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Developmental disorders show wide variations in severity even when, on genetic 

grounds, it is known that there is a common underlying cause. We use connectionist 

models of development combined with population modelling techniques to explore pos-

sible mechanistic causes of variations in disorder severity. Specifically, we investigate 

the plausibility of the hypothesis that disorder variability stems from the interaction of 

the common cause of the disorder with variations in neurocomputational parameters also 

present in the typically developing population. We base our simulations on a model of 

developmental regression in autism, which proposes that this phenomenon arises from 

over-aggressive synaptic pruning [1]. We simulated a population of 1000 networks in 

which 641 exhibited the behavioural marker of regression in their developmental trajec-

tories in learning a notional cognitive domain. Aside from the known single cause of the 

disorder (an atypical connectivity pruning parameter), we then analysed which neuro-

computational parameters contributed to variation in a number of characteristics of de-

velopmental regression. These included the timing of regression onset, its severity, its 

behavioural specificity, and the speed and extent of subsequent recovery. Results are re-

lated to existing causal frameworks that explain the origins of developmental deficits. 

1.   Introduction 

Developmental disorders are notable for the range of severity with which they 

affect children. In the case of acquired disorders in adults, variations in the se-

verity of behavioural deficits can usually be assigned to the degree of brain dam-

age. For developmental disorders, the origins of variations in severity are less 

well understood. It is not clear, for example, whether variations in severity of 

deficits stem from the same causes which produce individual differences in cog-

nitive ability in typically developing individuals. At present, many developmen-

tal disorders are defined on behavioural grounds, such as autism, dyslexia, and 

attention deficit hyperactivity disorder. On the face of it, the variation observed 

in behaviourally defined disorders could arise from at least two sources: these 



 

disorders could just represent the bottom tail of the normal distribution in popu-

lation performance on social skills or reading or attention, in which case the 

underlying causes of variability in the tail would be no different from those pro-

ducing variation in the normal range (see, e.g., [2]); or the behaviourally defined 

disorders could in fact represent a heterogeneous mix of underlying causes, 

which would be unified by diagnosis but differ in their precise phenotype, 

thereby generating the observed variability in severity. 

 Somewhat more puzzling is the variability that is observed in developmental 

disorders with known genetic causes. Disorders such as Down syndrome (DS) 

and Williams syndrome (WS) are associated with well-characterised genetic 

mutations (an additional copy of chromosome 21 in the former case, a deletion 

of genes from one copy of chromosome 7 in the latter case). Yet, despite indi-

viduals in each disorder having a common genetic cause, they exhibit marked 

variation in the severity with which the genotype impacts on the cognitive profile 

and, more practically, on the ability of children and adults with these disorders to 

function in everyday life. 

There are four likely sources of variation in the severity of developmental 

disorders of known genetic cause. (1) The environment: two individuals with the 

same disorder genotype might diverge through differential environmental influ-

ences. For example, phenylketonuria is a genetic disorder associated with a defi-

ciency in an enzyme necessary to metabolize the amino acid phenylalanine to the 

amino acid tyrosine. This deficiency leads to a build up of phenylalanine, which 

causes developmental brain damage. An individual exposed to the environment 

of a low-phenylalanine diet will experience a much less severe version of the 

disorder. (2) Where genes are mutated, the genes may be polymorphic and vary 

in the normal population. For example, the additional chromosome 21 in DS 

contains many genes, some of which may differ between individuals and have 

different consequences. Additionally, such genetic differences may be exagger-

ated by gene-environment interactions. (3) The genetic mutation may occur to 

identical genes in two individuals, but epigenetic effects that alter gene expres-

sion might subsequently produce different effects. For example, in an extreme 

case, Angelman syndrome and Prader-Willi syndrome are two different disorders 

with the same genetic mutation (deletion of genes on chromosome 15). If the 

mutation is on the copy of chromosome originating from the mother, the result is 

Angelman syndrome; if the mutation originates from the father, the result is 

Prader-Willi syndrome. Parent-of-origin is an epigenetic effect that alters the 

gene expression from the same DNA code (in this case, the epigenetic effect is 

called ‘imprinting’). (4) The mutated genes are the same in two individuals, but 

there are individual differences in the rest of the genotype, and the mutated genes 



 

interact with those other genes. For example, mouse models of DS have an addi-

tional copy of the equivalent of human chromosome 21 and such mice show a 

range of physical and cognitive abnormalities. When gene expression was exam-

ined in these mice, it was found to be altered in a large number of other genes on 

different chromosomes, suggesting interactions between normal and mutation 

genes (e.g., [3]). Once more, interactions between mutated genes and other po-

lymorphic genes may be exaggerated by gene-environment interactions. To-

gether, these four causes contribute to what is called the expressivity of a given 

disorder genotype, that is, the extent of the phenotypic variation given the geno-

type. 

It should become apparent that, for the goal of explaining differences in the 

severity of behaviourally defined developmental disorders, the fact that we know 

variability occurs even when there is a common known genetic cause makes the 

picture more complex. That is, even if a disorder such as autism were to have a 

common underlying genetic cause in all individuals with autism, one would still 

expect individual variation in the severity of the disorder. But, of course, autism 

may not be a single disorder but several disorders unified by behavioural diag-

nostic criteria. Alternatively, in terms of underlying mechanism, autism may not 

be a causally distinct disorder at all, rather one end of a spectrum of normal 

population variation for some set of behavioural traits. 

1.1.   Computational models of variability in developmental disorders 

Relatively little attention has been paid to the possible mechanistic basis of 

variations in the severity of developmental disorders. Thomas [4] used a connec-

tionist pattern associator to investigate whether it was possible on behavioural 

grounds to distinguish between a group of simulated individuals with a common 

underlying disorder (plus individual differences) from a group of simulated indi-

viduals diagnosed with a disorder on behavioural grounds but actually constitut-

ing heterogeneous underlying deficits (plus individual differences). Those simu-

lations indicated that homogeneous and heterogeneous disorder groups were not 

necessarily distinguishable in their mean performance levels on a range of be-

havioural metrics. However, they were distinguishable on the basis of group 

variability: the heterogeneous, behaviourally defined group had the least vari-

ance on the measure that defined the disorder while the homogeneous, common 

cause group had comparable variance across measures. This prediction was 

confirmed empirically in a comparison of naming abilities in individuals with 

Williams syndrome and a group of children with behaviourally defined word 

finding difficulties.  



 

In another model exploring variability, Kan et al. [5] examined developmen-

tal trajectories in a small, two-node dynamical system. They demonstrated that 

small stochastic differences in the start state in a self-organising learning system 

could become exaggerated across development. From the current perspective, 

such stochastic differences constitute effects of the environment. Since stochastic 

differences occur in the brain development even of identical twins, the model 

explains how identical genotypes could diverge across developmental time (see 

[6] and [7] for similar theoretical proposals). 

In this paper, we investigate the hypothesis that a common underlying ge-

netic cause of a developmental disorder can interact with individual differences 

elsewhere on the genome; that these interactions can occur at the neurocomputa-

tional level; and that such interactions contribute to the variability in severity of 

the disorder at the behavioural level (or, indeed, whether an individual exhibits a 

disorder at all). This was an exploratory model with two goals: (a) to evaluate 

emergent effects in complex learning systems that stem from the interaction of 

many simultaneously interacting components, in this case serving to modulate 

the severity of a simulated developmental disorder; (b) to propose candidate 

causal mechanisms that can explain empirical observations of variations in se-

verity, and therefore widen the range of available inferences from behaviour to 

causal mechanism.  We took a behavioural feature found in a subset of children 

with autism spectrum disorder, that of developmental regression, and built a set 

of models to test our hypothesis. There were three key features of the simula-

tions. First, there were three sources of variability in behaviour: (i) intrinsic 

differences in neurocomputational properties, (ii) extrinsic variability in the 

composition of the learning environment, and (iii) the possible presence of a 

disorder affecting a single neurocomputational parameter. Second, behaviour 

was the outcome of an extended developmental process involving interaction of 

the individual with a structured environment. Third, simulated individuals were 

classified as having a disorder on behavioural grounds. 

1.2.   Developmental regression 

In developmental regression, behaviours that emerge in early development sub-

sequently disappear. There is then a later recovery and advance of these skills to 

a variable level. Regression is almost unique to autism but is not a universal 

feature of the disorder [8].  It occurs in 20-40% of cases, with skills typically 

disappearing between 15 and 24 months of age, and its cause is unknown [9, 10]. 

Empirical data have hitherto mostly been based on retrospective parental reports, 

which indicate the loss of children’s social and communication skills in the sec-



 

ond year of life, including early productive vocabulary, eye contact, gestures, 

reciprocal games like peek-a-boo, and sometimes a loss of play and fine motor 

skills. 

 Our simulations extended a proposal by Thomas, Knowland and Karmiloff-

Smith [1] that the cause of developmental regression in autism is over-aggressive 

synaptic pruning. Typical brain development involves initial over-production of 

neural resources, and in particular, the generation of synapses which allow for 

the plasticity of functional circuits; and then, later in development, the pruning of 

unused resources [11, 12, 13].  Using a connectionist population modelling tech-

nique [14], Thomas, Knowland and Karmiloff-Smith [1] investigated the hy-

pothesis that regression may be caused by variations in synaptic pruning. A large 

number of simulated individuals were exposed to an abstract learning task. One 

neurocomputational parameter, which determined the severity of connectivity 

pruning following its onset, was set to be atypically extreme. This induced de-

velopmental regression because pruning ate into functionally established path-

ways instead of eliminating unused connections. The extreme pruning parameter 

was the sole cause of the disorder. However, the population also incorporated 

background variability in a range of other neurocomputational parameters, corre-

sponding to normal individual differences; and variability in the composition of 

the learning environment to which individual networks were exposed. This pro-

vided the potential for interactions between different constraints within the simu-

lated learning systems, which might in turn modulate (negatively or positively) 

the severity of the regression observed in behaviour. 

In the following simulations, we explored the extent to which such interac-

tions could lead to emergent variations in (a) the timing of regression during 

development, (b) the severity of regression, (c) the rate at which behaviour de-

clined, (d) its specificity to particular types of behaviours, (e) the rate at which 

behaviour then recovered, and (f) the final level of performance. Lastly, although 

our simulations assumed a genetic disorder with a single underlying cause, dis-

order status was behaviourally defined on the basis of observed developmental 

regression. We were interested in whether such sampling created a disorder 

population with a different correlational structure among its neurocomputational 

parameters compared to the full population. That is, we considered the possibil-

ity that the sampling inherent in behaviourally defined disorders produces 

‘ghost’ correlations between attributes that have no direct bearing on underlying 

cause of the disorder (which is this case was fully known). 



 

2.   Method 

2.1.   Target learning problem 

For the purposes of these simulations, the training set was considered only as an 

abstract mapping problem, corresponding to a notional cognitive domain. The 

mapping problem was quasi-regular, in that it included a predominant regularity, 

which could be generalised to novel input patterns, and also a set of exception 

patterns. The learning environment was designed to assess role of similarity, type 

frequency and token frequency in development, together determining the diffi-

culty of target behaviours. The mapping problem was defined over 90 input and 

100 output units, using binary coded representations. The training set comprised 

508 patterns. This was complemented with a generalisation set of 410 patterns. 

The predominant regularity required the network to reproduce the input pat-

tern on the first 90 units of the output layer, and then add a binary code on the 

last 10 units of the output layer. There were 410 regular patterns in the training 

set. The regular pattern had a high type frequency and formed a consistent set of 

mappings, and so will be referred to as Easy. The generalisation ability of each 

network was tested on 410 novel patterns that were similar to the Easy patterns, 

in that they shared 60 of the 90 input elements. This set will be referred to as 

Generalisation. There were three different classes of exception pattern in the 

training set, which fell on a continuum of (dis)similarity from the predominant 

regularity: (1) Reproduce the input but do not add the final code [N=20]. (2) 

Reproduce only a portion of the input and again do not add the final code 

[N=68]. (3) Associate an arbitrary binary pattern with the input and again do not 

add the final code [N=10]. The first exception type was most similar to predomi-

nant regularity, and third type the least similar. All three possessed a lower type 

frequency than the predominant regularity. The combination of dissimilarity and 

low type frequency created a continuum of difficulty. We refer to the first excep-

tion type as Hard, the second as Harder, and the last as Hardest. Finally, the 

arbitrary mappings were sufficiently difficult that they needed to be repeated in 

the training set to be learned at all. They therefore provide an opportunity to 

assess whether greater practice provided immunity to regression or perhaps al-

lowed better recovery from regression. The third pattern type is therefore re-

ferred to as Hardest-practised. 

2.2.   Basic architecture 

The simulations employed a connectionist pattern associator network trained 

using the supervised backpropagation learning algorithm. This type of architec-



 

ture has been used in a number of cognitive-level models of development, for 

example, applied to infant categorisation, child vocabulary, semantic memory, 

morphosyntax, and reading development (see [15] for review). The model simu-

lates a child’s developmental profile in the notional cognitive domain. 

2.3.   Variations in the learning environment 

The full training set was considered the ideal learning environment. For each 

individual, a subset of this training set was stochastically selected to represent 

the family conditions in which each simulated child was being raised. Each indi-

vidual was assigned a family quotient, which was a number between 0 and 1. The 

value was used as a probability to sample from the full training set. Thus for an 

individual with a family quotient value of 0.75, each of the 508 training patterns 

had a 75% chance of being included in that individual’s training set. Family 

quotients were sampled randomly depending on the range selected for the popu-

lation. For the population we considered, the quality of the environment was 

reasonably good. Family quotients were sampled in the range of 0.6 to 1.0. 

2.4.   Variations in the basic architecture 

Fourteen neurocomputational parameters in the basic architecture were allowed 

to vary between individuals, together serving to alter the learning capacity of 

each network. The parameter settings allowed for over 2000 billion unique indi-

viduals. Parameter values were randomly selected for each simulated individual 

and independently for each parameter; therefore any correlations between pa-

rameters occurred by chance. The parameters, split by their role, were as fol-

lows: Network construction: Architecture (two-layer network, three-layer net-

work, or a fully connected network incorporating a layer of hidden units plus 

direct input-output connections); number of hidden units (10 to 500); range for 

initial connection weight randomisation (±0.01 to ±3.00); sparseness of initial 

connectivity between layers (50% to 100% of potential connectivity). Network 

activation: unit threshold function (logistic function, sigmoid temperatures be-

tween 0.0625 and 4); processing noise (0 to 6); response accuracy threshold 

(0.0025 to 0.5). Network adaptation: backpropagation error metric (Euclidean 

distance or cross-entropy); learning rate (0.005 to 0.5); momentum (0 to 0.75). 

Network maintenance: weight decay (0 to 2x10-5 per pattern presentation); prun-

ing onset (0 to 1000 epochs); pruning probability (0 to 1); pruning threshold (0.1 

to 4.0). Detailed explanations of the role of each parameter can be found in [14]. 

The pruning process was central to simulating developmental regression. 

Networks were created with initial connectivity, determined by the sparseness 



 

parameter and the weight variance parameter. After a number of epochs of train-

ing determined by the pruning onset parameter, pruning commenced. After each 

epoch of training following onset, all the connection weights were assessed. Any 

connection whose magnitude was less than the pruning threshold was deemed an 

unused resource and could be permanently pruned. If a connection was less than 

threshold, pruning was then stochastic, occurring with a probability determined 

by the pruning probability parameter. Benchmarking suggested that of the 14 

parameters varying in the simulations, the pruning threshold was the sole pa-

rameter that produced developmental regression. At levels up to 1.0, little re-

gression was found (for comparison, initial weights were most often randomised 

in the range ±0.5). Levels above 1.0 were associated with regression. In the 

following population, pruning thresholds varied up to 4.0. This range imple-

mented the hypothesis that the cause of the disorder is an accumulation of risk 

gene variants that allows a neurocomputational parameter to take on more ex-

treme values than found in unaffected individuals. Under the hypothesis, both 

genetic risk and the neurocomputational causal factor are continuously valued. 

2.5.   Creation of a population 

Parameter sets for 1000 individuals were generated at random. A family quotient 

value was generated in the appropriate range and the quotient used to create each 

individual’s bespoke family training set. Each network was initiated with random 

weight values (in the range determined by the individual’s weight range parame-

ter), and then trained for 1000 epochs, where one epoch was an exposure to all 

the patterns in the individual’s training set, presented in random order. Perform-

ance was measured on the five pattern types (Easy, Generalisation, Hard, 

Harder, Hardest-practised) according to the full training set and the full gener-

alisation set. 

3.   Results 

Developmental regression was defined on behavioural grounds as a noticeable 

drop in performance over development in one or more of the five behavioural 

measures (Easy, Generalisation, Hard, Harder, and Hardest-practised) against 

the level of variability exhibited by a given simulated individual. Developmental 

trajectories were plotted for all 1000 individuals and coded by hand for whether 

or not they exhibited developmental regression. Hand coding was used because 

trajectories were often non-monotonic and noisy, rendering automated classifica-

tion problematic. Double coding was carried out on a sub-sample to ensure con-

sistency. Figure 1 depicts sample trajectories for four typically developing net-



 

works (defined here as those not exhibiting regression) and four networks that 

showed regression. When regression was observed for a given pattern type, six 

measurements were made: peak performance prior to regression; the epoch at 

which regression occurred; the size of the drop in accuracy; the number of ep-

ochs over which that drop occurred; the rate of recovery (five qualitative catego-

ries were used: no recovery, slow recovery, medium recovery, fast recovery, 

almost instant recovery); and the final level of performance at the end of training 

(1000 epochs). We defined four levels of severity of the disorder, based on the 

size of the decline in accuracy: level 1, corresponding to a drop in accuracy of 

between 0 and 20%; level 2, corresponding to a drop in accuracy of 20 to 40%; 

level 3, corresponding to a drop between 40 and 60%; and level 4, correspond-

ing to a drop of 60 to 100% in accuracy. Of the 1000 simulated individuals, 641 

cases of regression were recorded in one or more behaviour. 

3.1.   Variations in severity 

The single cause of regression was increasing the size of the pruning threshold 

parameter. However, there was no direct relationship between increasing this 

parameter and the subsequent severity of the observed regression. Table 1 lists 

the probability of observing regression at each severity level, for the five sepa-

rate mapping types. It is evident that increases in the value of the pruning thresh-

old produce an increased liability to exhibit regression, and regression of a more 

severe level, but the outcome was not deterministic (e.g., not 100% likely even 

with the highest threshold). Comparison of the behavioural categories indicated 

that Easy and Generalisation were more robust to regression, with all hard pat-

terns more vulnerable. Notably, the Hardest-practised mapping exhibited a bi-

modal distribution for most extreme pruning levels: regression was either absent 

(23%) or at the severest level (61%). This is because the combination of excep-

tion mappings and extra practice caused networks to learn such mappings using a 

small number of weights (more localist representations). These weights were 

then stochastically preserved or lost during the atypical pruning process. More 

distributed representations demonstrated a dose-response relationship. 

A statistical stepwise logistic regression analysis was used to identify the re-

lationship between variation in neurocomputational parameters and the presence 

of regression. As expected, the atypical setting of the pruning threshold parame-

ter accounted for most of the variance (Nagelkerke R2 = 59.7% of the variance 

explained). 



 
 

 

 

 

 

 

  
 

 

 

 

 

Figure 1. Illustrative developmental trajectories for four typically developing networks and four networks exhibiting regression. 

Typically developing individuals 

Cases of developmental regression 



 
Table 1. The probability of a network exhibiting developmental regression, split by the level of 

severity (None, least severe I, II, III, or most severe IV). Probabilities are shown separately for each 

pattern type.  
 

    Pruning Threshold 

Severity Pattern .1 .75 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

None Easy .98 .90 .72 .35 .24 .16 .14 .14 .04 

 Generalisation .98 .90 .72 .40 .33 .22 .17 .17 .10 

 Hard .98 .95 .75 .37 .29 .23 .16 .22 .11 

 Harder .98 .90 .71 .34 .23 .19 .13 .17 .11 

 Hardest-Practised .98 .95 .80 .42 .31 .19 .27 .23 .23 

Severity I Easy .00 .07 .22 .24 .20 .17 .09 .09 .08 

 Generalisation .01 .03 .03 .24 .27 .20 .18 .22 .11 

 Hard .01 .00 .02 .11 .16 .20 .20 .15 .25 

 Harder .00 .00 .02 .06 .12 .28 .39 .40 .52 

 Hardest-Practised .01 .09 .24 .30 .20 .22 .13 .13 .04 

Severity II Easy .01 .01 .02 .20 .30 .25 .28 .26 .24 

 Generalisation .00 .00 .01 .08 .12 .18 .20 .22 .25 

 Hard .00 .00 .02 .02 .05 .13 .23 .22 .36 

 Harder .00 .00 .02 .02 .01 .01 .03 .03 .05 

 Hardest-Practised .00 .04 .11 .10 .09 .07 .12 .05 .05 

Severity III Easy .02 .01 .10 .24 .27 .28 .21 .17 .18 

 Generalisation .00 .00 .02 .28 .34 .41 .49 .54 .61 

 Hard .00 .00 .04 .06 .08 .08 .17 .16 .18 

 Harder .01 .08 .16 .19 .13 .24 .14 .15 .10 

 Hardest-Practised .00 .00 .06 .24 .30 .23 .17 .13 .13 

Severity IV Easy .01 .02 .03 .16 .26 .26 .38 .40 .48 

 Generalisation .00 .01 .05 .05 .02 .04 .06 .05 .08 

 Hard .00 .01 .09 .06 .08 .07 .05 .07 .04 

 Harder .02 .02 .02 .18 .13 .18 .10 .12 .04 

 Hardest-Practised .00 .02 .05 .28 .46 .52 .51 .53 .61 

 

 However, individual differences in other neurocomputational parameters 

also modulated the risk. The following parameters showed a significant relation-

ship: unit threshold function (Nagelkerke R2 = 6.8%), architecture (1.2%), prun-

ing probability (1.0%), hidden unit number (0.5%), sparseness (0.3%) and mo-

mentum (0.3%). Variations in the family quotient did not reliably modulate re-

gression risk. In the case of pruning probability, this parameter directly affected 

the pruning process. All the other parameters acted indirectly by increasing or 

decreasing the size of the connection weights produced by learning prior to the 

onset of pruning. A statistical stepwise linear regression analysis was used to 

identify which parameters predicted the severity of regression, that is, the size of 



 

the drop in accuracy during regression. Twelve computational parameters were 

significant contributors at the .05 level; only 6 individually accounted for more 

than 1% of the variance: pruning threshold (10.0%), unit threshold (5.8%), proc-

essing noise (2.5%), architecture (2.3%), pruning probability (1.9%) and learn-

ing algorithm (1.4%). Pattern type explained 3.9% of the variance and family 

quotient 0.8%. Once again, the value of the atypical pruning parameter explained 

much of the variance in severity of regression, but many other parameters vary-

ing in the population as a whole also contributed to predicting severity. 

3.2.   Variability in onset 

The onset of regression approximated a normal distribution with a mean of 101 

epochs and a standard deviation of 69.a A statistical linear regression analysis 

indicated that the pruning onset parameter explained 51.1% of the variance. Only 

unit threshold and learning rate (0.3% each) also reached significance. Regres-

sion, then, was triggered by the normal onset of the pruning process. 

3.3.   Variability in the rate of decline 

The rate of decline was assessed for each pattern type, separately across severity 

levels. More severe regression showed slower declines, and the Hardest-

practised showed fastest decline amongst the pattern types. The statistical step-

wise linear regression analysis implicated 8 computational parameters in explain-

ing the variability in how quickly performance declined, with only 3 explaining 

more than 1% of the variance: pruning probability (5.3%), pruning threshold 

(1.5%) and unit threshold (1.5%). The amount of unexplained variance in this 

case reflected the stochastic nature of the pruning process. 

3.4.   Variability in the rate of recovery 

Recovery rates were faster for milder regression and for Easy and Generalisa-

tion patterns. High type frequency and consistent mappings were thus recovered 

more easily. The statistical stepwise linear regression analysis implicated 8 com-

putational parameters in explaining the variability in recovery rates, with 4 ac-

counting for more than 1% of the variance: pruning threshold (9.9%), unit 

threshold (2.2%), processing noise (1.7%) and response accuracy threshold 

(1.4%). Pattern type explained 8.8% of the variance and family quotient 0.2%. 

Recovery, then, depended on how severe the loss of resources had been, and the 

                                                           
a Plots illustrating population variation for data reported in Sections 3.2 to 3.6 can be found at   

http://www.psyc.bbk.ac.uk/research/DNL/techreport/NCPW12plots.pdf 



 

difficulty of the behaviour being recovered. It was little affected by differences 

in the quality of the environment, indexed by the family quotient parameter. 

3.5.   Variability in recovery levels 

The level of recovery can be considered in two ways: either the final outcome 

level or how far the network has recovered behaviours compared to their pre-

regression peak. The former includes the differential difficulty of learning each 

pattern type while the latter corrects for this difference. The statistical stepwise 

linear regression analysis indicated that up to 13 of the 14 computational pa-

rameters were implicated in explaining the variability in recovery levels. The 

parameters split into three groups: those relating to the level of damage, those 

relating to the level of background plasticity, and those relating to quality of 

processing. Focusing on the relative measure, the main contributors were prun-

ing threshold (21.6%) and pruning probability (0.9%), both indexing damage; 

unit threshold (10.7%) indexing plasticity; and processing noise (3.7%) indexing 

quality of processing, respectively. Pattern type explained 6.2% of the variance, 

with Easy and Generalisation showing higher recovered levels. Notably, practise 

for the Hardest patterns did not benefit recovery. Family quotient explained only 

0.2% of the variance in recovery. 

3.6.   Sampling and correlational structure 

In the full population, the 14 parameters that defined each individual network 

were sampled independently and at random (see Methods). We did not, there-

fore, expect any systematic relationship between parameters in the full popula-

tion, other than those spuriously generated by multiple comparisons. Table 2 

shows that three correlations were significant at the .01 level in the full popula-

tion. We then repeated the correlations on just those 641 individuals who exhib-

ited the behavioural marker of regression. The former three correlations were no 

longer reliable at the .01 level, but five new reliable correlations appeared. Two 

of these involved the pruning threshold parameter, which was the cause of re-

gression. Three correlations were between parameters involved in background 

variation, which when interacting with each other could together elevate risk for 

regression. For example, sparse connectivity was a protective factor because it 

encouraged larger connection sizes more resistant to pruning, but not if the learn-

ing rate was low. Notably, then, the simulations suggest that the selective sam-

pling involved in a behaviourally defined disorder can create correlations be-

tween processing parameters that are related, but sometimes only indirectly, to 

the underlying cause of the disorder. 



 

Table 2. Correlations between neurocomputational parameters either in the full population of 

1000 networks, just those exhibiting developmental regression (N=641), or those not exhibit-

ing regression (N=359). Given the large number of potential correlations, only those with 

p<.01 (2-tailed) in either the full or sub-populations are included. Manipulation to the pruning 

threshold parameter was the sole cause of regression. Values show Pearson Correlation and 

significance in brackets. 
 

  Parameter 1 Parameter 2 
Whole 

population 
(N=1000) 

Those exhibit-
ing Regres-

sion (N=641) 

Those not 
exhibiting 
Regression 

(N=359) 

Pruning threshold Unit threshold .046 (.143) -.166 (<.001)* -.142 (.007)* 

Pruning threshold Momentum .031 (.325) .118 (.003)* .046 (.389) 

Response accuracy Weight variance .091 (.004)* .090 (.023) .092 (.083) 

Pruning onset Learning rate -.021 (.515.) -.105 (.008)* .095 (.073) 

Pruning onset Weight variance .087 (.006)* .086 (.030) .088 (.097) 

Pruning onset Learning algorithm -.043 (.171) -.120 (.002) .052 (.329) 

Pruning onset Sparseness .084 (.008)* .100 (.011) .064 (.229) 

Learning rate Sparseness -.063 (.046) -.104 (.008) .009 (.872) 

    * significant at .01 level (2-tailed) 

4.   Discussion 

In the model, the disorder of developmental regression was caused by a single 

underlying computational cause, over-aggressive pruning of connectivity [1]. 

Nevertheless, background variability in other neurocomputational parameters 

present in the whole population led to marked variation in the severity and char-

acteristics of the disorder, such that there was no deterministic relationship be-

tween the primary underlying cause and its surface manifestation in behaviour 

(see [16] for related work in the field of resilience to cognitive decline in age-

ing). Statistical analyses revealed that the relevant properties of background 

neurocomputational variation depended on the behavioural characteristic under 

consideration. Variance in some behavioural characteristics was predicted by 

only a few parameters: the onset of pruning and the speed of the decline involved 

only the details of the pruning mechanism. Variance in other behavioural charac-

teristics, such as the severity of regression and the speed and final level of recov-

ery, involved contributions from a wide range of parameters, including those 

involved in network plasticity and the quality of processing. Moreover, the type 

of behaviour also influenced the characteristics of regression. Mappings with 

higher type frequency and consistency were more robust and, if lost, faster to 

recovery. Idiosyncratic mappings were hard to recover even with practice. Dif-

ferences in the composition of the learning environment, at least for the range 

considered, explained little of the variance in regression or recovery. Lastly, we 



 

noted that even when there was a single underlying mechanistic cause, diagnosis 

of a disorder on behavioural grounds created a ghost correlational structure be-

tween the neurocomputational properties of affected individuals that were an 

artefact of sampling, and only indirectly related to the underlying cause. 

In the Introduction, we identified four possible sources of variability in the 

severity of disorders with a single underlying cause. The current simulations 

showed some evidence for environmental effects (source #1), albeit not from 

variations in the learning environment but from stochastic events (e.g., Hardest-

practised patterns showed either no or very severe regression depending on 

whether by chance certain key connections were pruned). We presented exten-

sive evidence that interactions with background population-wide variability 

could confer a probabilistic relationship between underlying cause and behav-

ioural manifestation (source #4). However, in the simulations, interactions oc-

curred at a neurocomputational rather than genetic level. Gene-environment 

interactions emerged in training pattern effects, which modulated both regression 

and recovery. However, statistical analyses revealed little evidence that varia-

tions in the composition of the learning environment (implemented here by fam-

ily quotient) contributed to the severity of the disorder (at least, when the learn-

ing environment was on the whole of good quality; see [1] for a consideration of 

the effects of very impoverished learning environments). Since the underlying 

cause of regression was taken to be an accumulation of risk genes present in the 

normal population rather than a genetic mutation, we did not model the possibil-

ity of disorder variability arising from variations in mutated genes (source #2). 

Epigenetic effects were also beyond the scope of the simulations (source #3). 

More widely, the causal account of disorders we have offered is consistent 

with recent proposals by Bishop [17] that the medical model is more appropriate 

than adult neuropsychological dissociation methodology for understanding the 

origin of developmental deficits. In the medical model, disease status is con-

veyed probabilistically based on risk and protective factors, rather than neces-

sary and sufficient causes. 

The value of the current model is threefold. First, it demonstrates a mecha-

nistic rather than statistical basis for why the relationship between disorder cause 

and behavioural outcome should be non-deterministic. Second, through imple-

mentation, it provides a framework to investigate this mechanistic basis in quan-

titative rather than qualitative terms. The investigation revealed, for example, 

that separate individual difference factors might contribute to variations in re-

gression onset and speed, compared to severity and recovery. Third, the simula-

tions showed the benefit of considering disorders within a population setting, 

where variability is a dependent variable rather than a source of noise to be over-



 

come by averaging, and where individual differences in symptom severity are a 

target phenomenon to be explained. This approach sets the stage for using com-

putational models of development to predict interventions that are tailored to 

individual manifestations of a disorder rather than to an idealised average disor-

der that may not be observed in any individual child. 
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