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Abstract 

We evaluate the inferences that can be drawn 
from dissociations in syntax processing 
identified in developmental disorders and 
acquired language deficits. We use an SRN to 
simulate empirical data from Dick et al. (2001) 
on the relative difficulty of comprehending 
different syntactic constructions under normal 
conditions and conditions of damage. We 
conclude that task constraints and internal 
computational constraints interact to predict 
patterns of difficulty. Difficulty is predicted by 
frequency of constructions, by the requirement 
of the task to focus on local vs. global 
sequence information, and by the ability of the 
system to maintain sequence information. We 
generate a testable prediction on the empirical 
pattern that should be observed under 
conditions of developmental damage. 

1 Dissociations in language function 

Behavioural dissociations in language, identified 
both in cases of acquired brain damage in adults 
and in developmental disorders, have often been 
used to infer the functional components of the 
underlying language system. Generally these 
attempted fractionations appeal to broad 
distinctions within language. However, fine-scaled 
dissociations have also been proposed, such as the 
loss of individual semantic categories or of 
particular linguistic features in inflecting verbs. 
Here, we consider the implications of 
developmental and acquired deficits for the nature 
of syntax processing.  

1.1 Developmental deficits 

A comparison of developmental disorders such 
as autism, Downs syndrome, Williams syndrome, 
Fragile-X syndrome, and Specific Language 
Impairment reveals that dissociations can occur 
between phonology, lexical semantics, morpho-
syntax, and pragmatics. The implications of such 
fractionations remain controversial but will be 
contingent on understanding the developmental 
origins of language structures (Karmiloff-Smith, 

1998). These processes remain to be clarified even 
for the normal course of development. 

In the area of syntax, Fowler (1998) concluded 
that a consistent picture emerges. Individuals with 
learning disabilities are systematic in their 
grammatical knowledge, follow the normal course 
of development, and show similar orders of 
difficulty in acquiring constructions. However, 
such individuals can often handle only limited 
levels of syntactic complexity and therefore 
development seems to terminate at a lower level. 

While there is great variability in linguistic 
function both across different disorders and within 
single disorders, this cannot be attributed solely to 
differences in ‘general cognitive functioning’ (e.g., 
as assessed by problem solving ability). Syntax 
acquisition is therefore to some extent independent 
of IQ. However, adults with developmental 
disorders who have successfully acquired syntax 
typically have mental ages of at least 6 or 7, an age 
at which typically developing children also have 
well-structured language. The variability in 
outcome has been attributed to various factors 
specific to language, including verbal working 
memory and the quality of phonological 
representations (Fowler, 1998; McDonald, 1997). 
Most notably, disorders with different cognitive 
abilities show similarity in syntactic acquisition. 
The apparent lack of deviance across 
heterogeneous disorders has been used to argue for 
a model of language acquisition that is heavily 
constrained by the brain that is acquiring the 
language (Newport, 1990).  

1.2 Acquired deficits in adulthood 

One of the broadest distinctions in acquired 
language deficits is between Broca’s and 
Wernicke’s aphasia. Broca’s aphasics are 
sometimes described as having greater deficits in 
grammar processing, and Wernicke’s aphasics as 
having greater deficits in lexical processing. The 
dissociation is taken to support the idea that the 
division between grammar and the lexicon is one 
of the constraints that the brain brings to language 
acquisition. 

Dick et al. (2001) recently argued that four types 
of evidence undermine this claim: (1) all aphasics 



have naming deficits to some extent; (2) apparently 
agrammatic patients retain knowledge of grammar 
that can be exhibited in grammaticality 
judgements; (3) grammar deficits are found in 
many populations both with and without damage to 
Broca’s area, the reputed seat of syntax in the 
brain; and (4) aphasic symptoms of language 
comprehension can be simulated in normal adults 
by placing them in stressed conditions (e.g., via 
manipulating the speech input or giving the subject 
a distracter task). Dick et al. pointed out that in 
syntax comprehension, the constructions most 
resilient in both aphasic patients and normal adults 
with simulated aphasia are those that are most 
regular or most frequent, and conversely those 
liable to errors are non-canonical and/or low 
frequency. Dick et al. (2001) illustrated these 
arguments in an experiment that compared 
comprehension of four complex syntactic 
structures: 

• Actives (e.g., The dog [subject] is biting the 
cow [object]) 

• Subject Clefts (e.g., It is the dog [subject] that 
is biting the cow [object]) 

• Passives (e.g., The cow [object] is bitten by 
the dog [subject]) 

• Object Clefts (e.g., It is the cow [object] that 
the dog [subject] is biting) 

The latter two constructions are lower frequency, 
and have non-canonical word orders in which the 
object precedes the subject. Dick et al. tested 56 
adults with different types of aphasia on a task that 
involved identifying the agent of spoken sentences. 
Patients with all types of aphasia demonstrated 
lower performance on Passives and Object Clefts 
than Actives and Subject Clefts. Moreover, normal 
adults given the same task but with a degraded 
speech signal (either speeded up, low-pass filtered, 
or with noise added) or in combination with a 
distracter task (such as remembering a set of digits) 
produced a similar profile of performance to the 
aphasics (see Figure 1). 

Dick et al. (2001) argued that the common 
pattern of deficits could be explained by the 
Competition Model (MacWhinney & Bates, 1989), 
which proposes that the difficulty of acquiring 
certain aspects of language and their retention after 
brain damage could be explained by considering 
cue validity (the reliability of a source of 
information in predicting the structure of a target 
language) and cue cost (the difficulty of processing 
each cue). Cues high in validity and low in cost, 
such as Subject-Verb-Object word order in 
English, should be acquired more easily and be 
relatively spared in adult breakdown. The proposal 
is that for a given language, any domain-general 
processing system placed under sub-optimal  

Figure 1. Aphasic and simulated (human) aphasic 
data from Dick et al. (2001) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

conditions should exhibit a similar pattern of 
developmental or acquired deficits. Thus Dick et 
al. predicted that a connectionist model trained on 
an appropriate frequency-weighted corpus would 
show equivalent vulnerability of non-canonical 
word orders and low frequency constructions under 
conditions of damage. In contrast to the inferences 
drawn from developmental deficits, the focus here 
is on attributing similarities in patterns of acquired 
deficits to features of the problem domain rather 
than constraints of the language system. 

2 Computational modelling 

Proposals that site the explanation of behavioural 
data in the frequency structure of the problem 
domain (here, the relative frequency of the 
construction types) are insufficient for three 
reasons: (1) language comprehension is not about 
passive reception. The language learner must do 
something with the words in order to derive the 
meanings of sentences. It is the nature of the 
transformations required that crucially determines 
task difficulty, which statistics of language input 
alone cannot reveal. (2) Whatever the statistics of 
the environment, such information must be 
accessed by an implemented learning system. This 
system may be differentially sensitive to certain 
features of the input, and it may find certain 
transformations more computationally expensive 
than others, further modulating task difficulty. (3) 
In the context of atypical syntax processing in 
developmental and acquired disorders, behavioural 
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deficits are caused by changes in internal 
computational constraints. Without an 
implemented, parameterised learning system, we 
can have no understanding of how sub-optimal 
processing conditions generate behavioural deficits 
in syntax processing. To date, this issue has been 
relatively under-explored. 

The choice of learning system is evidently of 
importance here. In this paper, we explore the 
behaviour of a connectionist network, since these 
systems have been widely applied to phenomena 
within cognitive and language development 
(Elman et al., 1996) and more recently to capturing 
both atypical development and acquired deficits in 
adults (Thomas & Karmiloff-Smith, 2002, 2003). 

3 Simulation Design 

Our starting point is a set of models of syntax 
acquisition proposed by Christiansen and Dale 
(2001). These authors employed a simple recurrent 
network (SRN; Elman, 1990), an architecture that 
is the dominant connectionist model of sequence 
processing in language studies and in sequence 
learning more generally. As is typical of current 
connectionist models of syntax processing, the 
Christiansen and Dale (henceforth C&D) model 
focuses on small fragments of grammar and a 
small vocabulary. Nevertheless, it provides a 
useful platform to begin considering the effects of 
processing constraints on syntax processing.  

The following models performed a prediction 
task at the word level. At each time step, the 
network was presented with the current word and 
had to predict the next word in the sentence. This 
component of the task induces sensitivity to 
syntactic structures. A localist representation was 
used, with each input unit corresponding to a 
single word. The artificial corpus consisted of 54 
words and included 6 nouns, 10 verbs, 5 
adjectives, and 10 functions words. Nouns and 
verbs had inflected forms represented by separate 
word units (N: stem, pluralised; V: stem, past 
tense, progressive, 3rd person singular). 

C&D investigated the effect of several cues on 
syntax acquisition, such as prosody, stress, and 
word length. Prosody was represented as utterance 
boundary information that occurred at the end of 
an utterance with 92% probability. The utterance 
boundary cue was represented by an additional 
input and output unit. 

Distributional cues of where words appeared in 
various sentences, along with utterance boundary 
information, were available to all networks. We 
refer to the networks that received only these cues 
as the “basic” model. We also tested a second set 
of “multiple cue” networks that also received cues 
about word length and stress. Word length was 

encoded with thermometer encoding, with one to 
three units being activated according to the number 
of syllables in the input word. In English, longer 
words tend to be content words. This was reflected 
in the vocabulary items that were selected for the 
grammar. Stress was encoded as a single unit that 
was activated for content words, which are stressed 
more heavily. The word length and stress units 
were present both as inputs and outputs, so that 
multiple cue networks had 59 input and output 
units to represent the words and cues. 

3.1 The materials 

The input corpus was a stochastic phrase 
structure grammar, derived from the materials used 
by C&D (2001). The grammar featured a range of 
constructions (imperatives, interrogatives and 
declarative statements). Frequencies were based on 
those observed in child-directed language. We 
added passives, subject and object cleft 
constructions to the grammar, which is illustrated 
in Figure 2. 

 
Figure 2. Stochastic phrase structure grammar, 
including the probabilities of each construction 

 
The four sentence types appeared with the 

following frequency: (Declarative) Active: 16.8%, 
Subject Cleft: 0.84%, Object Cleft: 0.84%, 
Passives: 2.52%. This gave a Passive-to-Active 
ratio of roughly 1:7, and ratio of OVS to SVO 
sentences of 1:21. Dick and Elman (2001) found 
that for English, the Passive-to-Active ratio ranged 
from 1:2 to 1:9 across corpora and that subject and 
object clefts appear in less than 0.05% of English 
sentences. They found that the relative frequency 
of word orders depended on whether one compares 
the passive OVS against transitive (SVO) or 
intransitive (SV) sentences and reported ratios that 
varied from 1:5 to 1:63 depending on corpus 
(spoken or written). The simulation frequencies 
were therefore an approximate fit, with the Subject 

 S -> Imperative [0.1] | Interrogative [0.3] | Declarative [0.6] 
 
Declarative -> NP V-int [0.35] | NP V-tran NP active [.28] | 

NP V-tran NP passive [0.042] |               
subject cleft [0.014] |                                 
object cleft [0.014] | NP-Adj [0.1] |                 
That-NP [0.075] | You-P [0.125] 

 
NP-ADJ -> NP is/are adjective 

That-NP -> that/those is/are NP  
You-P ->  you are NP 

 
Imperative -> VP 
Interrogative -> Wh-Question [0.65] | Aux-Question [0.35] 

Wh-Question -> where / who / what is/are NP 
[0.5] | where / who / what do / 
does NP VP [0.5] 

Aux-Question -> do / does NP VP [0.33] |  
 do / does NP wanna VP [0.33] | 
is / are NP adjective [0.34] 

 
NP -> a / the N-sing / N-plur 
VP -> V-int | V-trans NP 



and Object Clefts slightly higher than in English 
due to the requirement to have at least a handful 
appear in our training corpus. 

We generated a corpus of 10,000 sentences from 
this grammar as our training materials for the 
network, and a set of 100 test sentences for each of 
the active, passive, subject cleft and object cleft 
constructions.  

3.2 Simulation One 

The Dick et al. (2001) task consisted of 
presenting participants with a spoken sentence, and 
two pictures corresponding to the agent and patient 
of the sentence. The participant’s task was to 
indicate with a binary choice which of the pictures 
was the agent of the sentence. For example, for 
sentences such as ‘the dog is biting the cow’, 
participants were asked to “press the button for the 
side of the animal that is doing the bad action”. 

Our next step was to implement this task in the 
model. One approach would be to train the 
network to output at each processing step not only 
the next predicted word in the sentence but also the 
thematic role of the current input. If the current 
input is a noun, this would be agent or patient. 
Joanisse (2000) proposed just such a solution to 
parsing in a connectionist model of anaphor 
resolution. We will refer to the implementation of 
activating units for agent or patient (solely) on the 
same cycle as the relevant noun as the “Discrete” 
mapping problem of relating nouns to roles. 

The mapping problem adds to the difficulty of 
the prediction task. We can assess the extent of this 
difficulty by measuring performance on the 
prediction component alone, against the metrics of 
two statistical models. The bigram and trigram 
models are statistical descriptions of the sentence 
set that predict the next word given the previous 
two or three words of context, respectively, and 
these were derived from the observed frequencies 
in the training set. 

Lastly, for the purposes of this simulation, we do 
not distinguish between the syntactic roles of 
subject and object, and semantic roles of agent and 
patient, even though a more complex model may 
separate these levels and include a process that 
maps between them. Although these simulations 
conflate the syntactic and semantic categories, we 
use the terms agent / patient for clarity in linking to 
the Dick et al. empirical data. 

3.2.1 Method 
For Simulation 1, we added two output units to 

the C&D network. The network was trained to 
activate the first extra unit when the current input 
element was the subject / agent of the sentence, 
and to activate the second extra unit when the 

object / patient of the sentence was presented. For 
all other inputs, the target activation of both units 
was zero. Thus, the number of input and output 
units was 55 and 57 respectively for the basic 
model, and 59 units and 61 units for the multiple-
cue model. 

The network’s ability to correctly predict the 
next word was measured over the 55 word output 
units using the cosine between the target and actual 
output vectors. On novel sentences, a perfect 
network will only be able to predict the next item 
probabilistically. However, over many test items, 
this measure gives a fair view of the network’s 
performance and we followed C&D (2001) in 
using this measure. 

We initially chose our parameters based on those 
used by C&D (2001). Our learning rate was 0.1, 
and we trained the network for ten epochs. We 
performed a simple search of the parameter space 
for the number of hidden units to establish a 
“normal” condition (see Thomas & Karmiloff-
Smith, 2003, for discussion of parameters defining 
normality). Eighty hidden units, the number used 
by C&D, gave adequate results for both models. 
This value was used to define the normal model. 

We first evaluate normal performance at the end 
of training, then under the developmental deficit of 
a reduction in hidden units in the start state, and 
finally under the acquired deficit of a random 
lesion to a proportion of connection weights from 
the trained network. 

3.2.2 Results 
On the prediction component of the task, both 

models demonstrated better prediction ability than 
the bigram model, and marginally less prediction 
ability than the trigram model. This is in contrast to 
C&D’s original prediction-only SRN model, which 
exceeded trigram model performance. It shows that 
the requirement to derive agent and patient roles 
increased the complexity of the learning problem, 
interfering with prediction ability. 

The role-assignment component of the task was 
indexed by the activation of the agent and patient 
units when presented with the second noun of the 
sentence. At presentation of the first noun, there 
was no information available in the test sentences 
that would allow the network to distinguish 
between the possible interpretations of the 
sentence. At the second noun, the most active of 
the two units was assumed to drive the 
interpretation of the sentence and subsequent 
picture identification in the Dick et al. task. 
Therefore, the network’s response was “correct” 
for Active and Subject Cleft sentences if the 
“patient” unit had the highest activation, and for 
Passive and Object Cleft sentences if the “agent” 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

unit had the highest activation. The scores, 
measured in terms of the proportion of correct 
interpretations for the test sentences for each 
construction are shown in Figure 3. 

Somewhat surprisingly, both the basic and 
multiple-cue models exhibited better performance 
on the Passive and Object Cleft sentences than on 
Active and Subject Cleft sentences. (These 
differences were statistically reliable.) The main 
difference between the two models was lower 
performance on Subject Cleft in the basic model, 
implying that cues to content-word status help to 
disambiguate the two cleft constructions. 

Examining the profiles of performance for each 
sentence type gives some insight into the dynamics 
of the networks. Figures 4 to 7 show the activation 
of the agent and patient units for the multiple-cue 
model during the processing of examples of each 
construction, selected at random. The Subject Cleft 
sentence shown in Figure 5 is typical of the pattern 
for both Active and Subject Cleft sentences. That 
is, agent unit activation is close to 1.0 at the first 
noun, while patient unit activation is close to zero. 
At the second noun, the network is usually able to 
correctly distinguish the patient, but some agent 
unit activation also occurs. Therefore, using our 
decision criteria, the network is not always able to 
correctly identify the patient, and scores on Active 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
and Subject Cleft sentences are not perfect. 

In contrast, in the example Passive and Object 
Cleft sentences, the network incorrectly activates 
the agent unit at presentation of the first noun. At 
this point, the network has no information that 
could possibly allow it to distinguish between the 
two different kinds of sentence, and so its response 
is driven by the relative frequency of the 
constructions. However, for the second noun (the 
agent), although the patient unit does show some 
activation, the agent unit is clearly favoured. 

Generally, the advantage of the agent unit for the 
Passive and Object Cleft sentences is greater than 
the advantage of the patient unit for the Active and 
Subject Cleft sentences. This can be explained by a 
general bias in the network in favour of the agent 
unit. In the training set, agents (subjects) occur 
much more frequently than patients (objects). All 
of the interrogatives and imperatives only have 
agents, and these comprise 30% of the training 
sentences. Thus, paradoxically, the network suffers 
when attempting to produce activation on the 
patient unit, and this impacts on the Active and 
Subject Cleft performance, despite the much 
greater frequency of these constructions. 

Figures 8 and 9 illustrate the affects of initially 
reducing the numbers of hidden units in the 
network and of lesioning connections in the 

Passive

0.0

0.2

0.4

0.6

0.8

1.0

the croco-
diles

are eaten by the cat

Un
it 

Ac
tiv

at
io

n

agent
patient

Active

0.0

0.2

0.4

0.6

0.8

1.0

a boy eats the cat

U
ni

t A
ct

iv
at

io
n 

 

agent
patient

Subject Cleft

0.0

0.2

0.4

0.6

0.8

1.0

it is a boy that is kissing the bunny

Un
it 

Ac
tiv

at
io

n

agent
patient

Object Cleft

0.0

0.2

0.4

0.6

0.8

1.0

it is a boy that a dog is eating

Un
it 

Ac
tiv

at
io

n

agent
patient

Simulated Agent / Patient task
Discrete Mapping Model

0%

20%

40%

60%

80%

100%

Active Subject
Cleft

Object
Cleft

Passive

Pe
rf

or
m

an
ce

 %

Basic model
Multiple cue model

Simulated Agent / Patient task
Discrete Mapping model: Acquired Deficit

0%

20%

40%

60%

80%

100%

Active Subject
clefts

Object
clefts

Passive

Pe
rf

or
m

an
ce

 % Normal
5% lesion
10% lesion
20% lesion

Simulated Agent / Patient task
Discrete Mapping model - Developmental Deficit

0%

20%

40%

60%

80%

100%

Active Subject
Cleft

Object Cleft Passive

Pe
rf

or
m

an
ce

 %

20 hid. units
40 hid. units
80 hid. units

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 Figure 9 



endstate. In both cases, non-optimal processing 
conditions exaggerated the pattern of task 
difficulty, with Actives and Subject Clefts failing 
to be learned or showing greater impairment after 
lesioning. Object Clefts are the most easily learnt 
and most robust to damage, despite their non-
canonical word order and low frequency. With the 
task definition of responding “agent” to the second 
noun, this construction gains most from the 
prevalence of the agent status of nouns in the 
corpus.  

This interpretation of the Dick et al. agent-
identification task does not provide an adequate fit 
to the human data, either for normal or atypical 
performance. Why not? This implementation of the 
task requires that the network keep track of two 
roles at the same time and assign those roles at the 
correct moment. It is therefore driven by the 
independent probability of a noun being an agent 
or a patient at multiple time points through the 
sentence. The result is a de-emphasis of global 
sequence information and an emphasis on local 
lexical information, leading to a relative advantage 
of responding ‘agent’ to any noun. 

In the Dick et al. task, the participant is asked to 
make a single decision based on the entire 
sentence, rather than continously monitor word-by-
word probabilities. Responses occurred between 2 
and 4 seconds after sentence onset, with words 
presented at around 3 words-per-second. In the 
next section, we therefore provide an alternate 
implementation of the task based on a single 
categorisation decision for the whole sentence. But 
Simulation 1 serves as a demonstration that the 
statistics of the input set alone do not generate the 
task difficulty. It is the mappings required of the 
network. Moreover, we might predict that a 
modification of the Dick et al. study to encourage 
on-line monitoring of roles would alter the pattern 
of task difficulty. Thus, the four options might be 
presented as pictures (each noun twice, once as 
agent, once as patient), and the participants’ eye-
gaze direction recorded as the sentence unfolds. 

3.3 Simulation Two 

An alternate implementation of the Dick et al. 
task is that the network should be required to make 
a single categorisation on the whole sentence as to 
whether the agent precedes the patient, or the 
patient precedes the agent. This implementation 
follows the assumption that task performance is 
driven by higher-level sentence-based information 
rather than lexically-based information. A single 
unit can serve to categorise the input sentence as 
agent-then-patient or patient-then-agent. During 
training, the target activation for the unit is applied 
continuously throughout the entire utterance. We 

therefore call this the Continuous Mapping 
problem for sentence comprehension. Like the 
Discrete Mapping problem, the Continuous version 
has also been employed in previous connectionist 
models of parsing (Miikkulainen & Mayberry, 
1999). (Note that Morris, Cottrell & Elman, 2000, 
used an implementation that combines Discrete 
and Continuous methods, providing a training 
signal that is activated when a word appears and is 
then maintained until the end of the sentence). The 
Continous method generates a training signal for 
comprehension. It does not constrain on-line 
comprehension, which may be subject to garden-
pathing and dynamic revision.  

3.3.1 Method 
A single output unit was trained to produce an 

activation of 1 for sentences with Subject-Object 
word order (active and subject cleft constructions), 
and 0 for Object-Subject word order (passives and 
object cleft constructions). Apart from this 
difference, the basic and multiple-cue models were 
identical in all other respects, with 55 input and 
output units in the basic model, and 59 units in the 
multiple cue model. As before, we trained the 
network on 10,000 sentences generated by the 
stochastic phrase structure grammar, and tested the 
trained network on sets of 100 Active, Passive, 
Subject Cleft and Object Cleft sentences. One 
hundred and twenty hidden units were required to 
define the ‘normal condition’ for these simulations. 

3.3.2 Results 
As with Simulation 1, the prediction ability of 

both basic and multiple-cue models suffered due to 
the burden imposed by the mapping task. Although 
the networks’ performance reliably exceeded a 
bigram prediction model, the trigram statistical 
model was slightly superior. 

The network’s ability to correctly “interpret” the 
test sentences was measured as follows. If the 
semantic output unit’s activation at the time of 
second noun presentation was greater than 0.5, 
then the response was assumed to indicate that the 
sentence had Subject-Object word order and the 
agent was the first noun. If the activation was less 
than or equal to 0.5, then the response was 
assumed to indicate that the sentence had Object-
Subject word order and the agent was the second 
noun. Although the target output for the network 
was consistent throughout each sentence, we 
selected the presentation of the second noun as our 
point of measurement, as this was where the 
network’s discrimination ability was greatest. 
Figure 10 depicts performance on the four 
constructions. 

On Active, Subject Cleft, and Passive sentences 
the basic model showed appropriate performance, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

but it failed to correctly distinguish the Object 
Cleft sentences. Doubling the hidden units did not 
markedly alter this pattern. The multiple-cue 
model showed a much better fit to the human data, 
performing at close to ceiling for the Active, 
Passive and Subject Cleft constructions, and 
scoring in excess of 85% correct on Object Cleft 
constructions. The content-word cues provided in 
the multiple-cue model again appeared important 
in disambiguating the cleft constructions. 

Focusing on the multiple-cue model, Figures 11- 
14 show the activation of the network’s semantic 
output unit over a random sentence from each of 
the four test constructions. For the Active sentence, 
the network maintains a fairly constant high level 
of activation throughout the sentence. That is, it 
starts with the “assumption” that sentences will 
have a Subject-Object word order, and becomes 
more certain of this result (as shown by rising 
output activation) as the sentence proceeds. 

For the Passive sentence, again, the network 
starts out assuming that the sentence will have the 
more frequent Subject-Object word order. But on 
seeing “eaten by”, the network reverses its original 
diagnosis. However, the influence of this cue 
noticeably fades as the sentence proceeds. It 
persists enough that by the second noun, the 
network (just) manages to indicate correctly that 

 
 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the sentence has Object-Subject word order. 
The Cleft constructions show a very different 

pattern. For the Subject Clefts, the network begins 
with a low output value from the semantic unit. 
This increases slightly as the first determiner and 
noun are presented, but the most valuable cue 
arrives with the words “that is kissing”. These 
provide a perfect indicator (in this context) that the 
sentence has Subject-Object word order, and the 
activation of the semantic unit jumps dramatically, 
staying near ceiling for the rest of the sentence. 

Finally, examining the Object Cleft sentence, 
output activation again starts low and rises only 
modestly during presentation of the first noun. 
However, the presence of a second noun following 
immediately after the first pulls the activation back 
down, to correctly indicate that the sentence has 
Object-Subject word order. Notice that, as with the 
Passive sentence, as the distance increases from the 
cue that marks the (less common) status of the 
Object Cleft sentence, so the activation level of the 
semantic unit tends to drift back to the default of 
the more frequent constructions. 

Figures 15 and 16 illustrate, respectively, the 
effects of reducing the initial numbers of hidden 
units in the network and of lesioning connections 
in the endstate. In the case of acquired damage, 
non-optimal processing conditions exaggerate the 
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pattern of task difficulty, with Passives and Object 
Cleft’s showing greater impairment after lesioning 
in line with the empirical data in Figure 1. 
Interestingly, in the case of the developmental 
deficit, the pattern is subtly different. While Object 
Clefts show increased vulnerability, Passives are 
far more resilient to developmental damage. 

We carried out further analysis of this difference. 
Using the examples in Figs. 13 and 14, the cues 
predicting Object-Subject order for Passives turned 
out to be the inflected verb ‘eaten’ followed by 
‘by’, i.e., two lexical cues (the second redundant). 
For Object Clefts, the cue for Object-Subject order 
was sequence-based information: in this 
construction, two nouns are not separated by a 
verb. This is marked by the arrival of a second 
noun prior to a verb, that is, the words ‘a’ and 
‘dog’. While both lexical and sequence cues are 
low frequency by virtue of their constructions, they 
differ in that the Passive cue comprises lexical 
items unique to this construction, while the Object 
Cleft cue involves a particular sequence of lexical 
items that also appear in other other constructions. 
Examination of activation dynamics reveals that 
both low frequency cues are lost after acquired 
damage. However, the network with the 
developmental deficit retains the ability to learn 
the lexically-based cue that marks the Passive, but 
has insufficient resources to learn the sequence-
based cue that marks the Object Cleft construction. 

Three points are evident here. First, the model 
makes a strong empirical prediction that when 
developmental deficits are compared to acquired 
deficits, passive constructions will be relatively 
less vulnerable. This renders the model testable 
and therefore falsifiable. Second, the model 
demonstrates the differential computational 
requirements of tasks driven by local (lexically-
based) and global (sequence-based) information in 
a parsing task. Third, the model reveals the 
distinction between acquired and developmental 
deficits, with compensation possible in the latter 
case for cues with low processing cost (see 
Thomas & Karmiloff-Smith, 2002, for discussion). 

4 Discussion 

Implemented learning models are an essential 
requirement to begin an exploration of the internal 
constraints that influence successful and atypical 
syntax processing. Our model necessarily makes 
simplifications to begin this exploration (e.g., the 
distribution and frequency of lexical items across 
constructions is not in reality uniform; cleft 
constructions may have different stress / prosodic 
cues). A precise quantitative fit to the empirical 
data must await models that include those factors. 

However, the current model is sufficient to 

demonstrate the importance of the mapping task in 
specifying difficulty (over and above the statistics 
of the input); how internal processing constraints 
influence performance; and how local and global 
information show a differential contribution to and 
vulnerability in sequence processing in a recurrent 
connectionist network. 
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