
overview of the extent to which these diverse domains of behavior—
considered separately and jointly—explain the heritability of edu-
cational achievement. In addition, our study was limited to mea-
sures included in the assessment of 16-y-old twins in the Twins Early
Development Study (TEDS). Although the TEDS assessment was
extensive, including 83 scales, it did not include all of the dozens of
variables that have been reported to be associated with educational
achievement. These two limitations—the use of general composite
indices and the noninclusion of some measures—are conservative in
the sense that including more fine-grained measures and additional
variables might explain even more of the heritability of educa-
tional achievement. Conversely, if, as we hypothesized, most of
the heritability of educational achievement is accounted for by
these composite indices, this suggests that other predictors do not
make a major independent contribution to the heritability of ed-
ucational achievement after accounting for the predictors in the
current study.

Results
The twin method was used to conduct univariate, bivariate, and
multivariate analyses of genetic and environmental influences on
the variance and covariance of the GCSE core subjects com-
posite (henceforth just GCSE) and its correlates (see Methods
for a description of the twin method and analyses). Table S1
shows means and SDs for the unadjusted GCSE core measure by
the five twin groups arising from sex and zygosity. The observed
mean sex differences are very small [males 8.86 (1.23), females
8.96 (1.21)]; the difference is statistically significant because of
the very large sample size. Sex, zygosity, and their interaction
account for less than 1% of the variance, and for subsequent
analyses, after outliers were removed, variables were age and sex
regressed and normalized using van der Waerden transformation
as explained in Methods. Full sex limitation genetic modeling has
previously been reported for GCSE and found only very minor
sex differences in genetic and environmental estimates (13). In
addition, the only other multivariate genetic analysis of this type
found little evidence of sex differences (61). For these reasons
and to increase power, the present analyses are based on the
total sample, combining sexes.

Univariate Genetic Analyses. GCSE is more highly heritable (62%)
than any of the nine predictor variables (35–58%), as summarized
in Fig. 1. Shared environmental influence, which could be due to
shared family or school environments, accounted for about
a quarter of the variance of GCSE (26%) and were 0% for

Fig. 1. Model fitting results for additive genetic (A), shared environment
(C), and nonshared environment (E) components of variance for GCSE and
nine predictors.
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Pleiotropy across academic 
subjects at the end of compulsory 
education
Kaili Rimfeld1, Yulia Kovas1,2,3, Philip S. Dale4 & Robert Plomin1

Research has shown that genes play an important role in educational achievement. A key question 
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Secondary Education) examination results for 12,632 twins. Using the twin method that compares 
identical and non-identical twins, we found that all GCSE subjects were substantially heritable, and 
that various academic subjects correlated substantially both phenotypically and genetically, even 
after controlling for intelligence. Further evidence for pleiotropy in academic achievement was found 
using a method based directly on DNA from unrelated individuals. We conclude that performance 
��ơ��������������������������������������������������������������������������������������������������
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Academic achievement at the end of compulsory education is of major societal interest and is critical for 
students because the exam results play a substantial role in making decisions about further education 
and employment. Furthermore, educational achievement has been shown to be an independent predictor 
of many life outcomes, including career success, health and even life expectancy1,2. It is reasonable to 
assume that schools have a major effect on educational achievement, because children have to be taught, 
e.g., how to read and how to solve mathematical problems; however, children differ in their educational 
achievement within the same school and even the same classroom, indicating that factors other than 
school differences must be involved in individual differences in achievement3,4. Twin studies have shown 
that educational achievement is highly heritable in early and middle school years; that is, individual dif-
ferences in academic achievement are to a large extent (around 60%) explained by inherited differences 
in their DNA sequence5–13. The heritability for academic achievement in core subjects is also substantial 
at the end of compulsory education in UK14.

A key unresolved question raised by the results of previous studies is the genetic architecture under-
lying the heritability of academic subjects. Do the same or specific genetic factors influence the wide 
range of academic subjects taught at school? Previous research has used multivariate genetic analysis to 
study the shared aetiology between different academic subjects. Multivariate genetic analysis estimates 
the genetic contribution to the phenotypic correlation between traits and derives the genetic correlation, 
which corresponds to the correlation between genes that affect the two traits, independent of the her-
itabilities of the traits; the genetic correlation is an index of pleiotropy (the multiple effects of genes)3. 
Previous multivariate genetic studies, which have been limited to the core academic subjects of English, 
mathematics, and science at early stages of schooling15, have reported substantial genetic correlations 
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academic achievement measures was even higher phenotypically (.49–.77) and genetically (.51–88) than 
with intelligence, as shown in Table 2.

Next, we removed the effect of intelligence from the GCSE exam grades using the regression method. 
After removing the effect of intelligence from the exam grades, the heritability of the achievement meas-
ures did not change much, ranging from 45–58%. The additive genetic (A), shared environmental (C) 
and non-shared environmental (E) proportions of variance for GCSE exam scores, independent of intel-
ligence, are shown in Fig.  2. (Twin intraclass correlations and full model fit statistics with confidence 
intervals are listed in Supplementary Table S2.) Importantly, the heritability estimates for GCSE inde-
pendent of intelligence are highly similar to the estimates uncorrected for intelligence, and although 
not a formal test of significance, the overlapping confidence intervals of the estimates provide further 
evidence for highly similar aetiology for GCSE results with and without controlling for intelligence (see 
Supplementary Tables S1 and S2). GCSE mathematics is an exception in that its heritability estimate of 
.65 dropped to .45 when intelligence was regressed out, suggesting that intelligence may play a stronger 
role in the heritability of mathematics performance.

N Whole 
sample

Male Female MZm DZm MZf DZf DZos Sex Zyg Sex * 
Zyg

R2

Intelligence 4,481 0 (.99) 0.05 
(1.01) 

(-0.03) 
(0.98) 

0.002 
(.99) 

0.06 
(1.03) 

(-0.06) 
(0.98) 

(-0.05) 
(.99) 

0.003 
(0.99) 

0.47 1.92 0.66 <0.01 

English  12,099 8.91 (1.21) 8.69 
(1.25) 

9.10 
(1.16) 

8.65 
(1.26) 

8.74 
(1.22) 

9.06 
(1.15) 

9.08 
(1.18) 

8.93 
(1.23) 

169.7** 4.53** 0.06 0.03 

Mathematics 12,013 8.94 (1.45) 9.00 
(1.44) 

8.89 
(1.34) 

8.98 
(1.42) 

9.04 
(1.43) 

8.87 
(1.44) 

8.89 
(1.46) 

8.94 
(1.45) 

5.79* 1.16 0.14 <0.01 

Science 11,250 9.01 (1.30) 9.01 
(1.29) 

9.01 
(1.31) 

9.01 
(1.28) 

9.03 
(1.28) 

9.00 
(1.29) 

9.00 
(1.34) 

9.01 
(1.30) 

1.54 0.001 0.62 <0.01 

Humanities 10,183 9.00 (1.46) 8.80 
(1.48) 

9.18 
(1.41) 

8.75 
(1.52) 

8.86 
(1.45) 

9.15 
(1.40) 

9.18 
(1.44) 

8.99 
(1.45) 

103.57** 4.23* 0.17 0.02 

Second language  6,896 8.82 (1.42) 8.65 
(1.46) 

8.96 
(1.36) 

8.61 
(1.47) 

8.69 
(1.47) 

8.92 
(1.36) 

8.94 
(1.36) 

8.83 
(1.41) 

43.45** 2.86 0.01 0.01 

Art 5,460 9.08 (1.27) 8.86 
(1.32) 

9.20 
(1.22) 

8.85 
(1.29) 

8.90 
(1.29) 

9.16 
(1.25) 

9.24 
(1.22) 

9.08 
(1.27) 

49.71** 0.88 0.89 0.02 

Business informatics 4,661 8.96 (1.26) 8.83 
(1.29) 

9.09 
(1.22) 

8.88 
(1.33) 

8.86 
(1.29) 

9.13 
(1.18) 

9.03 
(1.21) 

8.96 
(1.26) 

25.52** 0.02 1.03 0.01 

Table 1.  GCSE grades and intelligence means and (standard deviations). The maximum GCSE grade is 
11 and the minimum grade is 4, representing grades A* to G. N =  sample size after exclusions (individuals); 
MZ= monozygotic; DZ= dizygotic; m =  male; f =  female; os =  opposite sex. ANOVA analyses were conducted 
after randomly selecting one twin per pair in order to test the main effect of sex and zygosity and the 
interaction between them. Results =  F statistics, r2 =  proportion of variance explained; * p< .05; ** p< .01.

Figure 1. Univariate model-fitting results. A =  additive genetic, C =  shared environmental, E =  non-shared 
environmental components of variance for GCSE exam grades and intelligence.
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Multivariate genetic analyses also indicated that the association between GCSE scores did not change 
substantially phenotypically or genetically after removing the effect of intelligence. As shown in Table 3, 
phenotypic correlations were substantial between a wide range of GCSE results independent of intelli-
gence (.38–.69), as were genetic correlations (.49–81). The wide range of shared environmental correla-
tions independent of intelligence (.01–.92) indicates that shared environmental influences vary between 
different subjects. The shared environmental correlations between core academic subjects of English, 
mathematics and science were substantial (.66–92), indicating that to a large extent the same shared envi-
ronmental factors explain individual differences in these subjects, although the overall effect of shared 
environment was modest, accounting for about 20% of the variance. A possible exception is GCSE art, 
which seems influenced by different shared environmental factors compared to core academic subjects 
when the variance of intelligence is removed from exam grades.

An alternative, mathematically equivalent, way of investigating the extent to which intelligence medi-
ates pleiotropy between GCSE subjects is to use multivariate Cholesky decomposition. Entering intel-
ligence as the first variable in the model tests (i) the genetic overlap between intelligence and GCSE 
subjects, and (ii) the extent to which genetic overlap between GCSE subjects remains after controlling for 
intelligence. The results of Cholesky decomposition confirm the results of the correlated factor solution 
(Tables 2 and 3), as indicated by the standardized residual paths estimates presented in Supplementary 
Table S3. The paths for the first latent variable (A1 in Supplementary Table S3) with intelligence entered 

Intelligence English  Mathematics Science Humanities Second  
language  

Art Business  
informatics

hPr
Intelligence 1        

English 0.52 1 
(0.50-0.54) 

Mathematics 0.56 0.69 1      
)07.0-96.0()85.0-35.0(

Science 0.48 0.66 0.71 1 
(0.46-0.51) (0.65-0.67) (0.70-0.72) 

Humanities 0.48 0.77 0.69 0.67 1    
)96.0-66.0()07.0-86.0()87.0-67.0()05.0-54.0(

Second language 0.48 0.71 0.67 0.63 0.68 1 
(0.45-0.51) (0.70-0.73) (0.65-0.68) (0.62-0.65) (0.66-0.69) 

135.075.094.005.075.063.0trA
0()25.0-84.0()95.0-55.0()93.0-33.0( .46-0.51) (0.55-0.59) (0.50-0.55)   

Business informatics 0.44 0.62 0.63 0.58 0.62 0.57 0.49 1 
(0.40-0.47) (0.60-0.63) (0.61-0.64) (0.56-0.60) (0.60-0.63) (0.55-0.60) (0.46-0.51) 

Table 2.  Correlated factor solution for multivariate genetic analyses, showing phenotypic correlations 
(rPh), genetic correlations (rG), shared-environmental (rC) and non-shared environmental (rE) 
correlations between intelligence and GCSE exam grades, with 95% confidence intervals in parentheses.

Figure 2. Univariate model-fitting results with GCSE exam grades corrected for intelligence. A =  additive 
genetic, C =  shared environmental, E =  non-shared environmental components of variance.
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Pleiotropy across academic 
subjects at the end of compulsory 
education
Kaili Rimfeld1, Yulia Kovas1,2,3, Philip S. Dale4 & Robert Plomin1

Research has shown that genes play an important role in educational achievement. A key question 
���������������������������������������ơ������ơ�����������������������������������������������������
������������������������Ǥ������������������������������������������������������������ƪ���������ǡ�����
�������������ǡ��������������������������������Ǧ͙͞���Ǧ������������������
����ȋ
������������Ƥ��������
Secondary Education) examination results for 12,632 twins. Using the twin method that compares 
identical and non-identical twins, we found that all GCSE subjects were substantially heritable, and 
that various academic subjects correlated substantially both phenotypically and genetically, even 
after controlling for intelligence. Further evidence for pleiotropy in academic achievement was found 
using a method based directly on DNA from unrelated individuals. We conclude that performance 
��ơ��������������������������������������������������������������������������������������������������
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Academic achievement at the end of compulsory education is of major societal interest and is critical for 
students because the exam results play a substantial role in making decisions about further education 
and employment. Furthermore, educational achievement has been shown to be an independent predictor 
of many life outcomes, including career success, health and even life expectancy1,2. It is reasonable to 
assume that schools have a major effect on educational achievement, because children have to be taught, 
e.g., how to read and how to solve mathematical problems; however, children differ in their educational 
achievement within the same school and even the same classroom, indicating that factors other than 
school differences must be involved in individual differences in achievement3,4. Twin studies have shown 
that educational achievement is highly heritable in early and middle school years; that is, individual dif-
ferences in academic achievement are to a large extent (around 60%) explained by inherited differences 
in their DNA sequence5–13. The heritability for academic achievement in core subjects is also substantial 
at the end of compulsory education in UK14.

A key unresolved question raised by the results of previous studies is the genetic architecture under-
lying the heritability of academic subjects. Do the same or specific genetic factors influence the wide 
range of academic subjects taught at school? Previous research has used multivariate genetic analysis to 
study the shared aetiology between different academic subjects. Multivariate genetic analysis estimates 
the genetic contribution to the phenotypic correlation between traits and derives the genetic correlation, 
which corresponds to the correlation between genes that affect the two traits, independent of the her-
itabilities of the traits; the genetic correlation is an index of pleiotropy (the multiple effects of genes)3. 
Previous multivariate genetic studies, which have been limited to the core academic subjects of English, 
mathematics, and science at early stages of schooling15, have reported substantial genetic correlations 
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A genome-wide association study (GWAS) of educational attainment was conducted in a
discovery sample of 101,069 individuals and a replication sample of 25,490. Three
independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913,
rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient
of determination R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear
polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational
attainment and cognitive function. Genes in the region of the loci have previously been
associated with health, cognitive, and central nervous system phenotypes, and bioinformatics
analyses suggest the involvement of the anterior caudate nucleus. These findings provide
promising candidate SNPs for follow-up work, and our effect size estimates can anchor power
analyses in social-science genetics.

Twin and family studies suggest that a broad
range of psychological traits (1), economic
preferences (2–4), and social and economic

outcomes (5) are moderately heritable. Discov-
ery of genetic variants associated with such traits
may lead to insights regarding the biological path-
ways underlying human behavior. If the predic-
tive power of a set of genetic variants considered
jointly is sufficiently large, then a “risk score” that
aggregates their effects could be useful to control
for genetic factors that are otherwise unobserved,
or to identify populations with certain genetic
propensities, for example in the context of med-
ical intervention (6).

To date, however, few if any robust asso-
ciations between specific genetic variants and
social-scientific outcomes have been identified
probably because existing work [for a review,
see (7)] has relied on samples that are too small
[for discussion, see (4, 6, 8, 9)]. In this paper, we
apply to a complex behavioral trait—educational
attainment—an approach to gene discovery that
has been successfully applied to medical and
physical phenotypes (10), namely meta-analyzing
data from multiple samples.

The phenotype of educational attainment is
available in many samples with genotyped par-
ticipants (5). Educational attainment is influenced
by many known environmental factors, including
public policies. Educational attainment is strong-
ly associated with social outcomes, and there is a

well-documented health-education gradient (5, 11).
Estimates suggest that around 40% of the variance
in educational attainment is explained by genetic
factors (5). Furthermore, educational attainment is
moderately correlated with other heritable char-
acteristics (1), including cognitive function (12)
and personality traits related to persistence and
self-discipline (13).

To create a harmonized measure of educa-
tional attainment, we coded study-specific mea-
sures using the International StandardClassification
of Education (1997) scale (14). We analyzed a
quantitative variable defined as an individual’s
years of schooling (“EduYears”) and a binary var-
iable for College completion (“College”). Col-
lege may be more comparable across countries,
whereas EduYears contains more information
about individual differences within countries.

A genome-wide association study (GWAS)
meta-analysis was performed across 42 cohorts
in the discovery phase. The overall discovery sam-
ple comprises 101,069 individuals for EduYears
and 95,427 for College. Analyses were performed
at the cohort level according to a prespecified
analysis plan, which restricted the sample to Cau-
casians (to help reduce stratification concerns).
Educational attainment was measured at an age
at which participants were very likely to have com-
pleted their education [more than 95% of the sam-
ple was at least 30 (5)]. On average, participants
have 13.3 years of schooling, and 23.1% have a

College degree. To enable pooling of GWAS re-
sults, all studies conducted analyses with data im-
puted to the HapMap 2 CEU (r22.b36) reference
set. To guard against population stratification, the
first four principal components of the genotypic
data were included as controls in all the cohort-
level analyses. All study-specific GWAS results
were quality controlled, cross-checked, and meta-
analyzed using single genomic control and a
sample-size weighting scheme at three indepen-
dent analysis centers.

At the cohort level, there is little evidence of
general inflation of P values. As in previous GWA
studies of complex traits (15), the Q-Q plot of
the meta-analysis exhibits strong inflation. This
inflation is not driven by specific cohorts and is
expected for a highly polygenic phenotype even
in the absence of population stratification (16).

From the discovery stage, we identified one
genome-wide–significant locus (rs9320913, P =
4.2 × 10–9) and three suggestive loci (defined as
P < 10–6) for EduYears. For College, we identified
two genome-wide–significant loci (rs11584700,
P = 2.1 × 10–9, and rs4851266, P = 2.2 × 10–9)
and an additional four suggestive loci (Table 1).
We conducted replication analyses in 12 addition-
al, independent cohorts that became available af-
ter the completion of the discovery meta-analysis,
using the same pre-specified analysis plan. For
both EduYears and College, the replication sam-
ple comprises 25,490 individuals.

For each of the 10 loci that reached at least
suggestive significance, we brought forward for
replication the single-nucleotide polymorphism
(SNP) with the lowest P value. The three genome-
wide–significant SNPs replicate at the Bonferroni-
adjusted 5% level, with point estimates of the
same sign and similar magnitude (Fig. 1 and
Table 1). The seven loci that did not reach genome-
wide significance did not replicate (the effect went
in the anticipated direction in five out of seven
cases). The meta-analytic findings are not driven
by extreme results in a small number of cohorts
(see Phet in Table 1), by cohorts from a specific
geographic region (figs. S7 to S15), or by a sin-
gle sex (figs. S3 to S6). Given the high corre-
lation between EduYears and College (5), it
is unsurprising that the set of SNPs with low
P values exhibit considerable overlap in the two
analyses (tables S8 and S9).

The observed effect sizes of the three replicated
individual SNPs are small [see (5) for discus-
sion]. For EduYears, the strongest effect identi-
fied (rs9320913) explains 0.022% of phenotypic
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excluded cohort. We constructed the scores using
SNPs whose nominal P values fall below a cer-
tain threshold, ranging from 5 × 10−8 (only the
genome-wide–significant SNPs were included)
to 1 (all SNPs were included).

We replicated this procedure with two of
the largest cohorts in the study, both of which
are family-based samples [Queensland Institute
of Medical Research (QIMR) and Swedish Twin
Registry (STR)]. The results suggest that edu-
cational attainment is a highly polygenic trait
(Fig. 2 and table S23): the amount of variance
accounted for increases as the P value threshold
becomes less conservative (i.e., includes more
SNPs). The linear polygenic score from all mea-
sured SNPs accounts for ≈2% (P = 1.0 × 10−29)
of the variance in EduYears in the STR sam-
ple and ≈3% (P = 7.1 × 10−24) in the QIMR
sample.

To explore one of the many potential mediat-
ing endophenotypes, we examined how much
the same polygenic scores (constructed to ex-
plain EduYears or College) could explain in-
dividual differences in cognitive function. Though
it would have been preferable to explore a richer
set of mediators, this variable was available in
STR, a data set where we had access to the
individual-level genotypic data. The Swedish
Enlistment Battery (used for conscription) had

previously been administered to measure cogni-
tive function in a subset of males (5, 17). The
estimated R2 ≈ 2.5% (P < 1.0 × 10−8) for cog-
nitive function is actually slightly larger than the
fraction of variance in educational attainment
captured by the score in the STR sample. One
possible interpretation is that some of the SNPs
used to construct the score matter for education
through their stronger, more direct effects on cog-
nitive function (5). A mediation analysis (table
S24) provides tentative evidence consistent with
this interpretation.

The polygenic score remains associated with
educational attainment and cognitive function
in within-family analyses (table S25). Thus, these
results appear robust to possible population
stratification.

If the size of the training sample used to es-
timate the linear polygenic score increased, the
explanatory power of the score in the prediction
sample would be larger, because the coefficients
used for constructing the score would be es-
timated with less error. In (5), we report projec-
tions of this increase. We also assess, at various
levels of explanatory power, the benefits from
using the score as a control variable in a ran-
domized educational intervention (5). An as-
ymptotic upper bound for the explanatory power
of a linear polygenic score is the additive ge-

netic variance across individuals captured by
current SNP microarrays. Using combined data
from STR and QIMR, we estimate that this upper
bound is 22.4% (SE = 4.2%) in these samples (5)
(table S12).

Placed in the context of the GWAS literature
(10), our largest estimated SNP effect size of 0.02%
is more than an order of magnitude smaller than
those observed for height and body mass index
(BMI): 0.4% (15) and 0.3% (18), respectively.
For comparison with the R2 value of 2% from our
linear polygenic score for education, estimated from
a sample of 120,000, a score for height reached
10%, estimated from a sample of 180,000 (15),
and a score for BMI, using only the top 32 SNPs,
reached 1.4% (18). Taken together, our findings
suggest that the genetic architecture of complex
behavioral traits is far more diffuse than that of
complex physical traits.

Existing claims of “candidate gene” asso-
ciations with complex social-science traits have
reported widely varying effect sizes, many with
R2 values more than 100 times larger than those
we have found (4, 6). For complex social-science
phenotypes that are likely to have a genetic ar-
chitecture similar to educational attainment, our
estimate of 0.02% can serve as a benchmark for
conducting power analyses and evaluating the
plausibility of existing findings in the literature.
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Fig. 1. Regional association plots of replicated loci associated with
educational attainment. (A) rs9320913, (B) rs11584700, (C) rs4851266.
The plots are centered on the SNPs with the lowest P values in the discovery
stage (purple diamonds). The R2 values are from the CEU HapMap 2 sam-
ples. The CEU HapMap 2 recombination rates are indicated in blue on the
right y axes. The figures were created with LocusZoom (http://csg.sph.umich.
edu/locuszoom/). Mb, megabases.
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A genome-wide association study (GWAS) of educational attainment was conducted in a
discovery sample of 101,069 individuals and a replication sample of 25,490. Three
independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913,
rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient
of determination R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear
polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational
attainment and cognitive function. Genes in the region of the loci have previously been
associated with health, cognitive, and central nervous system phenotypes, and bioinformatics
analyses suggest the involvement of the anterior caudate nucleus. These findings provide
promising candidate SNPs for follow-up work, and our effect size estimates can anchor power
analyses in social-science genetics.

Twin and family studies suggest that a broad
range of psychological traits (1), economic
preferences (2–4), and social and economic

outcomes (5) are moderately heritable. Discov-
ery of genetic variants associated with such traits
may lead to insights regarding the biological path-
ways underlying human behavior. If the predic-
tive power of a set of genetic variants considered
jointly is sufficiently large, then a “risk score” that
aggregates their effects could be useful to control
for genetic factors that are otherwise unobserved,
or to identify populations with certain genetic
propensities, for example in the context of med-
ical intervention (6).

To date, however, few if any robust asso-
ciations between specific genetic variants and
social-scientific outcomes have been identified
probably because existing work [for a review,
see (7)] has relied on samples that are too small
[for discussion, see (4, 6, 8, 9)]. In this paper, we
apply to a complex behavioral trait—educational
attainment—an approach to gene discovery that
has been successfully applied to medical and
physical phenotypes (10), namely meta-analyzing
data from multiple samples.

The phenotype of educational attainment is
available in many samples with genotyped par-
ticipants (5). Educational attainment is influenced
by many known environmental factors, including
public policies. Educational attainment is strong-
ly associated with social outcomes, and there is a

well-documented health-education gradient (5, 11).
Estimates suggest that around 40% of the variance
in educational attainment is explained by genetic
factors (5). Furthermore, educational attainment is
moderately correlated with other heritable char-
acteristics (1), including cognitive function (12)
and personality traits related to persistence and
self-discipline (13).

To create a harmonized measure of educa-
tional attainment, we coded study-specific mea-
sures using the International StandardClassification
of Education (1997) scale (14). We analyzed a
quantitative variable defined as an individual’s
years of schooling (“EduYears”) and a binary var-
iable for College completion (“College”). Col-
lege may be more comparable across countries,
whereas EduYears contains more information
about individual differences within countries.

A genome-wide association study (GWAS)
meta-analysis was performed across 42 cohorts
in the discovery phase. The overall discovery sam-
ple comprises 101,069 individuals for EduYears
and 95,427 for College. Analyses were performed
at the cohort level according to a prespecified
analysis plan, which restricted the sample to Cau-
casians (to help reduce stratification concerns).
Educational attainment was measured at an age
at which participants were very likely to have com-
pleted their education [more than 95% of the sam-
ple was at least 30 (5)]. On average, participants
have 13.3 years of schooling, and 23.1% have a

College degree. To enable pooling of GWAS re-
sults, all studies conducted analyses with data im-
puted to the HapMap 2 CEU (r22.b36) reference
set. To guard against population stratification, the
first four principal components of the genotypic
data were included as controls in all the cohort-
level analyses. All study-specific GWAS results
were quality controlled, cross-checked, and meta-
analyzed using single genomic control and a
sample-size weighting scheme at three indepen-
dent analysis centers.

At the cohort level, there is little evidence of
general inflation of P values. As in previous GWA
studies of complex traits (15), the Q-Q plot of
the meta-analysis exhibits strong inflation. This
inflation is not driven by specific cohorts and is
expected for a highly polygenic phenotype even
in the absence of population stratification (16).

From the discovery stage, we identified one
genome-wide–significant locus (rs9320913, P =
4.2 × 10–9) and three suggestive loci (defined as
P < 10–6) for EduYears. For College, we identified
two genome-wide–significant loci (rs11584700,
P = 2.1 × 10–9, and rs4851266, P = 2.2 × 10–9)
and an additional four suggestive loci (Table 1).
We conducted replication analyses in 12 addition-
al, independent cohorts that became available af-
ter the completion of the discovery meta-analysis,
using the same pre-specified analysis plan. For
both EduYears and College, the replication sam-
ple comprises 25,490 individuals.

For each of the 10 loci that reached at least
suggestive significance, we brought forward for
replication the single-nucleotide polymorphism
(SNP) with the lowest P value. The three genome-
wide–significant SNPs replicate at the Bonferroni-
adjusted 5% level, with point estimates of the
same sign and similar magnitude (Fig. 1 and
Table 1). The seven loci that did not reach genome-
wide significance did not replicate (the effect went
in the anticipated direction in five out of seven
cases). The meta-analytic findings are not driven
by extreme results in a small number of cohorts
(see Phet in Table 1), by cohorts from a specific
geographic region (figs. S7 to S15), or by a sin-
gle sex (figs. S3 to S6). Given the high corre-
lation between EduYears and College (5), it
is unsurprising that the set of SNPs with low
P values exhibit considerable overlap in the two
analyses (tables S8 and S9).

The observed effect sizes of the three replicated
individual SNPs are small [see (5) for discus-
sion]. For EduYears, the strongest effect identi-
fied (rs9320913) explains 0.022% of phenotypic
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GBX2 * 1 nerve development 1.4×10-9 N 
GBX2 * 1 neural tube development 2.0×10-9 Y 
GBX2  1 regionalization 2.5×10-9 Y 
GBX2 * 1 neuron fate commitment 2.6×10-9 N 
GBX2 * 1 positive regulation of neuron differentiation 4.6×10-9 N 
GBX2  1 pattern specification process 5.0×10-9 Y 
GBX2 * 1 cranial nerve development 6.0×10-9 N 
GBX2 * 1 neuron fate specification 9.5×10-9 N 
GBX2  1 morphogenesis of embryonic epithelium 2.3×10-8 N 
GBX2 * 1 negative regulation of glial cell differentiation 2.5×10-8 N 
GBX2  1 cochlea morphogenesis 4.6×10-8 N 
GBX2 * 1 parasympathetic nervous system development 5.3×10-8 N 
GBX2 * 1 neuromuscular process 5.8×10-8 N 
GBX2  1 cell fate specification 5.9×10-8 N 
GBX2  5 Basal cell carcinoma 9.3×10-6 N 
GBX2  2 Notch binding 1.5×10-5 N 
GBX2  5 Renal cell carcinoma 5.2×10-5 N 
GBX2  5 Notch signaling pathway 8.2×10-5 N 
GBX2  5 Aldosterone-regulated sodium reabsorption 3.2×10-4 N 
GBX2  5 Proximal tubule bicarbonate reclamation 6.6×10-4 N 
HIST1H family  3 nucleosome 3.5×10-82 Y 
HIST1H family  1 regulation of gene silencing 2.5×10-80 N 
HIST1H family  1 nucleosome assembly 8.3×10-77 Y 
HIST1H family  3 protein-DNA complex 2.6×10-75 Y 
HIST1H family  1 chromatin assembly 1.6×10-74 Y 
HIST1H family  1 nucleosome organization 2.6×10-73 Y 
HIST1H family  1 protein-DNA complex assembly 7.3×10-73 Y 
HIST1H family  5 Systemic lupus erythematosus 5.9×10-72 Y 
HIST1H family  1 chromatin assembly or disassembly 1.6×10-71 Y 
HIST1H family  1 protein-DNA complex subunit organization 1.1×10-70 Y 
HIST1H family  1 DNA packaging 3.3×10-67 Y 
HIST1H family  1 DNA conformation change 5.5×10-65 Y 
HIST1H family  3 chromatin 6.8×10-60 Y 
HIST1H family  4 RNA Polymerase I Promoter Opening 1.2×10-55 Y 
HIST1H family  1 regulation of megakaryocyte differentiation 5.3×10-51 Y 
HIST1H family  1 cellular macromolecular complex assembly 1.5×10-48 Y 
HIST1H family  4 RNA Polymerase I Chain Elongation 3.2×10-48 Y 
HIST1H family  4 RNA Polymerase I Promoter Clearance 4.1×10-47 Y 
HIST1H family  4 RNA Polymerase I Transcription 2.2×10-46 Y 
HIST1H family  4 Meiotic Recombination 7.3×10-43 Y 
HIST1H family  4 Amyloids 1.7×10-42 Y 
HIST1H family  4 Packaging Of Telomere Ends 7.4×10-42 Y 
HIST1H family  4 Activation of DNA fragmentation factor 8.4×10-38 Y 
HIST1H family  4 Apoptosis induced DNA fragmentation 8.4×10-38 N 
HIST1H family  1 megakaryocyte differentiation 3.9×10-37 Y 
HIST1H family  1 chromatin organization 4.3×10-36 Y 
HIST1H family  1 CenH3-containing nucleosome assembly at centromere 5.0×10-36 Y 
HIST1H family  1 DNA replication-independent nucleosome assembly 5.0×10-36 Y 
HIST1H family  1 DNA replication-independent nucleosome organization 5.0×10-36 Y 
HIST1H family  4 Deposition of New CENPA-containing Nucleosomes at the 

Centromere 
7.3×10-36 Y 

HIST1H family  4 Nucleosome assembly 7.3×10-36 N 
HIST1H family  4 Meiotic Synapsis 7.4×10-34 Y 
HIST1H family  1 chromatin remodeling at centromere 3.5×10-33 Y 
HIST1H family  4 Meiosis 8.7×10-33 Y 
HIST1H family  4 RNA Polymerase I, RNA Polymerase III, and Mitochondrial 

Transcription 
9.0×10-33 Y 

HIST1H family  1 gene silencing 2.8×10-32 N 
HIST1H family  1 histone exchange 3.4×10-32 Y 
HIST1H family  3 chromosomal part 3.6×10-32 Y 
HIST1H family  1 ATP-dependent chromatin remodeling 8.7×10-30 Y 
HIST1H family  4 Telomere Maintenance 1.6×10-28 Y 
HIST1H family  4 Chromosome Maintenance 4.7×10-19 Y 
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HIST1H family  4 Transcription 4.3×10-17 Y 
HIST1H family  4 Apoptotic execution phase 4.9×10-15 N 
HMGN4  5 Basal transcription factors 9.8×10-4 N 
IP6K3  1 muscle cell fate commitment 6.9×10-12 N 
IP6K3  1 striated muscle cell development 1.6×10-10 N 
IP6K3  1 skeletal muscle tissue development 4.4×10-10 N 
IP6K3  1 skeletal muscle organ development 6.0×10-10 N 
IP6K3  1 muscle system process 1.8×10-9 N 
IP6K3 * 1 neuromuscular junction development 1.9×10-9 N 
IP6K3  1 muscle organ development 2.3×10-9 N 
IP6K3  3 I band 3.2×10-9 N 
IP6K3  3 myofibril 3.9×10-9 N 
IP6K3  1 muscle structure development 4.5×10-9 N 
IP6K3  1 muscle contraction 4.8×10-9 N 
IP6K3  3 contractile fiber 7.0×10-9 N 
IP6K3  1 muscle fiber development 1.9×10-8 N 
IP6K3  2 structural constituent of muscle 1.9×10-8 N 
IP6K3  1 multicellular organismal movement 2.1×10-8 N 
IP6K3  1 muscle cell development 2.1×10-8 N 
IP6K3  1 musculoskeletal movement 2.1×10-8 N 
IP6K3  3 sarcomere 2.8×10-8 N 
IP6K3  3 contractile fiber part 3.7×10-8 N 
IP6K3  1 skeletal muscle contraction 4.7×10-8 N 
IP6K3  1 striated muscle contraction 1.0×10-7 N 
IP6K3 * 2 acetylcholine-activated cation-selective channel activity 1.6×10-7 N 
IP6K3  1 muscle cell differentiation 2.7×10-7 N 
IP6K3  2 titin binding 3.8×10-7 N 
IP6K3  3 sarcoplasm 5.1×10-7 N 
IP6K3  1 skeletal muscle fiber development 7.2×10-7 N 
IP6K3  3 acetylcholine-gated channel complex 7.3×10-7 N 
IP6K3  3 Z disc 8.2×10-7 N 
IP6K3  3 myosin filament 9.7×10-7 N 
IP6K3  1 striated muscle cell differentiation 1.4×10-6 N 
IP6K3  4 Acetylcholine Binding And Downstream Events 1.6×10-6 N 
IP6K3 * 4 Activation of Nicotinic Acetylcholine Receptors 1.6×10-6 N 
IP6K3 * 4 Postsynaptic nicotinic acetylcholine receptors 1.6×10-6 N 
IP6K3  3 sarcoplasmic reticulum 2.0×10-6 N 
IP6K3 * 4 Presynaptic nicotinic acetylcholine receptors 2.8×10-6 N 
IP6K3  5 Hypertrophic cardiomyopathy (HCM) 4.5×10-6 N 
IP6K3  1 striated muscle tissue development 4.7×10-6 N 
IP6K3  1 actin-mediated cell contraction 4.9×10-6 N 
IP6K3 * 3 neuromuscular junction 5.3×10-6 N 
IP6K3  4 Striated Muscle Contraction 6.3×10-6 N 
IP6K3 * 5 Cardiac muscle contraction 1.3×10-5 N 
IP6K3 * 2 acetylcholine binding 1.3×10-5 N 
IP6K3  3 sarcolemma 2.6×10-5 N 
IP6K3  4 Muscle contraction 3.2×10-5 N 
IP6K3 * 2 acetylcholine receptor activity 3.4×10-5 N 
IP6K3  3 actin cytoskeleton 4.1×10-5 N 
IP6K3  3 sarcoplasmic reticulum membrane 5.7×10-5 N 
IP6K3  3 myosin complex 9.8×10-5 N 
IP6K3 * 4 Highly calcium permeable postsynaptic nicotinic acetylcholine 

receptors 
1.0×10-4 N 

IP6K3  3 pseudopodium 1.2×10-4 N 
IP6K3  5 Dilated cardiomyopathy 1.3×10-4 N 
ITPR3  3 lateral plasma membrane 8.4×10-11 N 
ITPR3  3 basal plasma membrane 2.5×10-10 N 
ITPR3  1 hemidesmosome assembly 2.9×10-9 N 
ITPR3  3 basal part of cell 3.6×10-9 N 
ITPR3  5 VEGF signaling pathway 1.5×10-8 N 
ITPR3  3 laminin complex 1.8×10-7 N 
ITPR3  2 protein kinase C activity 2.4×10-7 N 
ITPR3  4 Cell junction organization 3.3×10-7 N 
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MDM4  2 protein-lysine N-methyltransferase activity 8.0×10-6 N 
MDM4  2 histone methyltransferase activity 8.7×10-6 N 
MDM4  2 S-adenosylmethionine-dependent methyltransferase activity 1.3×10-5 N 
MDM4  2 protein serine/threonine/tyrosine kinase activity 3.6×10-5 N 
MDM4  4 PI3K/AKT activation 9.3×10-5 N 
MDM4  3 heterogeneous nuclear ribonucleoprotein complex 1.3×10-4 N 
PIK3C2B * 1 regulation of oligodendrocyte differentiation 1.1×10-7 N 
PIK3C2B  4 Nitric oxide stimulates guanylate cyclase 2.0×10-7 N 
PIK3C2B  2 Ras guanyl-nucleotide exchange factor activity 1.1×10-6 N 
PIK3C2B  2 guanyl-nucleotide exchange factor activity 2.6×10-6 N 
PIK3C2B  4 Platelet homeostasis 6.3×10-6 N 
PIK3C2B  5 B cell receptor signaling pathway 7.3×10-5 N 
PIK3C2B * 5 Axon guidance 1.2×10-4 N 
RNF123  1 heme biosynthetic process 6.4×10-26 N 
RNF123  1 porphyrin-containing compound biosynthetic process 5.8×10-24 N 
RNF123  1 tetrapyrrole biosynthetic process 5.8×10-24 N 
RNF123  1 porphyrin-containing compound metabolic process 1.7×10-22 N 
RNF123  1 tetrapyrrole metabolic process 1.7×10-22 N 
RNF123  1 heme metabolic process 1.0×10-20 N 
RNF123  4 Metabolism of porphyrins 2.3×10-15 N 
RNF123  1 hemoglobin metabolic process 8.2×10-15 N 
RNF123  1 protein deubiquitination 4.1×10-13 N 
RNF123  1 protein modification by small protein removal 2.6×10-11 N 
RNF123  2 polyubiquitin binding 2.1×10-10 N 
RNF123  1 protein K48-linked deubiquitination 6.4×10-10 N 
RNF123  1 cofactor biosynthetic process 6.7×10-10 N 
RNF123  5 Porphyrin and chlorophyll metabolism 8.5×10-9 N 
RNF123  1 response to arsenic-containing substance 1.8×10-8 N 
RNF123  1 actin filament capping 2.2×10-8 N 
RNF123  1 pigment biosynthetic process 3.1×10-8 N 
RNF123  1 negative regulation of actin filament depolymerization 3.8×10-8 N 
RNF123  2 ubiquitin-specific protease activity 5.2×10-8 N 
RNF123  2 small conjugating protein binding 5.3×10-8 N 
RNF123  2 ubiquitin binding 1.1×10-7 N 
RNF123  2 small conjugating protein-specific protease activity 2.9×10-7 N 
RNF123  2 ferrous iron binding 3.1×10-7 N 
RNF123  2 protein serine/threonine/tyrosine kinase activity 3.9×10-7 N 
RNF123  3 CUL4 RING ubiquitin ligase complex 1.1×10-6 N 
RNF123  5 Valine, leucine and isoleucine biosynthesis 1.1×10-4 N 
RNF123  5 ABC transporters 1.1×10-4 N 
RNF123  5 SNARE interactions in vesicular transport 4.0×10-4 N 
RNF123  5 Non-small cell lung cancer 4.1×10-4 N 
STK24  2 Rho guanyl-nucleotide exchange factor activity 2.6×10-8 N 
STK24  4 G alpha (12/13) signalling events 1.8×10-7 N 
STK24  5 Adherens junction 1.8×10-7 N 
STK24  4 NRAGE signals death through JNK 8.7×10-7 N 
STK24  2 receptor signaling protein activity 2.3×10-6 N 
STK24  5 Thyroid cancer 2.2×10-4 N 
STK24  5 Regulation of actin cytoskeleton 4.2×10-4 N 
STK24  5 Renal cell carcinoma 5.8×10-4 N 
STK24  5 ErbB signaling pathway 7.7×10-4 N 
TANK  4 NOD1/2 Signaling Pathway 1.3×10-14 N 
TANK  4 Death Receptor Signalling 3.1×10-14 N 
TANK  4 Extrinsic Pathway for Apoptosis 3.1×10-14 N 
TANK  1 pattern recognition receptor signaling pathway 8.2×10-13 N 
TANK  1 toll-like receptor signaling pathway 8.9×10-13 N 
TANK  1 positive regulation of T cell mediated immunity 9.8×10-13 N 
TANK  1 innate immune response-activating signal transduction 1.3×10-12 N 
TANK  1 positive regulation of innate immune response 4.2×10-12 N 
TANK  1 positive regulation of leukocyte mediated immunity 6.6×10-12 N 
TANK  1 positive regulation of lymphocyte mediated immunity 6.6×10-12 N 
TANK  1 positive regulation of NF-kappaB transcription factor activity 7.5×10-12 N 
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GBX2 * 1 nerve development 1.4×10-9 N 
GBX2 * 1 neural tube development 2.0×10-9 Y 
GBX2  1 regionalization 2.5×10-9 Y 
GBX2 * 1 neuron fate commitment 2.6×10-9 N 
GBX2 * 1 positive regulation of neuron differentiation 4.6×10-9 N 
GBX2  1 pattern specification process 5.0×10-9 Y 
GBX2 * 1 cranial nerve development 6.0×10-9 N 
GBX2 * 1 neuron fate specification 9.5×10-9 N 
GBX2  1 morphogenesis of embryonic epithelium 2.3×10-8 N 
GBX2 * 1 negative regulation of glial cell differentiation 2.5×10-8 N 
GBX2  1 cochlea morphogenesis 4.6×10-8 N 
GBX2 * 1 parasympathetic nervous system development 5.3×10-8 N 
GBX2 * 1 neuromuscular process 5.8×10-8 N 
GBX2  1 cell fate specification 5.9×10-8 N 
GBX2  5 Basal cell carcinoma 9.3×10-6 N 
GBX2  2 Notch binding 1.5×10-5 N 
GBX2  5 Renal cell carcinoma 5.2×10-5 N 
GBX2  5 Notch signaling pathway 8.2×10-5 N 
GBX2  5 Aldosterone-regulated sodium reabsorption 3.2×10-4 N 
GBX2  5 Proximal tubule bicarbonate reclamation 6.6×10-4 N 
HIST1H family  3 nucleosome 3.5×10-82 Y 
HIST1H family  1 regulation of gene silencing 2.5×10-80 N 
HIST1H family  1 nucleosome assembly 8.3×10-77 Y 
HIST1H family  3 protein-DNA complex 2.6×10-75 Y 
HIST1H family  1 chromatin assembly 1.6×10-74 Y 
HIST1H family  1 nucleosome organization 2.6×10-73 Y 
HIST1H family  1 protein-DNA complex assembly 7.3×10-73 Y 
HIST1H family  5 Systemic lupus erythematosus 5.9×10-72 Y 
HIST1H family  1 chromatin assembly or disassembly 1.6×10-71 Y 
HIST1H family  1 protein-DNA complex subunit organization 1.1×10-70 Y 
HIST1H family  1 DNA packaging 3.3×10-67 Y 
HIST1H family  1 DNA conformation change 5.5×10-65 Y 
HIST1H family  3 chromatin 6.8×10-60 Y 
HIST1H family  4 RNA Polymerase I Promoter Opening 1.2×10-55 Y 
HIST1H family  1 regulation of megakaryocyte differentiation 5.3×10-51 Y 
HIST1H family  1 cellular macromolecular complex assembly 1.5×10-48 Y 
HIST1H family  4 RNA Polymerase I Chain Elongation 3.2×10-48 Y 
HIST1H family  4 RNA Polymerase I Promoter Clearance 4.1×10-47 Y 
HIST1H family  4 RNA Polymerase I Transcription 2.2×10-46 Y 
HIST1H family  4 Meiotic Recombination 7.3×10-43 Y 
HIST1H family  4 Amyloids 1.7×10-42 Y 
HIST1H family  4 Packaging Of Telomere Ends 7.4×10-42 Y 
HIST1H family  4 Activation of DNA fragmentation factor 8.4×10-38 Y 
HIST1H family  4 Apoptosis induced DNA fragmentation 8.4×10-38 N 
HIST1H family  1 megakaryocyte differentiation 3.9×10-37 Y 
HIST1H family  1 chromatin organization 4.3×10-36 Y 
HIST1H family  1 CenH3-containing nucleosome assembly at centromere 5.0×10-36 Y 
HIST1H family  1 DNA replication-independent nucleosome assembly 5.0×10-36 Y 
HIST1H family  1 DNA replication-independent nucleosome organization 5.0×10-36 Y 
HIST1H family  4 Deposition of New CENPA-containing Nucleosomes at the 

Centromere 
7.3×10-36 Y 

HIST1H family  4 Nucleosome assembly 7.3×10-36 N 
HIST1H family  4 Meiotic Synapsis 7.4×10-34 Y 
HIST1H family  1 chromatin remodeling at centromere 3.5×10-33 Y 
HIST1H family  4 Meiosis 8.7×10-33 Y 
HIST1H family  4 RNA Polymerase I, RNA Polymerase III, and Mitochondrial 

Transcription 
9.0×10-33 Y 

HIST1H family  1 gene silencing 2.8×10-32 N 
HIST1H family  1 histone exchange 3.4×10-32 Y 
HIST1H family  3 chromosomal part 3.6×10-32 Y 
HIST1H family  1 ATP-dependent chromatin remodeling 8.7×10-30 Y 
HIST1H family  4 Telomere Maintenance 1.6×10-28 Y 
HIST1H family  4 Chromosome Maintenance 4.7×10-19 Y 

Terms directly related 
to neuronal or central 

nervous system function 
are marked with an 

asterisk *
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Early experiences are critical for shaping brain development1.   
In humans, maturation of the brain regions responsible for 
higher cognitive functioning continues throughout childhood 
and adolescence, and thus the window for experience-dependent  
plasticity is long2.

Childhood socioeconomic status (SES), characterized by parental 
educational attainment, occupation and income3, is associated with 
early experiences that are important for cognitive development4.  
A burgeoning field has emerged at the intersection of the neural and 
social sciences, investigating associations between childhood SES 
and brain function5. SES is linked to children’s neurocognitive func-
tion across numerous domains, including language, self-regulation, 
memory and socio-emotional processing6–11.

Neuroanatomical changes are the hallmarks of experience-based 
neural plasticity12. Recent research has begun examining links 
between SES and structural brain development13–22. Nearly all studies 
to date have focused on cortical volume. However, volume represents 
a composite of cortical surface area and cortical thickness, two mor-
phometric properties of the brain that are evolutionarily, genetically 
and developmentally distinct23.

Cortical thickness decreases rapidly in childhood and early adoles-
cence, followed by a more gradual thinning, and ultimately plateauing 
in early adulthood2,23–25. This cortical thinning is thought to relate 
to synaptic pruning and increases in myelination expanding into the 
neuropil, both of which would appear as decreases in gray matter on 
magnetic resonance imaging (MRI)2. Surface area is thought to be 
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Family income, parental education and brain structure 
in children and adolescents
Kimberly G Noble1,2,32, Suzanne M Houston3–5,32, Natalie H Brito6, Hauke Bartsch7, Eric Kan4,5,  
Joshua M Kuperman8–10, Natacha Akshoomoff10–12, David G Amaral10,13, Cinnamon S Bloss10,14,  
Ondrej Libiger15, Nicholas J Schork16, Sarah S Murray10,17, B J Casey10,18, Linda Chang10,19,  
Thomas M Ernst10,19, Jean A Frazier10,20, Jeffrey R Gruen10,21–23, David N Kennedy10,20, Peter Van Zijl10,24,25, 
Stewart Mostofsky10,25, Walter E Kaufmann10,26,27, Tal Kenet10,27,28, Anders M Dale8–10,29–31,  
Terry L Jernigan10,11,12,29 & Elizabeth R Sowell4,5,10

Socioeconomic disparities are associated with differences in cognitive development. The extent to which this translates to 
disparities in brain structure is unclear. We investigated relationships between socioeconomic factors and brain morphometry, 
independently of genetic ancestry, among a cohort of 1,099 typically developing individuals between 3 and 20 years of age. 
Income was logarithmically associated with brain surface area. Among children from lower income families, small differences in 
income were associated with relatively large differences in surface area, whereas, among children from higher income families, 
similar income increments were associated with smaller differences in surface area. These relationships were most prominent in 
regions supporting language, reading, executive functions and spatial skills; surface area mediated socioeconomic differences 
in certain neurocognitive abilities. These data imply that income relates most strongly to brain structure among the most 
disadvantaged children.
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between income and either left or right hippocampal volumes. This 
latter finding contrasts with some previous reports, which have found 
that income, but not education, is associated with hippocampal size14,21; 
although other studies have found associations between paternal educa-
tion and right hippocampal size17 or between hippocampal size and a 
composite of parent education and occupation19. Educational attainment 
may moderate the effect of age on hippocampal volume in adulthood13; 
we found no such interaction among children and adolescents.

Finally, adjusting for age, age2, scanner, sex, GAF and whole brain 
volume, there were no associations between either parent education or 
family income and left or right amygdala volumes. Findings regarding 
socioeconomic disparities in amygdala structure have been mixed, with 
some studies reporting significant associations14,21 and others not17,19. 
Such differences may be the result of differing socioeconomic distribu-
tions or other demographic differences in the samples studied.

SES-cognition links mediated by surface area
Correlations between four neurocognitive assessments of interest 
from the US National Institutes of Health Toolbox Cognition Battery 
(flanker inhibitory control test, list sorting working memory test, pic-
ture vocabulary test and oral reading recognition test; Online Methods)  
and surface area were examined. Significant correlations were found 
between income and all four cognitive assessments (flanker, r = 0.078; 

working memory, r = 0.143; vocabulary, r = 0.206; reading, r = 0.095; 
all P values < 0.001), as well as between surface area and all four cog-
nitive assessments (flanker, r = 0.194; working memory, r = 0.212; 
vocabulary, r = 0.149; reading, r = 0.118; all P values < 0.001). We 
therefore conducted mediation analyses to investigate the extent to 
which surface area accounted for links between income and each 
cognitive assessment, adjusting for age, age2, scanner, sex and GAF. 
For the flanker task, the direct effect of income on flanker scores 
(  = 0.050, t(1,074) = 2.68, P = 0.007) was reduced when control-
ling for surface area (  = 0.043, t(1074) = 2.27, P = 0.023). A Sobel 
test indicated that this reduction was significant, implying a partial 
mediation (Sobel z = 2.4, P = 0.02; Supplementary Fig. 2). Similarly, 
for the working memory task, the direct effect of income (  = 0.069, 
t(1,084) = 3.77, P = 0.0002) was reduced when controlling for surface 
area (  = 0.061, t(1,084) = 3.31, P = 0.001). The Sobel test was sig-
nificant, again implying partial mediation (Sobel z = 2.6, P = 0.009; 
Supplementary Fig. 3). Unlike past work in which lobar brain volumes  
did not mediate associations between SES and IQ38, these results imply 
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Figure 1 Parent education is linearly associated with cortical surface 
area (N = 1,099). (a) Multiple regression showed that, when adjusting 
for age, age2, scanner, sex and genetic ancestry, parental education total 
was significantly associated (P < 0.05, FDR corrected) with children’s 
cortical surface area in a number of regions. (b) The association between 
parent education and cortical surface area was mapped to visualize 
regional specificity. Left hemisphere regions where this association was 
significant included the left superior, middle, and inferior temporal gyri, 
inferior frontal gyrus, orbito-frontal gyrus, and the precuneus. Right 
hemisphere regions included the middle temporal gyrus, inferior temporal 
gyrus, supramarginal gryus, middle frontal gyrus and superior frontal 
gyrus. Bilateral regions included the fusiform gyrus, temporal pole, insula, 
superior frontal gyrus, medial frontal gyrus, the cingulate cortex, inferior 
parietal cortex, lateral occipital cortex and postcentral gyrus. 
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Figure 2 Family income is logarithmically related to cortical surface area 
(N = 1,099). (a) Multiple regression showed that, when adjusting for age, 
age2, scanner, sex and genetic ancestry, family income was significantly 
logarithmically associated with children’s total cortical surface area,  
such that the steepest gradient was present at the lower end of the income 
spectrum (  = −0.19, P = 0.004). Income data are presented on the 
untransformed scale, fitted with a logarithmic curve, to enable visualization 
of this asymptotic relationship. This differential rate of change is visualized 
with the brain maps, where the steepest change in cortical surface area  
per unit income is visualized with warm colors and the shallowest change  
in cortical surface area per unit income is visualized with cool colors.  
(b) When adjusting for age, age2, scanner, sex and genetic ancestry, ln(family 
income) was significantly associated with surface area in widespread regions 
of children’s bilateral frontal, temporal and parietal lobes. Relationships were 
strongest in bilateral inferior temporal, insula and inferior frontal gyrus, and 
in the right occipital and medial prefrontal cortex. (c) When adjusting for age, 
age2, scanner, sex, genetic ancestry and parent education, ln(family income) 
was significantly associated with surface area in a smaller number of regions 
including bilateral inferior frontal, cingulate, insula and inferior temporal 
regions, and in the right superior frontal and precuneus cortex. Maps are 
thresholded at P < 0.05 (FDR correction). More stringent FDR correction 
thresholds of 0.01 and 0.001 are shown in Supplementary Figure 1a–c.
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between income and either left or right hippocampal volumes. This 
latter finding contrasts with some previous reports, which have found 
that income, but not education, is associated with hippocampal size14,21; 
although other studies have found associations between paternal educa-
tion and right hippocampal size17 or between hippocampal size and a 
composite of parent education and occupation19. Educational attainment 
may moderate the effect of age on hippocampal volume in adulthood13; 
we found no such interaction among children and adolescents.

Finally, adjusting for age, age2, scanner, sex, GAF and whole brain 
volume, there were no associations between either parent education or 
family income and left or right amygdala volumes. Findings regarding 
socioeconomic disparities in amygdala structure have been mixed, with 
some studies reporting significant associations14,21 and others not17,19. 
Such differences may be the result of differing socioeconomic distribu-
tions or other demographic differences in the samples studied.

SES-cognition links mediated by surface area
Correlations between four neurocognitive assessments of interest 
from the US National Institutes of Health Toolbox Cognition Battery 
(flanker inhibitory control test, list sorting working memory test, pic-
ture vocabulary test and oral reading recognition test; Online Methods)  
and surface area were examined. Significant correlations were found 
between income and all four cognitive assessments (flanker, r = 0.078; 

working memory, r = 0.143; vocabulary, r = 0.206; reading, r = 0.095; 
all P values < 0.001), as well as between surface area and all four cog-
nitive assessments (flanker, r = 0.194; working memory, r = 0.212; 
vocabulary, r = 0.149; reading, r = 0.118; all P values < 0.001). We 
therefore conducted mediation analyses to investigate the extent to 
which surface area accounted for links between income and each 
cognitive assessment, adjusting for age, age2, scanner, sex and GAF. 
For the flanker task, the direct effect of income on flanker scores 
(  = 0.050, t(1,074) = 2.68, P = 0.007) was reduced when control-
ling for surface area (  = 0.043, t(1074) = 2.27, P = 0.023). A Sobel 
test indicated that this reduction was significant, implying a partial 
mediation (Sobel z = 2.4, P = 0.02; Supplementary Fig. 2). Similarly, 
for the working memory task, the direct effect of income (  = 0.069, 
t(1,084) = 3.77, P = 0.0002) was reduced when controlling for surface 
area (  = 0.061, t(1,084) = 3.31, P = 0.001). The Sobel test was sig-
nificant, again implying partial mediation (Sobel z = 2.6, P = 0.009; 
Supplementary Fig. 3). Unlike past work in which lobar brain volumes  
did not mediate associations between SES and IQ38, these results imply 
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area (N = 1,099). (a) Multiple regression showed that, when adjusting 
for age, age2, scanner, sex and genetic ancestry, parental education total 
was significantly associated (P < 0.05, FDR corrected) with children’s 
cortical surface area in a number of regions. (b) The association between 
parent education and cortical surface area was mapped to visualize 
regional specificity. Left hemisphere regions where this association was 
significant included the left superior, middle, and inferior temporal gyri, 
inferior frontal gyrus, orbito-frontal gyrus, and the precuneus. Right 
hemisphere regions included the middle temporal gyrus, inferior temporal 
gyrus, supramarginal gryus, middle frontal gyrus and superior frontal 
gyrus. Bilateral regions included the fusiform gyrus, temporal pole, insula, 
superior frontal gyrus, medial frontal gyrus, the cingulate cortex, inferior 
parietal cortex, lateral occipital cortex and postcentral gyrus. 
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Figure 2 Family income is logarithmically related to cortical surface area 
(N = 1,099). (a) Multiple regression showed that, when adjusting for age, 
age2, scanner, sex and genetic ancestry, family income was significantly 
logarithmically associated with children’s total cortical surface area,  
such that the steepest gradient was present at the lower end of the income 
spectrum (  = −0.19, P = 0.004). Income data are presented on the 
untransformed scale, fitted with a logarithmic curve, to enable visualization 
of this asymptotic relationship. This differential rate of change is visualized 
with the brain maps, where the steepest change in cortical surface area  
per unit income is visualized with warm colors and the shallowest change  
in cortical surface area per unit income is visualized with cool colors.  
(b) When adjusting for age, age2, scanner, sex and genetic ancestry, ln(family 
income) was significantly associated with surface area in widespread regions 
of children’s bilateral frontal, temporal and parietal lobes. Relationships were 
strongest in bilateral inferior temporal, insula and inferior frontal gyrus, and 
in the right occipital and medial prefrontal cortex. (c) When adjusting for age, 
age2, scanner, sex, genetic ancestry and parent education, ln(family income) 
was significantly associated with surface area in a smaller number of regions 
including bilateral inferior frontal, cingulate, insula and inferior temporal 
regions, and in the right superior frontal and precuneus cortex. Maps are 
thresholded at P < 0.05 (FDR correction). More stringent FDR correction 
thresholds of 0.01 and 0.001 are shown in Supplementary Figure 1a–c.
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Abstract

Childhood socioeconomic status (SES) predicts executive function (EF), but fundamental aspects of this relation remain
unknown: the developmental course of the SES disparity, its continued sensitivity to SES changes during that course, and the
features of childhood experience responsible for the SES–EF relation. Regarding course, early disparities would be expected to
grow during development if caused by accumulating stressors at a given constant level of SES. Alternatively, they would narrow
if schooling partly compensates for the effects of earlier deprivation, allowing lower-SES children to ‘catch up’. The potential for
later childhood SES change to affect EF is also unknown. Regarding mediating factors, previous analyses produced mixed
answers, possibly due to correlation amongst candidate mediators. We address these issues with measures of SES, working
memory and planning, along with multiple candidate mediators, from the NICHD Study of Early Childcare (n = 1009). Early
family income-to-needs and maternal education predicted planning by first grade, and income-to-needs predicted working
memory performance at 54 months. Effects of early SES remained consistent through middle childhood, indicating that the
relation between early indicators of SES and EF emerges in childhood and persists without narrowing or widening across early
and middle childhood. Changes in family income-to-needs were associated with significant changes in planning and trend-level
changes in working memory. Mediation analyses supported the role of early childhood home characteristics in explaining the
association between SES and EF, while early childhood maternal sensitivity was specifically implicated in the association
between maternal education and planning. Early emerging and persistent SES-related differences in EF, partially explained by
characteristics of the home and family environment, are thus a potential source of socioeconomic disparities in achievement and
health across development.

Research highlights

• Lower family socioeconomic status (SES) predicts
worse performance on tasks of executive function at
the youngest age measured, in early childhood.

• Family SES does not predict the rate of growth of
executive function across early and middle childhood,
and thus SES differences persist without accumulat-
ing or diminishing.

• However, increases or decreases in a family’s income-
to-needs ratio are accompanied by corresponding
changes in planning.

• Characteristics of the home and family environment
explain part of the association between SES and
executive function.

Introduction

Determining the relation between socioeconomic status
(SES) and the development of executive function (EF) is
a promising strategy for understanding how childhood
SES influences achievement, health, and psychoso-
cial development (Hackman, Farah & Meaney, 2010;
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averaging the z-scores from the 36- and 54-month
assessments.

As an index of the family investment model, the degree
of home enrichment was measured with the Infant/
Toddler and Early Childhood versions of the Home
Observation for Measurement of the Environment
(HOME) Inventory (Caldwell & Bradley, 1984), a
combination of a home observation and semi-structured
interview that was administered at 6, 15, 36 and 54
months of age. Following the approach used by the
NICHD Early Child Care Research Network (2005), we
created an infant/toddler enrichment composite by
averaging the z-scores from a factor derived at both the
6- and 15-month assessments that measures the degree of
enrichment that parents provide in the home, including
toys, books, and experiences that help them develop new
skills. At 36 and 54 months, the home enrichment scale is
based on an average of the z-scores for the Learning
Materials, Variety, and Academic Stimulation subscales
(NICHD, 2005), which we then averaged across the two
assessments to create an early childhood home enrich-
ment composite. Example items from the Learning
Materials subscale include ‘10 or more children’s books
are available to the child’ and ‘3 or more three puzzles
are available to the child’. Example items from the
Variety subscale include ‘At least 1 musical instrument is
available to the child’ and ‘Child has been taken to a
museum during past year’. Examples from the Academic
stimulation subscale include ‘Child is encouraged to
learn spatial relationships’ and ‘Child is encouraged to
learn numbers’.

In addition, to determine the specificity of hypothe-
sized pathways, we examined alternative mediators
including stressful life events experienced by the family,

birthweight, gestational age, postpartum depression, and
parent stress in infancy. Stressful life events were
measured using the sum of all negative event ratings,
reverse scored, at 54 months via parent report with the
Life Experiences Survey (Sarason, Johnson & Siegel,
1978). Birthweight was measured in grams and gesta-
tional age in weeks. Maternal depression at 1 month was
measured with the total score from the Center for
Epidemiological Studies Depression Scale (CES-D;
Radloff, 1977). Parent stress was measured using a
composite averaging z-scores from the 1- and 6-month
measures of a modified, 30-item version of the Parenting
Stress Index (Abidin, 1983).

Extracting unique variance

As indicated in Table 3, these nine candidate mediators
are highly correlated, with the infant/toddler and early
childhood composites for both maternal sensitivity and
the home environment exhibiting particularly strong
correlations (all r > .4, p < .001). Consequently, we ran a
regression model for each potential mediator as pre-
dicted by the eight other mediators, and saved the
unstandardized residual for use in mediation analyses.
These adjusted mediators thus represent the unique
variance in each mediator that is not shared with other
potential mediators.

Control variables

Person-level variables for gender (female, n = 503,
49.9%), Hispanic / Latino ethnicity (n = 55, 5.5%),
African-American racial identity (n = 108, 10.7%), and
all other non-white racial or ethnic identities (n = 57)

Table 3 Intercorrelation among potential mediators and measures of socioeconomic status (n = 1009)

Measure 1 2 3 4 5 6 7 8 9 10 11

1. Birthweight –
2. Gestational age .47*** –
3. Maternal depression !.02 .03 –
4. Negative life events .07* .07* .18*** –
5. Parent stress !.01 .07* .50*** .10** –
6. Enrichment: Infant /
Toddler

.10** .01 !.23*** .02 !.10** –

7. Enrichment:Early
Childhood

.05 !.02 !.24*** !.01 !.11** .57*** –

8. Maternal sensitivity:
Infant / Toddler

.12*** !.02 !.24*** .01 !.12*** .48*** .46*** –

9. Maternal sensitivity:
Early childhood

.09** !.05 !.21*** !.01 !.12*** .40*** .44*** .59*** –

10. Early income-to-needs .03 !.08* !.24*** !.05 !.09** .46*** .49*** .48*** .42*** –
11. Maternal education .07* !.04 !.23*** !.03 !.06 .40*** .49*** .46*** .42*** .58*** –

* p < .05; ** p < .01; *** p < .001.

© 2015 John Wiley & Sons Ltd
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If schooling partly 
compensates for 
the effects of 

earlier deprivation, 
lower-SES children 
should ‘catch up’



Early relation 
between SES and 
executive function 
persisted without 

narrowing or 
widening across 
early and middle 

childhood



NICHD	
  Study	
  of	
  Early	
  Childcare.	
  N	
  =	
  1009	
  children	
  in	
  US	
  followed	
  from	
  birth	
  to	
  8	
  years	
  

“SES”	
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But	
  

•  What	
  if	
  the	
  gene$cs	
  stuff,	
  the	
  high	
  heritability	
  
of	
  behaviour,	
  wasn’t	
  a	
  surprise?	
  
– Accept	
  that	
  some	
  kids	
  are	
  brighter	
  than	
  others	
  

•  What	
  if	
  we	
  moved	
  straight	
  on	
  to	
  the	
  next	
  
ques$on	
  –	
  what	
  are	
  we	
  (parents,	
  teachers,	
  
therapists,	
  policymakers)	
  supposed	
  to	
  make	
  of	
  
the	
  gene$c	
  results?	
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  gene$c	
  bit,	
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  change	
  that.	
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  the	
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  you	
  can	
  change,	
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environmental	
  bit	
  

•  You’d	
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  wrong	
  in	
  two	
  ways	
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  gene$c	
  influences	
  aren’t	
  inevitable	
  
– And	
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  effects	
  can	
  tell	
  you	
  how	
  best	
  to	
  
change	
  the	
  environment	
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Sarah





Reading: C


Maths: A*








Sarah’s parents 
are both 
mathematicians 



Dominik





Reading: B


Maths: B









Amy





Reading: B


Maths: C









Jack





Reading: D


Maths: E








Jack’s 
parents are 
unemployed 
and the 
household is 
chaotic



Ffion





Reading: A*


Maths: A*








Ffion’s 
parents 
want to 
transfer her 
to a private 
school



Billy





Reading: F


Maths: B








Billy really 
struggles 
with reading





•  “No	
  child	
  lel	
  behind”	
  
•  “Educate	
  the	
  best,	
  forget	
  the	
  rest”	
  
•  “Too	
  much	
  too	
  soon”	
  
•  “Every	
  child	
  should	
  realise	
  their	
  poten$al”	
  
•  “The	
  Finnish	
  model”	
  –	
  minimum	
  levels	
  of	
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  and	
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  in	
  our	
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Yet	
  intelligence	
  is	
  
60-­‐70%	
  heritable!	
  



The	
  Phonics	
  test	
  

•  Because	
  scores	
  are	
  highly	
  heritable	
  does	
  not	
  
mean	
  we	
  can’t	
  improve	
  performance	
  for	
  
everyone	
  (‘shil	
  the	
  distribu$on’)	
  

•  Na$onal	
  educa$on	
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  about	
  
shiling	
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Gene$c	
  effects	
  are	
  not	
  determinis$c	
  

•  Environmental	
  
interven$ons	
  can	
  alter	
  
gene$c	
  effects	
  

•  Phenylketonuria	
  (PKU)	
  
•  Treatment:	
  
–  Newborn	
  screening	
  
–  Diet	
  low	
  in	
  phenylalanine	
  +	
  
protein	
  supplements	
  







Precision	
  medicine	
  

•  Precision	
  medicine	
  diagram	
  

Insel	
  &	
  Cuthbert	
  (2015)	
  Science	
  



•  Your	
  chairs	
  have	
  been	
  fieed	
  with	
  DNA	
  
detectors	
  



•  See	
  what	
  we	
  do.	
  We	
  change	
  the	
  environment.	
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  ques$on	
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  which	
  environment.	
  And	
  how.	
  



The	
  interest	
  

The	
  
science	
  

What	
  do	
  we	
  
want	
  from	
  
educa$on?	
  

Screening	
  

Labelling	
  

What	
  is	
  
changeable?	
  

The	
  future	
  is	
  
mechanism	
  

Gene$cs	
  and	
  
educa$on	
  

What’s	
  
surprising	
  

What	
  use	
  is	
  
that	
  to	
  

teachers?	
  
Personalised	
  
learning	
  



Personalised	
  learning	
  



Professor	
  Robert	
  Plomin	
  
King’s	
  College	
  London	
  

I think a genetic view suggests 
an active model of education. In 
genetics, we call this a gene-

environment correlation. It’s the 
idea that children create and 

modify and select environments 
that are correlated with their 

genetic propensities. 







Personalised	
  
learning?	
  

Special	
  
Educa$onal	
  
Needs	
  

Cogni$ve	
  
accelera$on	
  

Vary	
  the	
  
“dosage”?	
  

Learning	
  Styles	
  
•  Visual	
  
•  Auditory	
  
•  Kinesthe$c	
  

Gene$cs	
  to	
  add	
  
“precision”?	
  



Adap$ve	
  learning	
  

An educational method which 
uses computers as interactive 

teaching devices, to orchestrate 
the allocation of human and 

mediated resources according to 
the unique needs of each learner





More	
  subtle	
  possibili$es	
  

•  Different	
  methods	
  will	
  work	
  for	
  different	
  kids	
  	
  

– e.g.,	
  interven$ons	
  for	
  behavioural	
  difficul$es	
  
– e.g.,	
  training	
  working	
  memory	
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Table 4. Correlations between change scores for externalizing behaviour, executive functions and
CU traits.

Change in Externalising Behaviour score

Total Sample N = 29 High CU N = 14 Low CU N = 15

Change in CU trait score .56∗∗ .62∗ .50
Change in Executive Function score .55∗∗ .44 .82∗∗

∗p < .05, ∗∗p < 01.

that improvement in externalising behaviour was significantly associated with improve-
ment in both executive function and CU scores. Multiple regression analysis indicated that
the combination of the other two change scores significantly predicted improvement in
externalising behaviour (F(2,26) = 11.52, p < .001, Adjusted R2 = .43), with both vari-
ables significantly contributing to the prediction (improvement in executive functioning:
β = .43, p < .01; improvement in CU score β = .41, p < .05). However, as can be
seen from Table 4, when these associations were examined separately for the high and
low CU groups, improvement in externalising behaviour was significantly associated only
with improvement in CU score for the High CU group, and with improvement in executive
functions for the Low CU group.

Discussion

The results of this pilot programme evaluation offer initial support for the further devel-
opment of the Let’s Get Smart approach. Significant improvements across the first year
of implementation were apparent on a number of measures of pupil behaviour and perfor-
mance. Changes were mainly apparent in areas particularly targeted by the programme,
for example in externalising behaviour, but not internalising behaviour. Changes were
also found in measures of the cognitive and affective processes hypothesised to underlie
children’s externalising behaviour, and the magnitude of these changes was significantly
associated with the magnitude of the improvements in externalising behaviour.

Staff perceptions of the changes made by pupils, collected through semi-structured
interviews, supported many of the conclusions suggested by the results of the quantitative
element of the study. Teachers reported that children were better able to understand and take
control of their own behaviour, and that there were fewer instances of behaviour escalation
that would previously have required physical restraint or another intervention from a mem-
ber of staff. Despite a degree of scepticism at the outset, staff evaluation of the changes
for themselves, as well as their pupils, was overwhelmingly positive. Furthermore, staff
accounts of the changes to classroom and school practices provide evidence of the level of
implementation of key programme components.

Programme components were selected to address the needs of children with different
neurocognitive profiles. In particular, novel components were incorporated to address the
needs of children with high CU scores. For children who had high CU scores at the start
of the study, positive changes in CU scores over the course of the year were more strongly
associated with behavioural improvements than were positive changes in executive function
scores. The converse was the case for children with low CU scores, where positive changes
in executive function scores were more strongly associated with behavioural improvement
than positive changes in CU scores. These results suggest that this neuroscience-informed
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Remove sanctions 
and emphasise a 
reward-focus 



Some individuals 
respond better 

to working 
memory training





Which	
  environment	
  to	
  change?	
  

•  Won’t	
  necessarily	
  all	
  be	
  pedagogical	
  or	
  
behavioural	
  

•  Could	
  be	
  health,	
  diet,	
  fitness,	
  sleep,	
  $ming	
  

•  The	
  poten$al	
  drawback	
  is	
  that	
  so	
  many	
  genes	
  
are	
  involved	
  (and	
  so	
  many	
  environments)	
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science	
  

What	
  do	
  we	
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educa$on?	
  

Labelling	
  

Personalised	
  
learning	
  

What	
  is	
  
changeable?	
  

The	
  future	
  is	
  
mechanism	
  

What’s	
  
surprising	
  

What	
  use	
  is	
  
that	
  to	
  

teachers?	
  

Gene$cs	
  and	
  
educa$on	
  

Screening	
  



Does	
  gene$cs	
  point	
  inevitably	
  to	
  
screening?	
  

•  Early	
  (pre-­‐school)	
  
•  Independent	
  of	
  SES	
  
•  Beeer	
  than	
  ‘averaging	
  the	
  parents’?	
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Labelling	
  



•  Would	
  gene$c	
  screening	
  be	
  just	
  another	
  form	
  of	
  
labelling?	
  

•  How	
  do	
  we	
  translate	
  (ethically,	
  prac$cally)	
  from	
  
popula$on	
  risk	
  to	
  the	
  individual?	
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Educa$onal	
  neuroscience	
  

•  Gene$cs	
  can’t	
  just	
  be	
  about	
  correla$ons,	
  we	
  have	
  
to	
  understand	
  biological	
  and	
  cogni$ve	
  
mechanisms	
  

•  Mechanisms	
  that	
  influence	
  
–  learning,	
  
– willingness	
  to	
  learn	
  
–  fitness	
  to	
  learn	
  
–  opportunity	
  to	
  learn	
  
–  persistence	
  and	
  reten$on	
  of	
  learning	
  





•  What	
  might	
  gene$c	
  varia$on	
  relevant	
  to	
  educa$on	
  
influence?	
  
–  Brain	
  plas$city,	
  brain	
  power,	
  neurotransmieer	
  balance,	
  
development	
  of	
  low-­‐level	
  sensory	
  and	
  motor	
  abili$es,	
  placing	
  
the	
  right	
  number	
  of	
  neurons	
  in	
  the	
  right	
  places	
  and	
  right	
  wiring	
  
early	
  in	
  brain	
  development	
  

–  …	
  but	
  also	
  maybe	
  limbic	
  system	
  func$on	
  (anxiety,	
  approach-­‐
avoidance,	
  exploit-­‐explore	
  in	
  reward-­‐based	
  learning)	
  	
  

–  …	
  maybe	
  also	
  immune	
  response,	
  oxygen	
  transfer,	
  energy	
  
consump$on,	
  resilience	
  to	
  stress	
  

•  We	
  don’t	
  yet	
  know,	
  but	
  likely	
  that	
  answer	
  will	
  be	
  wider	
  
than	
  a	
  focus	
  on	
  cogni$ve	
  abili$es	
  alone	
  



Genetics and education: Is there 
an example of a hereditary trait 
or feature that has an impact on 
education or teaching? Knowing 
that height is mainly inherited 

doesn’t seem to have an effect on 
the teaching techniques in high 

jump. So why are genetics of any 
interest to the average educator? 





So why are 
genetics of any 
interest to the 

average educator? 



Not all differences in 
educational 

achievement are 
environmental



Society must 
determine the 

importance of overall 
population level vs. 

individual differences 
in education



Genetic influences can 
reduce or increase in 

different 
environments: 

personalised learning



Understanding of 
mechanism will tell us 
which environments to 
change: pedagogical 
but also health / 
fitness / timing?





•  There	
  are	
  ac$vi$es	
  that	
  humans	
  haven’t	
  yet	
  
thought	
  of	
  doing	
  that,	
  if	
  we	
  all	
  did	
  them	
  
tomorrow,	
  differences	
  between	
  us	
  would	
  be	
  
heritable	
  

Genes	
  are	
  not	
  chains	
  



The	
  future	
  is	
  not	
  fixed!	
  



Thank	
  you	
  for	
  your	
  aeen$on	
  


