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Introduction 

In the continuing debate on sensitive periods, Tyler (this issue) argues for a 

mechanistic explanation of sensitive periods in development, rather than simply 

deriving a relationship between plasticity and age. Armstrong et al. (this issue) 

endorse convergent approaches to assessing types of plasticity, including the use of 

behavioural evidence, neurophysiological evidence, functional magnetic resonance 

imaging, event related potentials, and an appeal to evolutionary perspectives. In this 

contribution, we propose that a computational level of analysis is a key component in 

understanding the mechanisms through which functional plasticity alters in the 

cognitive system. To support our case, we discuss three examples of specific 

computational models that exhibit reductions in plasticity, and show how these 

models relate to Johnson’s (2005) three proposals for the ways in which sensitive 

periods might end: endogenous, self-terminating, and stabilisation. Typically, we will 

find that implemented computational models of sensitive periods demonstrate 

multiple influences at work when functional plasticity reduces. Further, we suggest 

that computational modelling will allow us to understand how different factors 

interact to result in a functional reduction of plasticity in different cases. 

 

The importance of computational implementation 

Implementation serves to evaluate the assumptions contained within a theoretical 

proposal. It may be as straightforward as demonstrating that, in a given cognitive 

domain, turning down a ‘learning rate’ parameter in a model of development is 

sufficient to capture the behavioural data indicating a sensitive period. Models are a 

concrete way to ask, does the theory really work? However, more often multiple 

assumptions are contained within any theory, and models serve as an exploration and 

explication of how these factors may interact in driving the functional plasticity of a 

system. Further, models may generate novel, testable predictions for how plasticity 

can be increased or decreased in the system. Most importantly, implementation forces 

the modeller to make decisions about hidden assumptions within verbally specified 

theories. 

Three issues come to the fore when taking a computational perspective 

regarding sensitive periods in functional brain development: (1) What is the actual 

nature of the representations used to encode the problem domain? It turns out that 

both the overlap between the representations generated by old and new experiences, 
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and the systematicity within problem domains can both be influential in determining 

functional plasticity. (2) What is the frequency with which the system encounters 

various experiences? It turns out that under some conditions, frequency can overcome 

changing conditions of internal plasticity. (3) What level of processing resources is 

available to the system? It turns out that under some conditions, changes in resources 

can be directly equivalent to changes in plasticity, particularly in parallel processing 

systems, and further that competition for limited resources can account for many 

instances of reduced functional plasticity. 

Let us consider the last of these three points. Processing resources are of 

particular relevance where recovery from damage is used as a metric of plasticity. 

Evidence of ‘crowding effects’ in children who have suffered brain damage indicates 

that capacity limitations can influence cognitive development (Anderson et al., 2001). 

A crowding effect describes the situation where after recovery, there is a generalised 

depression of neuropsychological functions rather than specific cognitive deficits, as 

if the remaining system has the computational properties but not the capacity to 

follow the normal course of development. It has been argued that children’s ability to 

recover from brain damage depends to some extent on their pre-morbid level of 

processing resources, termed cerebral or cognitive ‘reserve’ (Dennis, 2000; Stern, 

2002). The greater the pre-morbid level of resources, the better the prospect for 

recovery. A focus on resources prompts the following conclusion: one cannot 

interpret a developmental failure to recover from brain damage as a lower level of 

plasticity unless it is established that the domain(s) in question can definitely be 

acquired with the reduced level of resources, were this reduced level to be present at 

the start of development. Thus, when de Schonen et al. (2005) observe in children 

with pre-, peri-, or post-natal brain damage a failure to later acquire face recognition 

expertise, the authors interpret this in terms of ‘poor postlesional face-processing 

plasticity’ (p. 184); yet it may be that the remaining processing resources available to 

the child were simply insufficient to acquire the normal level of expertise whatever 

the level of plasticity. 

Alternative explanations of this nature derive from the requirement to make 

decisions about resources when building a model. Implementation, for example, 

would force a modeller to make a decision about what is happening inside a learning 

system during a period of sensory deprivation. However, the fact that models of 

development employ analytically derived learning algorithms itself leads to new 
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candidate explanations of changes in functional plasticity. Take the well-known 

example of Hebbian learning. Within the brain, Hebbian learning can be grossly 

characterised as ‘cells that fire together, wire together’. More specifically, the change 

in the connection strength between two neurons is held to be proportional to the 

product of their correlated activity. More formally,  

jiij aaw ε=Δ                                                     (1) 

where ai is the activation of the sending unit and aj is the activation of the receiving 

unit, wij is the connection strength between them, Δ is the change in strength, and ε is 

the ‘learning rate parameter’ (see, e.g., O’Reilly and Munakata, 2000, equation 4.2). 

The learning rate parameter is employed when multiple associations are to be learnt in 

the same network. Its value is typically set at less than 1 to prevent wild oscillations 

between different connection strengths after each training experience and instead 

encourage the network to converge on a compromise value that will accommodate all 

associations. Clearly, the plasticity of a system using this algorithm can be 

manipulated just by altering the ‘learning rate parameter’. But less obviously, 

increases in the activation of either the sending or receiving unit themselves increase 

plasticity. That is, under the terms of the Hebbian algorithm, simply a more activated 

system will be more plastic one.1 It is not clear whether this candidate mechanism for 

altering plasticity has relevance for brain development. Event-related potential studies 

of brain activity indicate that voltage potentials are of greater amplitude earlier in 

development (see, e.g., Nelson & Monk, 2001, Figure 9.5), though other factors such 

as skull thickness and conductivity may partially explain this. Brain metabolism 

measured through PET shows a rising then falling profile across development, with a 

peak in mid-childhood, though synaptic density appears to peak around 1 year of age 

(Chugani et al., 1987; Huttenlocher, 2002). In fMRI, the BOLD response in children 

and adolescents appears to be similar to that in adults in time course and peak 

amplitude (Casey, Davidson, & Rosen, 2002), although on individual tasks, brain 

activations in children have been found to be more widespread than in adults (e.g., 

Casey et al., 1997). The extent to which these neurophysiological measurements relate 

to the working computational learning algorithm in the brain, and their changes 

during development, may be a promising novel line of enquiry in developmental 

cognitive neuroscience. 

                                                 
1 See Mareschal and Bremner (2006) for an application of this idea to infant behavioural development. 
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We now turn to some examples of implemented models, where the impact of 

factors such as representational overlap, frequency, and resource level becomes 

apparent. First, let us recap Johnson’s (2005) three classes of explanation for the end 

of sensitive periods. These are that (a) the termination arises from endogenous factors 

controlled by maturation or an external environmental “trigger”, (b) learning is self-

terminating, in that the system drives itself into a representational state where it is no 

longer responsive, and (c) underlying plasticity does not actually reduce but the 

constraints on plasticity (such as environmental inputs) become stable. The following 

three examples all exhibit sensitive periods that come to an end, and each appeals to 

one of the above explanations. Note that all examples will use algorithms that contain 

a ‘learning rate’ parameter but in all cases, that parameter is held constant throughout 

training. 

 

Example 1: Chick imprinting and the self-terminating sensitive period 

O’Reilly and Johnson (1994) constructed a model of filial imprinting in the chick 

brain. When chicks are exposed to visual stimuli early in life, they can develop a 

strong preference for a given object. This imprinting can only be established in a 

specific period of life, is relatively unaffected by subsequent exposure to different 

objects, and is self-terminating in that the sensitive period is experience driven rather 

than based on strict chronological age. O’Reilly and Johnson’s (1994) 

neurocomputational model was based on the known neuroanatomy of the chick 

forebrain and contained several features, including the development of translation 

invariance for objects presented on its retina. Here we will just concentrate on how its 

representations developed, simplifying the dynamics of the model somewhat. The 

model was self-organising, in that it developed representations on an output layer 

based on exposure to patterns presented on an input layer. In the simulations capturing 

the closing of the sensitive period, the model was trained on Object A for 100 

presentations. It was then trained on an entirely dissimilar Object D. After 150 

presentations of D, the network switched its preference from A to D, where 

preference was assessed by the total activation on the output layer produced by each 

object. However, if the model was initially trained for only 25 presentations longer 

(125 presentations of Object A), its preference did not switch to D even after 900 

presentations of Object D. Experience-dependent self-organisation led to the closing 
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of the sensitive period at 125 presentations of A. This provides an example of how 

self-termination of plasticity might work. 

It is instructive to consider how this process worked in terms of underlying 

computations. Increased training on Object A led to further recruitment of units on the 

output layer to represent this input pattern. After 125 presentations of Object A, the 

majority of units on this layer were now representing Object A. Since Object D was 

dissimilar to A (their representations were non-overlapping), it could only activate 

and therefore attempt to recruit different output units to those activated by A. That is, 

it could not impinge on the units already recruited by A due to the lack of similarity. 

As a result, however much learning took place on D, there only remained a minority 

of the output units that could become selective for this stimulus. Given that the 

model’s stimulus preference was driven by total activation engendered on the output 

layer, D could never become the preferred stimulus once A had recruited a majority of 

the output units. There were insufficient resources left to permit this (see O’Reilly & 

Johnson, 1994, p.374). 

Therefore, although this is clearly an instantiation of a self-terminating 

sensitive period, it arises due to competition for limited resources and a lack of 

representational overlap between new and old experiences in this implementation. 

 

Example 2: Non-native phoneme discrimination and the sensitive period ended 

by stabilisation 

Monolingual Japanese speakers have difficulty discriminating the English /r/ and /l/ 

sounds despite repeated exposure to words containing them, consistent with reduced 

functional plasticity for the acquisition of non-native phonemic contrasts in second 

language learners. However, if exaggerated versions of /r/ and /l/ phonemes are 

presented to monolingual Japanese speakers, they can learn to distinguish both these 

phonemes and subsequently normal exemplars of the /r/ and /l/ phonemes 

(McCandliss, Fiez, Protopapas, Conway, & McClelland, 2002). McClelland, Thomas, 

McCandliss and Fiez (1999) constructed a neurocomputational model to explore how 

this reduction in plasticity might take place in monolingual speakers. The model used 

a self-organising architecture, with an input layer on which the phonemes were 

presented and an output layer that had to develop the relevant categories. Two 

versions of the model were trained. A ‘Japanese’ model learned a single category of 

phonemes in the /l/-/r/ region of input space and learned a single output category, 
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while an ‘English’ model was presented with two partially overlapping input 

categories standing for tokens of /l/ and /r/ and learned two output categories. In the 

transfer condition, ‘adult Japanese’ networks with 300 epochs of training were 

exposed to the English-like environment with separate /l/ and /r/ tokens. None 

subsequently reorganised their output layer into two output categories. However, 

when ‘exaggerated’ tokens of /l/ and /r/ were used for the two input categories, all 

‘adult Japanese’ networks learned to discriminate these stimuli within only a few 

epochs of their introduction into the training set and this discrimination then extended 

to the original exemplars. 

Again, it is instructive to consider the exact representations used. Each 

phoneme was represented by a 3x3 square on a grid-like input layer. The single 

‘Japanese’ /l/-/r/ input was a 3x3 square in the centre of the input layer. After training, 

a single output category came to represent this input pattern. The ‘English’ /l/ and /r/ 

categories were represented by two 3x3 squares on the input layer that overlapped by 

one row. Their representations had 3 squares in common and 6 squares separate. In 

the ‘English’ condition, the 6 non-overlapping squares were sufficient to drive the 

development of two separate output categories. When the ‘Japanese’ net was exposed 

to ‘English’ input, the two ‘English’ phoneme categories overlapped the single 

‘Japanese’ category by two rows each, i.e., each shared 6 squares with the single 

‘Japanese’ category and differed by only 3.  

Consider a trained ‘Japanese’ network with its one output category. It is now 

presented with the two novel ‘English’ input categories. When either novel input is 

presented, the network receives activation from 6 squares that fall within its original 

input category and only 3 that fall outside. The final output state is the result of a 

competition, in which the 6 old inputs defeat the 3 new: the novel input is assimilated 

to the original single category, and the network does not register that it has seen 

something new. In order for plastic change to occur, new units must win the 

competition on the output layer. The exaggerated tokens of the ‘English’ /l/ and /r/ 

categories are created so that they only overlap with the single ‘Japanese’ phoneme by 

3 squares; 6 squares fall outside the old category. Now the network receives signals 

from 6 squares that the input is something new and only 3 that it is old. Different units 

win the competition to become activate on the output layer, and this causes 

reorganisation into two output categories. These categories can then also be activated 
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by the original /l/ and /r/ tokens, since these overlap their exaggerated versions by 6 

squares. 

In this model, then, the sensitive period of the self-organisation ended because 

its input had stabilised. Although different tokens appeared in its environment 

corresponding to the shift to ‘English’ input, the representational overlap between old 

and new experiences was so great that the learning system was essentially “blind” to 

the change. Only when the difference between exemplars was artificially increased 

was the latent plasticity of the system revealed and reorganisation triggered. Here is 

an example of Johnson’s stabilisation class of termination, but one that crucially 

depends on representational overlap for its implementation. 

 

Example 3: The emergence of specialised functional structure and the sensitive 

period ended by endogenous factors 

The preceding examples have focused on sensitive period effects in self-organising 

systems. Research has also explored sensitive periods in associative systems that are 

required to learn input-output mappings. These have included research on sensitive 

periods for recovery from damage (Marchman, 1997) and age-of-acquisition effects 

(Ellis & Lambon Ralph, 2000; Lambon Ralph & Ehsan, in press), both in the domain 

of language acquisition. In this section, we briefly discuss some results from our own 

simulation work extending the findings of Marchman (1997). 

Marchman (1997) employed the English past tense as a test domain to study 

acquisition, loss, and recovery in associative networks. The English past tense is of 

note because it is characterised by a predominant rule (e.g., talk-talked, drop-dropped, 

etc.) that extends to novel stems (e.g., wug-wugged), but also contains exception 

verbs (go-went, hit-hit, sing-sang). This aspect of grammar has been much studied 

because of the problems its dual regular/irregular structure presents for children 

during language acquisition. It has even been proposed that different brain areas 

become specialised for the processing of regular and irregular verbs (see, e.g., Tyler, 

Marslen-Wilson & Stamatakis, 2005). The English past tense is of interest here 

because it is possible to simulate the emergent specialisation of regular and irregular 

verbs to different pathways in an associative network (Thomas & Karmiloff-Smith, 

2002; Thomas & Richardson, 2006). The problem can therefore additionally serve as 

a test domain with which to explore sensitive periods in the emergence of specialised 

functional structure. This issue is important because plenty of evidence suggests that 
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children suffering unilateral brain damage can reorganise their systems to achieve a 

functional structure sufficient to generate behaviour in the normal range, while adults 

who suffer similar damage exhibit persisting deficits. Aphasia after left hemisphere 

damage is one example (see Bates & Roe, 2001). Such evidence implies a sensitive 

period for when functional structures can be reorganised after damage. 

Our simulations used an associative network with two pathways, trained using 

the backpropagation algorithm. The architecture is shown in Figure 1. The input layer 

is connected to output layer either directly or via a layer of intermediate processing 

units. During training, the direct route is more suited to learning regular past tenses 

and the general rule, while the indirect route comes to specialise in exception 

mappings that require its additional computational power (see Thomas & Karmiloff-

Smith, 2002, for details of this model). We assessed the functional plasticity of this 

system by measuring its recovery from damage at different points in training. In the 

normal condition, a network is trained for 500 epochs. A lesion occurring at 490 

epochs would only therefore give the network 10 epochs to recover. The confound of 

lesion age and recovery time can of course suggest poorer plasticity later in training. 

However, we can control for this artefact by extending training beyond the normal 

period, so that each network has 500 epochs to recover from damage irrespective of 

when the damage occurred. The network was damaged either prior to training, or after 

10, 50, 100, 250, 400, 450, or 490 epochs of training by lesioning 75% of the 

connections in both pathways. Its ability to recover was then assessed. 

 

<Insert Fig.1 about here> 

 

Crucially, the network was also given an endogenous reduction in its 

plasticity. From 100 epochs onwards, any network connection below a given 

threshold had a small probability of being pruned away (i.e., set to zero for the 

remainder of training), implementing the idea that the network is initially over-

resourced but then prunes away unnecessary connections (Huttenlocher, 2002). With 

fewer connections, the network’s ability to learn is reduced. The 100-epoch onset 

presumed an endogenous trigger for pruning in the model. 

Figure 2 shows the normal endstate performance (grey bars) for the regulars, 

rule generalisation, and three types of exception verb (labelled EP1, EP2, EP3f). It 

also demonstrates the level of endstate recovery achieved following damage at 
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different points during training. Performance levels are shown both for recovery at the 

completion of 500 epochs, where later lesions will have had shorter recovery times 

(white bars), and following a fixed recovery period of 500 epochs post lesion (black 

bars). Regulars and rules indicated little evidence of sensitive periods in this 

associative system, with similar levels of recovery whenever the damage occurred. 

Regular patterns and rule generalisation retained their functional plasticity because of 

the high type frequency and systematicity amongst regular past tenses in the training 

set (see Lambon Ralph & Ehsan, in press, and Seidenberg & Zevin, 2006, for 

discussions of the influence of systematicity and frequency on age-of-acquisition 

effects). Regulars are best positioned to use the remaining resources after damage. By 

contrast, all three types of exception pattern exhibited sensitive periods. In the case of 

EP3f exception patterns, the sensitive period declined in a roughly linear fashion. 

These verbs have arbitrary input-output mappings but high token frequency in the 

training set, and their high token frequency allows the best recovery of the exception 

patterns. For EP1 and EP2 exception patterns, the decline in recovery with age was 

steeper; perhaps one might call these ‘critical’ rather than sensitive periods. Overall, 

the results show that within the same architecture, sensitive and critical periods can 

appear in some parts of the problem domain but not others, depending on the nature 

of the mapping problem and on frequency effects. 

 

<Insert Fig.2 about here> 

 

Figure 3 plots the proportion of connections remaining in one of the pathways 

of the network and depicts the gradual reduction through pruning as well as the 

sudden drop after lesion is applied at an early and a late point in training. Importantly, 

although pruning was an endogenous process, it was also influenced by activity-

dependent changes in the network. When a lesion occurred early in training, the 

network was able to take advantage of the remaining resources and fewer connections 

were pruned. 

It turned out that both resources and pruning were key in generating the 

sensitive periods observed in this model. When the model was trained with fewer 

resources (units) in the indirect pathway, sensitive periods appeared for all pattern 

classes. When the normal network was trained without pruning, none of the pattern 

classes exhibited sensitive periods. 
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<Insert Fig.3 about here> 

 

Figure 4(a) shows the relative functional specialisation of each pattern type to 

the direct (+ve) or indirect (-ve) pathways of the associative network. Figure 4(b) 

focuses on one specific contrast in emergent specialisation, rule formation versus 

EP3f patterns, assessed across a fixed period of recovery after damage. In the normal 

condition, regular and rule generalisation revealed partial specialisation to the direct 

pathway, while exception patterns showed differing degrees of specialisation to the 

indirect pathway. If both the routes of the network were damaged prior to training, 

this immediately changed how each pattern class used the two pathways. The indirect 

pathway was relied upon more heavily. However, as damage occurred later in 

training, this pattern progressively changed, with increasing reliance on the direct 

pathway to drive recovery (even when recovery time was controlled). Two points are 

of note: first, we see here sensitive periods for the emergence of specialised functional 

structure, with different functional structures arising depending on the time of 

damage. Second, for the exception verbs, the sensitive period for functional structure 

corresponded with a sensitive period for behaviour (i.e., the alternate functional 

structure was less able to support recovery); but for regular verbs and rule 

generalisation, the sensitive period for functional structure had no corresponding 

sensitive period in behaviour. The sensitive periods for functional structure and for 

behaviour could therefore dissociate. 

 

<Insert Fig.4 about here> 

 

The explanation for these effects involves several factors. Broadly, the results 

depend firstly on how well different pattern types can exploit the resources remaining 

at different points in training, based on their frequency and similarity. Later lesions 

cause more reduction in resources because they come on top of losses through 

pruning. Early damage can retard the endogenous pruning process. Systematicity, 

high type frequency, and high token frequency, all advantage a pattern class in 

making use of remaining resources. Secondly, the two pathways have different 

plasticity at an algorithmic level. It takes more training to alter the two sets of 

connections arranged in series in the indirect route than it takes to alter the single set 
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in the direct route. Thirdly, later in training, connections in each pathway become 

larger and if these connections are not useful for driving behaviour after damage, they 

take longer to reset  (an effect called ‘entrenchment’). These three factors interact to 

determine which pattern classes will recover and how the two pathways will be used. 

This simulation is useful because it can begin to explore the relationship (and 

possible mismatch) between sensitive periods in behaviour and in the emergence of 

specialised functional structure, but once more, the effects were mediated by 

similarity, frequency, and resources. In terms of Johnson’s (2005) proposals for how 

sensitive periods end, this model implemented an endogenous process of pruning. Yet 

even these endogenous factors interacted with activity dependent processes in 

fashioning the final shape of the sensitive periods in plasticity. 

 

Conclusion 

We began by endorsing the importance of specifying the underlying computational 

mechanisms of plasticity change in order to turn descriptions of sensitive periods into 

explanations, and by arguing for the utility of implemented neurocomputational 

models in this endeavour. Implementation forces clarity, reveals hidden assumptions, 

and generates new candidate explanations and testable hypotheses. In three examples, 

we illustrated implementations of Johnson’s (2005) proposals for how sensitive 

periods might end. In each case, implementation demonstrated multiple additional 

factors at play that interacted with the closing of sensitive periods, including the 

similarity between representations, the frequency with which certain experiences 

occurred, and resource levels within the system. We believe that discovery of the full 

repertoire of mechanisms through which functional plasticity is modulated must rely 

on a programme of computational modelling integrated within the multidisciplinary 

exploration of sensitive periods in development. 
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Figure captions 

 

Figure 1. Architecture of the associative network trained on the English past tense 

problem. Rectangles represent layers of simple neuron-like processing units, and 

black arrows represent matrices of connections between layers. Verbs stems were 

coded on the input layer and past tenses on the output layer using phonological 

features. 

 

Figure 2. Performance of the network at the end of training (500 epochs) for five 

pattern classes within past tense: Regular (e.g., talk-talked), Rule (wug-wugged), EP1 

(hit-hit), EP2 (sing-sang), and EP3f (go-went). The EP numbers mark increasing 

degrees of inconsistency with regular mappings and the f registers the high token 

frequency of this class. Grey bars show normal performance. Black bars show 

recovery after lesions at different points in training (0, 10, 50, 100, 250, 400, 450, and 

490 epochs) with a fixed period of 500 epochs of training post-lesion. White bars 

show the recovered level of performance at the end of normal training (e.g., a lesion at 

490 epochs will have only 10 epochs of training post lesion). Error bars depict 

standard errors over 6 replications with different initial random seeds. 

 

Figure 3. The proportion of connections remaining in the direct pathway with the 

combined effects of pruning (onset 100 epochs) and lesions, shown for the normal 

case, and for lesions after 10 lesion or 400 epochs of training. Similar functions were 

found for connections in the indirect pathway. (A connection was pruned with 5% 

probability each epoch if its absolute value was less than 0.5. Lesions probabilistically 

removed 75% of connections in both pathways.) 

 

Figure 4. (a) Relative specialisation of each pattern class to the direct (+ve) or indirect 

(-ve) pathway at the end of training, for the normal network and networks recovering 

from damage at different points in training. Specialisation was assessed using the 

dissociation methodology of traditional cognitive neuropsychology. [If a pattern class 

is more specialised to the direct than indirect pathway, it should show a bigger deficit 

when the direct pathway experiences a further lesion than when the indirect pathway 

is similarly lesioned. Figure 4 shows the difference in the size of the deficit for each 

pathway (see Thomas & Karmiloff-Smith, 2002, for details)]; (b) A single 
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comparison drawn from the above data, depicting the relative specialisation of rule 

versus EP3f patterns after a fixed recovery period following damage. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4a 
 
 

 
 
 
 
 
Figure 4b 
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