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Introduction

There ae a number of developmenta disorders tha digolay uneven cognitive profiles in
their developmenta enddates, exhibiting areas of relative drength and relaive weskness.
For example, in Specific Language Imparment and developmenta dydexia, a rdative
weakness is observed in various aspects of language compared with rdative Strength in
nonverbd abilities. Disorders that show differentid  performance in numerical  cognition,
face recognition, and motor co-ordination have adso been identified. Neurogenetic
developmentad disorders can display more complex patterns of uneven performance
affecting multiple domains, such as the cases of Williams syndrome (reletively stronger
language, face recognition, and socid cognition, relatively wesker visuospatia cognition,
numerica cognition, and problem solving, againg a background of low 1Q) and autism (a
centrd triad of deficits in communication, imagination, and socidisation). However, the
theoretical implication of these uneven cognitive profiles remains a metter for debate. One
of the central issues concerns the origin of cognitive modules that are specidised for
functions such as language, visuospatid cognition and face recognition. Where do these
modules come from, and can they be sdectively disrupted in developmentd disorders?

One theoreticd dandpoint, which we will cdl innate modularity, argues that
evidence of uneven cognitive profiles in genetic devdopmentad disorders points to an
innate bags for functional specidistion. High-level cognitive sructures are taken to be
pre-specified during normad devdopment, preceding the influence of experience
Developmentd disorders represent a case of differentid perturbations to different innate
modules. Such a proposa need not invoke innate knowledge within the modules, since a
developmental process could serve to put in place the content of each component. If an
innate module were atypicd, this would lead to a differentid deficit in the adult enddate
for that doman, while initidly normad components would leed to domans with normal
endstate peformance. However, initidly norma components might be compromised by
attempting to compensate across development for the faulty one(s). The uneven cognitive
profile is then explained with reference to the functiond (modular) sructure of the norma
adult sygem (dnce this is pre-specified). Proponents of this posdtion do not rule out the
posshility that quditatively aypicd functiond <ructures could occur in  developmentd
disorders. Indead they argue that the empirica evidence has not supported it. Thus,
Temple and Clahsen (2002, p.770) argued on behaviourd grounds that “there remans no
empirical evidence in any developmentd disorder that the ultimate functional architecture
has fundamentdly different organisation from normd, rather than merdy lacking or having
reduced deveopment of components of norma functiond architecture’. Tager-FHusberg
(2000, p.33) commented that “despite some varidion in sze (either smdler or larger) and
other surface features, in fact, across a wide range of disorders it is actudly quite
remarkable how gmilar the brans of different populations are to one another and to
normaly developing children... To be sure, there is some functionad variaion, but not
much beyond the degree that is observed in norma people... We need to view the brain as
a dynamic system that develops dong flexible but fairly bounded and directed pathways'.
More recently, Tager-Flusberg et a. (2003, p.22) added that “there is much less deviance
in the developmental processes and neurocognitive organisation in people with geneticaly
based disorders than has been portrayed in the literature”.

A second theoretical standpoint cdled neuroconstructivism argues that assumptions
of innate modularity are incongsent with what is known about early brain and cognitive
devedopment (Elman et d., 1996; Karmiloff-Smith, 1998). For example, Karmiloff-Smith
(1998) pointed out that current evidence indicates that there is no regionspecific gene
expresson in the areas of cortex that come to underlie higher cognitive functions in adults.
Moreover, bran imaging of infants suggests that modular dructure may be emergent, in
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that it is a product of the developmental process rather than a precursor to it. For example,
both localisation and specidisation of ERP waveforms increase in response to faces and
gpoken words across the first two years of life (De Haan, 2001; Mills, Coffey-Corina, and
Neville, 1997). In Karmiloff-Smith's view, the uneven cognitive profiles found in adults
with developmenta disorders are due to subtle differences in the neurocomputationa
properties of neonate brain, condraints that are both less detailed and less domain-specific
than the processng dructures involved in higher-level cognitive functions. A cascade of
developmenta processes then attenuates or exaggerates these initia differences, so that the
process of modularisation may be disupted. The result could be an atypicad modular
dructure in which even the cognitive processes underlying the relative cognitive strengths
ae aypicd. Kamiloff-Smith (1998) suggested that the absence of overt evidence for
atypicd modularity stems from the poor sengtivity of standardised cognitive tests used to
verify norma performance, and the redtricted research attention paid to aress of strength in
disorders. Reviewing evidence for face processng and language development in Williams
syndrome, both areas of rdative strength, she argued that behavioura and brain evidence
ae conggent with aypicd processng underlying performance. Her concluson was tha
abnorma cognitive phenotypes should not automaticaly be described with reference to
norma adult functiond structure because the structure itself may be atypicd.

In assessing the relative merits of these two pogtions, evidence from functiond
brain development in infancy does gppear to support the idea that modularity is emergent
rather than pre-specified, with functiond specidisation of brain areas increesing with age
and expertise. Proponents of innate modularity typicdly de-emphasise the developmentd
process in ther explanatory models, and therefore do not offer accounts of exiging infant
data in terms of pre-specified structures. However, one could defend the innate modularity
podtion in a least two ways. Firs, one could express scepticism that we know enough
about brain development to rule out the possbility that specidisation occurs via intringc
factors (representing the maturation of pre-specified modules), or argue tha brain-imaging
evidence as it stands holds little relevance to the development of cognitive dructures per
. Thus Dudek (2001, p.146) predicted that “a unique gene will be found for each and
every distinct cortical area’; and Fodor (1998, p.130) argued that “nobody knows whether
the infant's brain is plagic in respects that affect cognitive architecture’ (itdics in
origind). Second, one could clam that the modules present in the infant are less abdtract
than those found in the adult, and that development serves to glue these together into
higher-levdl modules. Thus Baron-Cohen (1999) proposes a ‘minimaist’ innate modularity
to explain theory-of-mind deficits in autigm.

However, the neurocondtructivig and innate modularity podtions could converge if
it were the case tha the emergence of modularity was difficult to disrupt. That is
modularity could be a product of development as neuroconstructivism suggests, but the
neurocomputeationd properties that guide the emergence of large-scde functiond Structure
might not be dtered by the kinds of genetic mutations found in developmenta disorders so
that norma patterns of specidisation emerge. By contradt, if the condraints that shape the
properties of the eventud functionad components are irrevocably tied to the condraints that
drive the emergence of modularity, then neurocondructivism and innate modularity must
represent opposing and empiricaly digtinguishable theories.

The am of this aticle, then, is to address whether there can be common ground
between the two approaches, given what we currently know about the principles that guide
the emergence of functiondly specidised neurocomputational dructures. Ultimately, we
will introduce a set of computational smulaions to invedigate the condraints that would
disrupt or preserve the emergence of functiond architecture. However, to get to that point
we need to do some groundwork. First, we need to unpack the theoretical clams of
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neurocongructivism regarding the emergence of modularity. We will illugtrate the reevant
issues using the example of the laterdisation of language in the brain. Second, we need to
review current computationa gpproaches to the emergence of modularity in order to
identify the condraints that guide specidisation in the normd case. Third, we need to
identify a set of architectures and sample cognitive domans through which we can
invedigate the effects of disruption to these condraints. Specificaly, to explan uneven
cognitive profiles in an emergent framework, we need to ask whether different parameters
guide the emergence of specidisad functiond components versus the computationd
properties within the eventua components themselves.

The emergence of modularity

The proposa tha functiond dructure is emergent (i.e, formed as a product of
development) Sts between two more extreme postions that contribute to current theories
of functiond modularity (Bates & Roe, 2001). The firgt is equipotentiality, which proposes
that dl areas of cortex are equdly adle to peform al cognitive functions a birth. The
second is innate modularity (which Bates and Roe refer to as ‘irreversble determinism’).
This daes that areas of cortex ae innatdy and irreversbly specidised for certan
cognitive functions. The emergentis postion seeks to reconcile two empiricd facts: (1) a
a broad scde, there is reasonable uniformity of outcome in the assgnment of cortical aress
to functions in normad adults (2) there appears to be flexibility after early bran damage
folowing focd lesons, otherwise hedthy children often show recovery to within the
normd range of cognitive abilities However, the exact extent both of uniformity and the
completeness of recovery are dill matters for debate. The condraints that guide the
emergence of specidised dructure must be drong enough to explain the uniformity but
weak enough to accommodate the recovery. Once flexibility is added, it is dso necessary
to explain why the outcome should be an aray of specidised sysems rather than multiple
redundant systems. if a component can ad in the recovery of a function, why did it not
take on this function in the firgt place?

The emergentis proposd is that two factors explan specidisation: (1) domain-
relevance and (2) competition between areas for functional specialisation (eg., Elman et
d., 1996; Karmiloff-Smith et d., 1998). Domain-redevance means that some brain areas
ae more suited to carrying out the computations for a given cognitive doman than others,
without encoding any specific details of that domain. An area will bear differing degrees of
computational relevance to a range of possble domains. Competition refers to a process
where the activity of one component tends to increase a the expense of other components.
To the extent that representational change is activity dependent, such change will occur
differentidly in the ‘winning’” component.

Specidisation then occurs as follows The initid subdrate of the cortex is
computationaly heterogeneous. Different areas are more or less adle to perform the
computations required for different cognitive domains. These areas compete with each
other to acquire the various cognitive domains, a competition biased by the information to
which various aess ae initidly exposed by globd connectivity. (For example, auditory
areas would tend to beat visua areas to compute audition since they are biased by the rich
connectivity that ddivers auditory input to this area This is independent of the rdaive
ability of these areas to peform the computations) The winners of the competition come
to gpecidise in a given domain, modifying their structures to represent the regularities of
each doman and thereby becoming domain specific. Importantly, areas may be able to
process dternative domains but less efficiently. Following damage, the less-suited areas
are then able to acquire, or develop a partid specidisation for, an dternative domain, so
long as they can access the reevant information. This explans recovery. Overdl, the
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account produces two candidate condraints to guide specidisation: (1) the set of doman
rdlevancies present in the initid date (that is, the default set of mechanisms present a the
onset of development), and (2) the (biased) competition that drives eventua specidisation.

The example of languege

The doman of lahguage, and in paticular the phenomenon of language laerdisation,
sarves to illudrate the type of data that support theories of specidised functiond structure.
In adults, the processng of syntax and semantics is modly left laerdised, implying that
language is specidised to dructures in this hemisphere. However, this concluson emerges
more grongly from leson data (where left-hemisphere damage produces aphasia but right-
hemisphere damage does not) than from brain-imaging data (where homologous aress of
the right hemisphere show activation in some comprehenson and production tasks, dbeit
a lower levels, see Price, 2003). The left-dominance of syntax and semantics exhibits
uniformity of outcome It is found in around 95% of aduts, irrespective of handedness
(Bates & Roe, 2001). Brain-imaging data suggest that left laterdisgtion for word
recognition emerges in infancy. Mills Coffey-Corina, and Neville (1997) found bilateral
ERP patterns in response to single words in 13-17 month olds, but left lateralised and more
focd patterns in 20 month olds. The redtriction to the left hemisphere was more closdy
associated  with  comprehenson  &bility than chronologicd age, aguing agangt a
maturationa effect drictly linked to age.

The parameters that drive this emergent specidisation are as yet unknown. There
are anatomica differences in brain sructure between the hemispheres, for indance a larger
left tempord plane, but this was found in only 65% of individuds, somewhat short of the
95% that exhibit |eft lateralisation of language (Reggia & Schulz, 2002). Indeed, structura
hemispheric differences have been argued to dissociae from functiond differences, snce
rare individuds with situs inversus (left-right reversed internd organs) neverthdess ill
show left-lateralised language (Kennedy et a., 1999; Walker, 2003). Bates and Roe (2001)
agued for a functiond difference tha might pull language development to the left Sde
soecificaly that left tempord aress are better then right tempord aess in the fine
perceptual  discrimination required to recognise (and later produce) speech sounds.
Huttenlocher (2002) noted that the development of syngpses in the auditory cortex
precedes that in Wernicke's area, which in turn precedes synaptogenesis in Brocd's area
This reflects the sequence of functiond development found in these regions of cerebra
cortex (perception of speech sounds precedes language comprehension which precedes
language production), implying a possible role for plagticity in mediating goecidisation.

Despite evidence of left laterdisation a 20 months, the flexibility of the sysem is
illugtrated by the fact tha if unilatera brain damage occurs prior to the age of 57 years,
children recover to acquire language in the normd range. Although the Sde of damage
predicts the profile of recovery, eventualy, as adults, there is no obvious effect of sde of
damage, or a disadvantage for initid left-sded damage that can only be revedled by subtle
psycholinguigic measures (Bates & Roe, 2001; Huttenlocher, 2002). Following early left-
dded damage, then, the greater pladticity of the child's bran may pemit the right
hemisphere to acquire language. To do <o, it is possble that the right hemisphere
congructs a de novo language sysem. However, it is adso possble that language
deveopment exploits derdict right-hemisphere structures remaining from the earlier phase
of bilatera processng (Huttenlocher, 2002); or even that recovery takes advantage of
exiging redundant right-hemisphere sysems tha ae suppressed during norma
peformance. Certanly in normd adults, homologous right-hemisphere areas appear to be
inhibited by the left hemisphere during language production, and relessed from that
inhibition &fter left hemisphere damage (for left and right pars opercularis. Blank et d.,
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2003). A smilar effect has been observed in the perception of same-pecies vocdisations
in rhesus monkeys. right-hemisphere inhibition in the tempora pole in the normd adult,
folloned by grester right hemisphere activation &fter disconnection from the left
hemisphere (Poremba et a., 2004). Thus the bran's postion on a scde between
specialisation and redundancy is not settled.

Moreover, it has recently been clamed that specialisation is not fixed in adulthood,
with the badance of left vs. right contributions changing across life span. Szaflarski et 4.
(2004) used fMRI to assess regions of interest in 121 right-handed children and adults
between 5 and 63 years of age in a verb gereration task. They reported that language
became more left laterdised with age in children and young adults, reaching a maximum
laterdisation between 25 and 35, and then darted to become more bilatera again. These
researchers suggested that the increase in speddisation reflects improved linguisic skills,
maturation of the centra nervous system, and pruning of synaptic connections, while the
later reduction reflects compensation for age-reated loss of functiona capacity.

Although specidisation has often been associated with expertise, the functiond
ggnificance of left-gded language specidisation is not clear-cut. 1t has been suggested that
women demondrate more hilateral patterns of activation than men (eg., in a reading task:
Shaywitz et d., 1995), while performing better on language-related tasks (Kimura, 1992)
and exhibiting better recovery from unilaterd |eft-sided damage (Strauss, Wada, & Hunter,
1992). Atypicd language laterdisation is not necessarily associated with  language
pathology (Knecht et d., 2001), suggeding that different individuds may utilise different
patterns of cortical organisation to process the same information and to produce norma
behaviour (weskening clams of uniformity of outcome). Specidisation to a sngle
hemisphere is therefore not necessarily associated with better performance and may be
associated with greater vulnerability to damage.

If emergent language laterdisation can dtand as a proxy for specidisation, answers
to the following questions reman unclear: (1) What are the neurocognitive factors that
drive specidisation? (2) When does specidisation fully occur (if a al)? (3) To what extent
does specidisation become fixed with age or experience? (4) Is recovery better explained
by reorganisaion or by bilatera redundancy? And (5) does specidisation necessarily
convey an (externdly observable) behavioural advantage? To invedtigate these questions
further, the process of specidisation must be specified in greater detail, and for this we turn
to computationa moddling.

Computational approaches to emergent modularity

Three principd types of computational account have been put forward to account for
emergent functiona specidisation (Jacobs, 1999). In the mixture-of-experts approach
(Jacobs, 1997; Jacobs et d., 1991), the initid system is comprised of components that have
different computetional properties. A separate mechanism gates the contribution of these
components to the output. When the overal system is presented with a task, the gating
mechanism mediates a competition between the set of components, dlowing the most
successful component for each training pettern both to drive output performance and to
update its weights to become better at that pattern. Across training, certain mechanisns
come to specidise on sets of patterns, by virtue of having an initid (perhagps smadl)
advantage in processng those patterns. In the neural selectionism or parcellation
goproach, the initid computational system has a surplus of connections. However, duing
learning, many of these connections are weeded out (pruned), whereas others are stabilised
depending on usage. In addition, a locdity condrant favours the dabilisation of
connections between nearby processing units. The result is that nearby units communicate
with each other and come to perform the same functions, whereas those far apart do not
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communicate and come to specidise in different functions (Jacobs & Jordan, 1992;
Johnson & Karmiloff-Smith, 1992). In the wave of plasticity approach, the initid
computationd system experiences differentiadl responsveness to learning, both  spatidly
and tempordly. Pladticity is reduced over time across a sheet of computationa units, so
that one dde of the sheet loses its pladticity earlier than the other. The result is that later
maturing units can employ the functions computed by the earlier maturing units as input,
thereby computing more abdract functions from them. The later maturing units effectivey
gpecidise in more abstract aspects of the problem domain (Shrager & Johnson, 1996).

To date, the mgority of computationd moddling approaches to atypica
devdlopment have focused on processng anomdies within  pre-specified functiona
modules. For example, parameter variations have been used to explain characterigics of
autism in caegorisation networks, characterigics of dydexia in reading networks, or
characterigics of Williams syndrome and Specific Language Impairment in inflectiond
morphology networks (see Thomas & Karmiloff-Smith, 20023, for a review). One modd
has offered a preiminary indght to atypicd specidisation. Oliver et d. (2000) explored the
parameters that affect the successful emergence of topographic maps in a sdf-organisng
network. In this mode, the network was presented with four bars on an input retina and
had to learn a map with four regions, one specidised to recognise each bar. Oliver e 4.
found that several computational parameters disupted the organisation of the map,
induding reducing the length of laterd inhibitory connections in the output layer and
dtering the rdative smilaity of the four input patens. They suggested that the
amulations might offer a moded of ‘encgpaulation’ and the emergence of information
processing modules. The paameter variaions could therefore represent atypicd
modularisation via a disrupted parcelation process. However, the functiond sgnificance
of the disrupted networks was hard to eva uate given the smple problem domain.

Three other computational modds are dso relevat in that they establish some of
the conditions under which specidisation can occur. Daley and Cottrel (1999) used a
mixture-of-experts model to capture the emergence of specidised dructures for face
recognition in a system aso traned to recognise images of books, cups, and cans. The
model had two components that competed to classfy the images. In one verson of the
model, there was no processing difference between the two components other than their
initid random connection weights. Partid specialisation of the faces to one mechaniam did
occur but the effect was not particularly strong. Nevertheless, this condition demonstrated
that with very low domain relevance, competition is sufficient to produce specidisation. In
a second verson, one comporent was fed high soaid frequency information from the
visud input while the other was fed low spatid frequency information. The result was
much more relidble emergent gpecidisation for face recognition to the low spdid
frequency component.

Monaghan and Shillcock (2004) employed a Smilar gpproach to capture
hemispheric asymmetries in a modd of unilaera visud neglect. The hidden layer of a
three-layer network was split S0 that the left Sde had gaussan units with narrow receptive
fidds, while the right sde had gaussan units with wide overlgpping receptive fidds. This
manipulation implemented the assumption that the two hemispheres have different spatid
scaes a which they prefer to operate. The model was trained to recognise the location and
length of lines presented on an input retina. When the network was given a unilaterd leson
after training, its performance on a line bissection task replicated a number of asymmetries
found after cases of human bran damage. These included larger digolacements of the
centre of the line following damage to the coarse-coded right dde than to the left sde of
the hidden layer, and fagter recovery dfter left damage than right damage. In this modd,
there was no explicit competition process, yet domain relevance led to speciaisation.
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Finaly, Reggia and Schulz (2002) reviewed a number of their models designed to
explore the computationd conditions under which two cerébrd regions that communicate
via a dmulated corpus cadlosum produce emergent specidisation between the two
hemispheres. Using both sdf-organising and backpropagation networks, they examined the
effect of usng excitatory vs. inhibitory connections between the hemispheres, as well as a
range of other parameter vaiations. Ther results demonstrated that specidisation can
occur in the absence of competition between the hemispheres or even in the presence of
excitation, 0 long as the parameter settings of the two hemispheres are different enough.
However, specidisation effects were sronger with inhibitory connections implementing a
competitive process.

The current Smulaions
In the following sections, we report the results of new computational work designed to
invesigate posshble disruptions to the emergence of functiondly specidised structures. We
focused on four issues:
Wha ae the computationa parameters that affect emergent specidisation in
associative (task-driven) sysems?
What are the redive contributions of domain-rdevance and competition, the two
features of the emergentist gpproach, in driving emergent specidisation?
Are there computationd parameters that determine whether a system with multiple
components  will  exhibit pre-gpecifiead modularity, emergent modularity, or
redundancy?
When a normdly developed system with speciadlised components experiences damage,
how do parameter settings ater the patterns of recovery? In particular, under what
conditions do Sdeof-leson effects perss after recovery (condgtent with innate
modularity) and under what conditions do sSde-of-leson effects eventualy disappear
(conggent with emergentism), as in the case of language development &fter early
unilateral brain damage (Bates & Roe, 2001)?

Architectures, cognitive domains, and parameters. Previous modeling work has drawn a
didinction between two types of neurocomputationa learning sysems (O'Rellly, 1998). In
sdf-organising systems, the emergence of functiona structure is based upon peatterns of
gamilaity in the input. Sdf-organisng systems are normaly used to learn categories within
input sets. In error-driven systems, the emergence of functiona structure is guided through
an eror Sgnd. The error sgnd is normaly used to dlow the system to learn input-output
transformations. It is possble that the key parameters guiding specidisation differ between
the two types of system, and we therefore consder them separately. While the moddls are
greetly smplified from neurobiologicd and behaviourad redity, they ae neverthdess
based on some basic principles of biologicd neurd eements, circuits and synaptic
plagicity (Reggia & Schulz, 2002). We take two exemplar cognitive domans, one
gppropriate to a sdlf-organisng system, one to an error-driven system, both of which
demondrate emergent specidisation of functiond structure in our chosen architectures.
The two cognitive domans ae rddively rich, fadlitating evduation of possble
decrements on behaviourd task peformance caused by different parameter settings. The
sdf-organisng domain is a feaure-based set of semantic representations. The error-driven
doman is English past tense As in previous smulaions of deveopmentd deficits,
paraneter manipulations are caried out prior to traning the vaious modes and
subsequent developmenta  trgectories and endstate deficits are then assessed (Thomas &
Karmiloff-Smith, 2002b). The parameters we condder are the amount of processing
resources for both sdf-organisng and error-driven systems, plagticity and the nature of the
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learning rule in the error-driven system, compstition mechanisms in both systems, and
changesin input frequency in both systems.

Smulations

Smulation 1: Spedidisation in saf-organisgng sysems

In this amulation, we condder the effects of parameter manipulations on the emergence of
specidised dructures in a sdf-organisng feature map (Kohonen, 1995), one example of a
sf-organisng sysem. This architecture is relevant to basc sensory development, eg. of
topographic maps. Our modd is smilar to that employed by Oliver et a. (2000) described
previoudy, in that the reationship between inputs is reflected in the topography of the map
formed on the cortical layer. The architecture we used had smpler activation dynamics but
was exposed to a richer cognitive domain, permitting a consideration of the quaity of the
learned representations for driving categorisation. The example categories were drawn
from semantics and included humans, animds, vegetables fruit, dary produce, kitchen
utensls, tools, and vehicles, defined over a set d features. Our interest was to explore two
condraints in the modd: (1) a doman-reevant condraint — the level of resources available
in the output layer (that is, the number output units available to represent the categories);
and (2) the competition process occurring in the network. To dter conditions of
competition, we ether reduced the neighbourhood size of the units that would update their
weights for a given peattern (i.e, the sze of the region of units affected when a given unit
became associated with a given pattern), or we atered the baance of the input set to favour
some categories over others. The finad sdf-organisng maps were evaduated with regard to
whether they maintained the same regions of specidisation, and whether they permitted the
same degree of discrimination within each semantic category.

Smulation detalls

Architecture: We employed the Self-organising feature map (SOFM) available in the Matlab Neural
Networks toolbox (Demuth & Beale, 2002). The SOFM is a 2layer network with full connectivity between
the layers. When a pattern is presented to the network, the output unit with the weight vector closest to the
input vector becomes the winner. The weights for this unit and for those in a given neighbourhood
surrounding it are then updated. The result is a topological arrangement of the SOFM, with neighbouring
regions of the input space coming to be represented by neighbouring units on the map. The network was
trained in two phases. The first ‘ordering’ phase defined the broad topology (with a large but reducing
neighbourhood size and large but reducing learning rate). The second ‘tuning’ phase refined the topology
(smaller fixed neighbourhood size and smaller and slowly declining learning rate). Six parameters defined
training: the number of presentations of the training set in the ordering phase, the total number of
presentations, the ordering phase learning rate, the tuning phase learning rate, and the final neighbourhood
size. In the normal condition, the following values were used, respectively: 1000 presentations, 3000
presentations, 0.9, 0.02, and a size of 1. Two atypical parameter sets were used to disrupt competition: we
either set the neighbourhood size to zero throughout training (the ‘No neighbourhood’ condition); or we
allowed a brief ordering phase of ten presentations of the training set before setting the neighbourhood to
zero (the ‘Fast commitment’ condition). The output layer used a hexagona topology, and a boxdistance
function to calculate the distance between two units. In the normal condition, a 14x14 output layer was used.
These resources were progressively reduced to 12x12, 10x10, and 7x7 maps. The input layer comprised 154
units. Each network was run three times with different random seeds for the initial weights.

Training set: We exposed the network to a training set comprising semantic representations for 58
concepts. The concept set was based on that used by Small et al. (1996), who constructed an item set from
concepts employed in neuropsychological tests of semantic deficits. Our training set comprised 8 major
categories: humans, animals, vegetables, fruit, dairy produce, kitchen utensils, tools, and vehicles. Concepts
were defined over 154 meaningful semantic features (such as “has legs’, “is food"). Each concept activated
on average 19 of these features. An individual input pattern consisted of 154 binary digits, indicating the
presence or absence of each semantic feature. From the set of 58 prototypes, multiple exemplars (variations
on a given prototype) were generated from each prototype to produce a final training set of 185 items (for
example, if “apple” was the prototype, “green apple” and “red apple” might be two exemplars). A single
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random order of the items was created and this was used in al conditions, to ensure that any variability
stemmed from internal rather than external constraints. To investigate the effect of altering the balance of
inputs from different categories, two Altered Input Competition conditions were created. One combined the
exemplars for Living concepts with the prototypes of Non-Living (A) for a training set of 143 items. The
other combined the prototypes for Living concepts with the exemplars for Non-living concepts (B) for a set
of 100 items.

Results

The maps produced in each condition are presented in Figure 1 (a colour verson of this
diagram is avaladle & http://www.psyc.bbk.ac.uk/people/academic/thomas m/). To plot these
diagrams, we used a duder andysis of the smilarity dructure in the training set to assign a
ogreyscade to each patern. This colour was then assgned to the unit(s) that became
activated on presentation of this pattern to the trained network. If severa patterns activated
the same unit, the colours were averaged. The number of patterns activating each unit
determined the sze of the circle representing that unit. Fig. 1(a) depicts the norma
condition for the 14x14 map. The systematic change of shading across the magp indicates
that the network formed separate areas representing the magor semantic categories. Of the
network’s 196 output units, on average 78 (40%) were activated by one or more inputs.
Figs. 1(b) to 1(d) illustrate the effect of reducing the map size. Three points are of note.
Fird, for smdler mgps a dmilar organisation of <specidised aess ill emerged.
Replications reveded some ingability in whether fruit/ivegetables or people/animas were
to the right of vehicles, but Living patterns were dways separate from Non-living. Second,
for the smdler maps, the circles became progressvely larger. That is, each unit came to
respond to more input patterns. As a result, these maps were less able to discriminate
between items within each category. Third, as the maps became smdler, they progressvely
filled up: on average the 12x12 activated 70 of its 144 units (48%), the 10x10 activated 58
of its 100 units (58%), and the 7x7 36 of its 49 units (72%).

Figs. 1(e) and (f) demondrate the effect of dtering the baance of input patterns
from each category. These networks demonstrated comparable use of units and broadly
gmilar organisation of the maps dthough the location of areas could be different. The
effects of dtering the inputs were sometimes subtle, with expanson of aress for over-
represented categories and reduction of areas for under-represented categories, but little
change in the discrimination that the maps offered within categories (at least with reference
to the dtered training sats). In the norma condition, Living occupied 60% of the active
map space and Nonliving 40%. For Competition A, where the Living caegory was
condderably larger, Living items occupied 73% of the active map space and Non-living
27%. For Competition B, where the proportion of Nortliving items was larger, Nortliving
items occupied 72% of the active map space and Living 28%. Fig. 1(g) demondrates the
effect of diminating neighbourhoods. The result is a very disordered map, sparsdly filled
(16 of 196 units), an absence of specidised regions defined by smilarity, and very poor
discrimination. Fig. 1(h) demondrates the result of quickly shrinking the neighbourhoods.
The result is an organisation that reflects the smilarity gructure of the input, but again, a
gasdy filled network (9/196) and very poor (indeed absent) discrimination within
categories.

Discusson

When the doman-rdlevant parameter of resource level was varied in the SOFM, the
functiona specidisation of regions was retaned but within-category discrimination was
lost. When competition was changed at the input levd, regions for each @tegory changed
their rdative gzes whils retaning many of the festures of overdl organisation. When
competition was dtered a output (represented by changes in the neighbourhood function),
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both organisation and discrimination were logt. This finding reflects observations from the
empirica literature. Huttenlocher (2002) notes that hedthy infants suffering ether foca or
diffuse damege to the cerébra cortex tend to exhibit an imparment in the overdl
efficiency of corticd functions (reflected in a decrease in 1Q) rather than patterns of
differentid cognitive deficits. There are ds0 padlds with much lower level functioning in
the ressarch on sensory magp formation in the anima literature. In comparative sudies of
corticd fidd devdopment in marsupids (the short-tailed opossum), it was found that
reducing the dze (processing resources) of the corticd neuroepitheid sheet unilateraly at
an ealy stage of development nevertheless led to the normd spatid relationships between
visud, somatosensory, and auditory cortica fields in the reduced corticad sheet, but an
increase in neurons reponding to multiple inputs (Huffman et d., 1999). By contrad,
changing the compstition between inputs by peripherd innervaion of vison ealy in
devdopment led to a subsequent dteration in the organisation of adult corticad aress, with
auditory and somatosensory systems expanding to capture the usud visud area (Kahn &
Krubitzer, 2002). In sum, this Smulaion suggedts that the level of processng resources is
a parameter that can be disrupted (and lead to performance decrements) without
compromising functiond specdisation in sdf-organisng systems. By contradt, functiona
gpecidisation is more reedily dtered when the parameter of competition is atypicd.



Atypical modularity Thomas & Richardson  p. 12

Figure 1. Sdf-organisng maps for variations in map Sze (a to d), variations in input (e to

f) and variaions in competition within the output layer (g to h)
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Smulation 2: The emergence of functiona specidisation in Error-driven sysems

In this amulation, we condder the effects of parameter manipulations on the emergence of
pecidised dructures in an eror-driven sysem. We employed a base modd that was
required to learn the trandformations for a quas-regular domain, which is characterised by
a predominant rule dong with a smdler st of exceptions to the rule. The problem domain
was dravn from work on language development, specificdly the acquidtion of English
past tense within inflectiona morphology. In this task, the modd is required produce the
past tense form of a word when presented with its present tense at input (for example,
regular: “part-parted’, exception: “go-went”). This domain is useful for two reasons. First
it has a bipartite organisation of regular versus exception mappings. We have previoudy
shown that in a type of a mixture-of-experts modd, those two classes of mapping can show
emergent specidistion to two processng mechanisms (Thomas & Karmiloff-Smith,
2002b). Second, there has been an extengve debate within the fidd of language
development on whether the cognitive system deploys a priori separate mechanisms to
learn the two parts of the past tense domain (Pinker, 1994, 1999), or whether acquisition
proceeds via a sdgngle undifferentisted sysem (Rumedhat & McCldland, 1986).
Researchers supporting the former theory have dready speculated on the competitive
processes necessary to control the two pre-specified mechanisms during development,
which will become rdevant in Smulaion 3. In the meantime this traning set agan
provides a rdaivey rich cognitive domain againg which we can assess both performance
and functional specidisation. In this smulation, we took the base modd of Thomas and
Kamiloff-Smith (2002b) and explored the effect on emergent specidisation of varying
four computationa parameters determining the domain-relevant computationa properties
of the sygem. (We condder vaidions in competition in the following smulaion). The
four parameters were: (1) processng resources, (2) pladticity, (3) the nature of the
associdive learning rule, and (4) input frequency.

Smulation details

Architecture: The base model was a backpropagation network in which input and output layers are connected
by two routes: either by direct connections (the Direct route) or via a set of hidden units (the Indirect route).
The normal condition of the model was trained using the backpropagation algorithm with a cross entropy
error measure, learning rate of 0.1 and momentum of 0, for 500 presentations of the training set (random
order without replacement). The network had 90 input units and 100 output units, with 20 hidden unitsin the
Indirect route. Processing resources were varied by including 100 hidden unitsin the Indirect route. Plasticity
was varied by multiplying the learning rate by a factor of 4 either in the Direct route (the ‘41’ conditions) or
the Indirect route (the ‘14’ condition). The learning rule was varied by changing the backpropagation to
employ RMS error to the target (BP-RMS), producing a network more vulnerable to entrenchment (Thomas
& Karmiloff-Smith, 2003). Six replications of each network were run using different random seeds. In all
figures, error bars portray the standard error of the means across the six replications.

Training: The training set comprised 508 training items, with a further set of 410 test items
assessing regular generalisation. Performance was assessed on five categories of items: Regular mappings
(410 items within the training set), generalisation of the regular Rule to 410 novel items similar to the regular
items in the training set, and three types of exception patterns. Exception patterns varied in their level of
inconsistency with regular items, which might alter the extent to which they are driven to use alternate
processing mechanisms. EP1 exceptions (20) were most consistent with the regular training items. EP2
exceptions (68) were less consistent with the regular training items. EP3 exception items (10) were most
inconsistent, sharing input similarity with regular items but requiring a qualitatively different transformation.
Training items were split into high and low frequency groups. To ensure the acquisition of the EP3 items,
these were given a higher token frequency that all other patterns, hence they are labelled EP3f. This training
set therefore permits assessment of the effects of mapping type on specialisation, including (1) a continuum
of consistency and (2) the effect of token frequency. Performance was measured at 1, 2, 5, 10, 25, 50, 100,
200, and 500 epochs of training (full details can be found in Thomas and Karmiloff-Smith, 2002b).
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Reaults
All parameter conditions led to successful acquistion of this quas-regular domain, abeit
with developmenta trgectories that could be accelerated or delayed, and relative rates of
acquistion of regulars and exceptions that could be dtered. Figure 2(a) demondrates the
developmentd trgectories for the five pattern types in the base moded and includes the
effect of token frequency on acquistion. The base modd contains two processng routes
(Direct and Indirect) and the problem doman contans two types of problem (Regular /
Rule vs. Exceptions). Fgure 2(b) demondrates the specidisation of function of the
problem types to the o routes. Specidisation was assessed by measuring the differentia
impairment of a unilaterad leson to each route, a a leve that did not cause performance to
day a celing or hit floor (this corresponded to a loss of 50% of connections). Using the
standard logic of neuropsychology, if a pattern type was impared more by damage to the
Direct mechanism than to the Indirect mechaniam, it was assumed to be more speciaised
to the Direct mechanism. The Fig.2(b) indicates that partia specidisation of this system
emerged across traning, with Regulars and Rule-based generdisation preferring the Direct
mechanism, EP1 reying equaly on both routes, and both the more inconsstent EP2 and
EP3f petterns preferring the Indirect route. Technicaly, this partid specidisation occurs
because the modd requires hidden units in order to learn exception peatterns, since the
mapping problem is linearly insgparable and cannot be solved with only one layer of
weights. More broadly, the exceptions form the harder part of the problem that requires the
power of the hidden units to solve. However, the one layer of weights in the Direct route is
more plagtic than the two layers of weights in the Indirect route, SO most mappings are
initidly acquired by the Direct route and hen progressvely move over to the Indirect route
with further training. Importantly, Fig.2 demondrates that the token frequency of mappings
modulates the pattern of specidisation, tending to accelerate the shift from Direct to
Indirect routes — that is, the rdatively frequency of items in the traning set itsdf is
aufficient to dter patterns of specidisation.

Figure 3(a) depicts the developmentd trgectories for the increased resources, BP-
RMS and differentid pladicity conditions, while Fg. 3(b) illudrates the emergent
specidisation for these conditions. Altering the learning dgorithm has a subtle effect on
gpecidisation, changing the ability of the Direct route to accommodate both EP1 and EP3f
patterns early in traning, and driving EP1 across to the Indirect route. However, both
resource changes and pladticity changes have marked effects on specidisation. Provison of
extra resources in the hidden layer pulls dl functions across to this route. The redive
pladticity of the two routes is able to override structure-function correspondences (i.e,, how
well the two routes are suited to computing the two parts of the problem doman) and
impose functiond specidisation by a method that might be cdled the ‘who gets there firg’
approach. However, dl conditions achieved only partid rather than full specidisaion by
the end of training.
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Figure 2. (@ Acquidtion profile of the dud-route network, including the impact of token
frequency. (b) Specidisation of the patterns to each route.
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Discusson

This modd demondrates that structure-function correspondences can lead to emergent
goecidisation of function in an eror-driven system, but that resources and relative
pladicity of the processng routes play a dgnificant role in driving specidisation. More
subtle effects were produced by modifications to the learning rule. Even the token
frequency of the patterns could modulate trgectories of specidisation. The influentid role
of pladticity reproduces smilar findings by Reggia and Schulz (2002) in their smulations
of hemispheric asymmetry. It is dso congstent with proposds by Huttenlocher (2002) that
the differentid rates of pladticity in different corticadl areas (indexed by synaptogeness)
may play a role in driving functiond specidisaion. However, differentid pladicity can
only have an effect when the ration between mechanisms and domains is ‘rdevant’ rather
than specific; that is, each mechanism must have a least some ability to process each
domain.

Returning to the broader picture, ingppropriate levels of resources or region
gpecific changes of pladticity gppear as condraints that would ater emergent functiond
dructure in error-driven  systems. However, importantly, the outward behaviourd
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consequences of these dterations were subtle, producing little more than uneven or
ddayed development. On the other hand, the results did not point to any parameters that
would dlow the emergence of normd functiona dSructure while showing circumscribed
performance decrements. If anything, they pointed in the opposte direction: performance
amilar to norma could be achieved by an atypicad underlying functiond gructure.

Fgure 3. (@ The effect of parameter changes on acquigtion profiles. (b) The effect of
parameter changes on emergent specidisation.
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Smuldion 3: Varieties of competition

In this smulation, we congder variaions to the competition process in error-driven
sysems. To foreshadow the reaults, it turned out that competition done could mediae
between a devdopmental sysem with pre-specified modularity, one with emergent
modularity, and one with multiple redundant components. To understand this, we need to
take a brief step backwards A question one might ask of the preceding amulation is why
gpecidisation occurred at all. While the architecture included two processng mechanisms
like a traditiond mixture-of-experts modd, there was no gaing mechanism to force the
two routes to compete. Why, then, did they specidise? Why didn't each route atempt to
compute dl the patterns to the best leve it could, thereby producing redundancy of
function?




Atypical modularity Thomas & Richardson  p. 17

Further analysis reveded that a different form of competition was operaing in this
network, one that we will cdl ‘Update competition. For each input, both routes generate a
contribution to the output layer. The difference between this output and the target leads to
an error sgna that alows weights to be changed in both routes. However, if one route is
producing the correct answer before the other route has figured out its contribution, there
will be no disparity between output and target, and therefore no error sgnd to drive further
weight change in the non-contributing route. This form of competition is sufficient to drive
specidisation. However, Update competition does not prevent wesker routes from making
a contribution per se, it merely freezes the contribution when the eror a output has been
eiminated. As a result, Update competition encourages co-operation and partial emergent
gpecialisation. Monaghan and Shillcock’'s (2004) mode of hemispheric asymmetries in
unilaterd visud neglect provides an example of specidisation through update competition.

Update competition contrasts with two other forms of competition (1) ‘Input’
competition and (2) ‘Output’ competition. In ‘Input’ competition, each mechaniam is only
presented with the patterns that it must learn. Because Input competition can ensure that
each component is exposed only to patterns from a single cognitive domain, it is a way to
implement pre-specified modularity. One might envissge a leest three ways in to
implement Input competition: (i) it might sem from the initid pre-wiring of the sysem,
what Elman et a. (1996) cal the globa architecture. Certain areas of the cortex receive
certain inputs and not others by virtue of their location. (ii) It might be the outcome of a
sdf-organisng process, whereby connections from certain inputs may be pruned as a
function of learning. For example, when the sdf-organiang map learns strengthening the
weights from the input layer to the winning area of the map means that connections to
other areas are weskened. Eventudly, areas digant from the winning location will smply
dop recaving the sgnd for a given input and therefore can no longer compete to be
activated by it. (iii) Input competition might be achieved by some kind of intdligent
‘gatekeeper’ that directs the input patterns to various mechanisms depending on thelr
identity. Fodor (2000) argues that the gatekeeper to support this form of Input competition
would have to be a (raher powerful) doman-generd processing mechanism. Such a
gatekeeper figures in a recent proposa by Pinker (1999) for a dua-component cognitive
system for acquiring the English past tense. Congtrued in terms of our base modd, Pinker's
proposa amounts to training the Direct route only on Regular peatterns. A gatekeeper
would need to identify these from exception mappings, even though the two are farly
smilar & input.

The third form of compstition is ‘Output’ competition. In this case, dl mechaniams
are dlowed to compute an answer for a given input. However, only the ‘best’ output will
drive behaviour, while the other mechanisms are ether ignored or potentidly inhibited. For
ingance, in the example of language, we saw earlier that activation of left-sded language
areass causes inhibition of homologous right-sded areas, consstent with some bilaterdly of
language function that is slenced by Output competition (Blank et al., 2003). Pinker's
(1994) modd of past tense formation dso includes Output competition, whereby (in terms
of our current architecture) the Indirect route would overrule the Direct mechanism and
drive output under certain circumstances. One complication with Output competition is
how to decide which mechanism is providing the ‘bes’ output, paticularly if the overadl
sysdem is presented with a novel patern where neither mechanism necessxily has a
‘correct’” answer. One posshility is to take something like the highest activetion leve.
Findly, the use of Output competition is consgent with producing multiple redundant
systemswhere al components attempt to learn dl parts of the problem.

Although we have identified three different types of competition, combinations of
these three types are possble. For example, within this scheme the traditional mixture-of-
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experts model is a combination of Update and Output competition. In this smulation, we
explore the implications of al combinations of Input, Update, and Output competition on
the emergence of specidised or redundant Sructures, as wedl as on the externd
developmentd trgectories exhibited by each type of overdl sysem. The domain-reevant
computationa properties of the system are held congtart.

Smulation detalls

Architecture and training: We employed the same architecture as in Simulation 2. For simplicity, competition
types were treated dichotomously, as present or absent. Update competition was implemented by training
both Direct and Indirect routes in tandem, so that both contributed simultaneously to the output and error was
propagated back to both routes. Input competition was implemented by training the Direct route in isolation
on the Regular patterns, and the Indirect route in isolation on the Exception patterns. It was thus implemented
in an absolute form. The output layer was common to both and therefore the routes were constrained to use
the same threshold settings on the output units. Output competition was implemented by training both routes
in isolation as above but now on the whole training set. During testing, the output activations were computed
separately for each route. To determine the ‘best’ output, a thresholded version of each was created, with
values set to 1 if a unit was activated above 0.5, and O if it was activated below 0.5. The Euclidean distance
between each actual output vector and its thresholded version was then calculated. The route with the
smallest distance reflected the most ‘binary’ output. Since al targets in the training set were 0 or 1, a more
binarised output could be judge a more confident response. The most binary output vector from the two
routes was assigned the winner and therefore the output from the whole system. Again, this is an absolute
implementation of Output competition. Note that traditional the mixture-of-experts architecture permits
weighted combinations of each route (see Dailey & Cottrell, 1999).

Input, Update, and Output competition could each be employed in the network, providing 8
combinations. However, Update competition is meaningless if both routes are not being supplied with the
input (i.e., if Input competition is on), since a route without input cannot contribute to the output during
training. This leaves 6 combinations. The network was trained using the parameters of Simulation 2 for these
six combinations. When the Indirect route was trained in isolation, its 20 hidden units risked making it
underpowered to learn a given set of mappings. An additional condition using 100 hidden unitsin the Indirect
route was therefore also assessed. Since generalisation to novel inputs was one of the performance metrics,
networks trained with Input competition were tested by presenting the input to both routes, as in Pinker's
(1994) instantiation of Input competition.

Reaults

Figure 4 shows the developmentd trgectories for the sx conditions. Where acquisition
was only successful with 100 hidden units in the Indirect route, only this trgectory is
plotted. Two of the combinations were unsuccessful in acquiring the ques-regular domain.
Otherwise, competition decisons tended to modulate developmentad trgectories,
sometimes differentialy across regulars and exceptions.

The two unsuccessful combinations faled for the following reasons. The network
trained without Input competition but with Update and Output competition (NYY) was
unsuccessful because the mechanisms that had co-operated in reducing the error on the
output layer were now required to function in isolation and in competition. The dvison of
labour meant neither had enough labour on its own. The network traned with Input
competition but without Update and Output competition (YNN) was unsuccessful because
two mechanisms trained in isolaion were not co-ordinated a output, and therefore
interfered with each other’ s responses.

The network with Input competition, Output competition, but no Update
competition (YNY100) captures the combination proposed by Pinker (1994) for how the
child acquires this domain of grammar (a modification of this modd proposed by Pinker,
1999, was dso explored, however the results are not reported here). Two things are notable
here. Fird, this combination produced a pre-specified modular sysem that successfully
acquired the domain. Second, the conditions under which acquisition was successful were
rather circumscribed. The hidden layer of the Indirect route required 100 hidden units. But
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even in this case, performance (as selected by Output competition) was mostly driven by
the Direct route. This is because the Exception patterns were learnt by a mechaniam with
two layers of weights rather than one. The two layers take more training to produce an
equivdent level of binarisation of output vaues. Thus, even when the Indirect route had
the correct answer, the Direct route was more confident of the incorrect answer. Only by
biasng the output competition (increesing the ‘confidence measure of the Indirect route
by a factor of 200, a vaue determined via a parameter search) was the Indirect route
successfully able to drive the output for its set of patterns. It is possble that such a
cdibration could have been acquired by learning, eg., by gradudly biasng the Output
competition each time a route produced the correct answer but did not win the output
competition. Nevertheless, under the conditions used here, pre-specified modularity to
drive performance a a common output was not a robust solution for acquisition.

Fgure 4. (@ Acquigtion profiles for diffeeent combinations of competition. (b)
Speciadisation profiles. The first letter indicates the presence of Input competition (Y or N),
the second letter indicates the presence of Update competition (Y or N), and the third
Output competition (Y or N). 100 indicates the use of 100 hidden units in the Indirect
layer. Mod. = Pre-specified modularity, Em. Spec. = Emergent specidisation, Red. =
Redundancy. * = Indirect route had to be biased during Output competition to permit
successful acquistion.
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As we saw in Smulaion 2, the sole use of Update competition produced emergent
gpecialisation (NYN, NYN2100). Successful acquisition was achieved with only 20 hidden
units, implying that emergent specidisation represents an efficient use of resources. Use of
additional resources (Fig.3b) aso produced partia specidisation, but now with the heavily
resourced route playing the dominant role.

When neither Input nor Update competition was used (NNN2100, NNY100),
acquistion was successful with or without Output competition, so long as additiond
resources were used in the Indirect route. As we shdl see in the next smuldtion, these
combinations produced redundant sysems. The sysem performed better with Output
competition, since the routes did not have to shout over each other to drive performance —
the most confident route could produce behaviour. At the end of training, 90% of Regulars
were produced by the Indirect route, 100% of Exceptions, and 50% of Rule
genedisations. The man contribution of the Direct device was therefore in generdisation
(see Taatgen & Anderson, 2002, for a samilar result with an ACT-R hybrid symbolic-
asociative modd acquiring the past tense domain). A summay of the outcomes of
competition combinations can be found in Table 1.

Table 1. The effect of vaying types of competition on specidisation in a dud route
network

Input Update Output Competition
Compstition ~ Competition  Yes No
Yes Yes N/A N/A
No Pre-specified modularity Unsuccessful acquisition
No Yes Unsuccessful acquisition Emergent specidisation
No Redundancy Redundancy
Discussion

This gmulation demondrated that in error-driven systems competition is exceedingly
important in driving functiond gpecidisation because, for a given sat of doman-
relevancies / dructure-function correspondences, it can differentiate between pre-specified
modularity, emergent specidisation and redundancy. For example, one could have an
otherwise equipotentid system segregated by Input and Output competition into a pre-
gpecified modular sysem. In this case, the equipotertidity could be demonsrated by
taking a processng dement from, say, the vison component and placing it in the audition
component, where it would be equdly a home and stat to be conditioned by the
input/output mappings of that domain. Such equipotertidity of function would, however,
be fully consgent with pre-specified modularity. Therefore the theoreticd didtinction
between innate modularity and equipotentidity that we encountered in the Introduction is
not necessarily a dichotomy — in this case the two exig as different settings of a
competition parameter.

Although the conceptud outcome of the combinations of competition might have
been anticipated in advance, implementation demondtrated that (1) emergence was a
resource-efficient form of acquistion, (2) competition decisons nevethdess had
implications for developmenta trgectories even when acquistion was successful, and (3)
pre-specified modularity required a more delicate balance of parameters than the other
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combinations to learn this particular problem doman. Overdl, the implication of this
gamulation is that if the conditions of competition are not perturbed, modular architecture
should not be disrupted.

Smulation 4: Recovery patterns of sysems with different functiond structure

In the Introduction, we noted the chdlenge of trying to reconcile uniformity of outcome in
functiond gpecidisation with the flexibility implied by recovery dafter damege. This
amulation sought to assess the implications of the specidisation induced by competition
for recovery after damage. It did so with particular reference to (1) the possbility of
redundant systems aiding recovery (eg. for language, see Blank et d., 2003); and (2)
whether systems produced side-of-damage effects, ether during recovery or once recovery
was complete (eg., for language, sce Bates & Roe, 2001). The combinations of
competition from Smulation 3 that successfully acquired the problem domain were given
gther a bilatera leson to both routes, unilatera damage to the Direct route, or unilatera
damage to the Indirect route, and their patterns of recovery observed. Note that these
models assume unchanging plagticity with age.

Smuldion ddtalls

Architecture and training: For the successful networks in Simulation 3, a probabilistic lesion of 75% of
network connections was applied either to both routes, to the Direct route alone, or to the Indirect alone.
Networks were then retrained for 500 epochs, using same parameter settings as in Simulation 3. Performance
was measured after 1, 2, 5, 10, 25, 50, 100, 200, and 500 epochs of training after damage.

Results

Figure 5 demondrates the recovery profiles following a bilateral leson, for the pre-
specified modular system, for the emergent specialisation systems with 20 and 100 hidden
units, and for the redundant sysem with 100 hidden units and Output competition. For
Regular and Rule patterns, only the pre-specified modular system faled to show strong
recovery. For Exception patterns, recovery was wesker in the emergent system with
limited resources and the redundant system, and stronger in the rich emergent and modular
networks. Rich resources aided recovery. Interestingly, the rich emergent syssem was more
successful in recovering from overdl damage than the redundant system. This was because
it could use its remaining resources co-operatively. In most cases, recovery was aided by
frequency, ether the higher type frequency of Regulars or the higher token frequency of
the EB3f exceptions.

Fgure 5. Recovery profiles for different duad route systems following a leson to both
routes.

Recovery following 75% lesion to both routes

100% == = T
| I_;% |
80% ++—& P rRe=t |
T | 7 |
0% | I | Redundant
’ (N D J R g7 (.Sl D R Y B R} N I B Pre-specified modular
20% - ‘r —Emergent
Rich emergent
20% T , ,
0% L% =
Regular Rule EP1 EP2 EP3f

Pattern Type



Atypical modularity Thomas & Richardson  p. 22

Figure 6 (a) to (c) contrast recovery patterns following unilateral lesons to each route for
the pre-specified modular, emergent, and redundant sysems. For the two conditions with
Output compstition (modular and redundant), Fig. 6(d) indicates which route was driving
performance across recovery.

The emergent sysems (Fig.6a) exhibited differentid vulnerability for the two types
of damage. Direct damage caused a decrement across the board and Indirect damage
targeting Exceptions. Recovery dfter Direct damage was fast for the resource rich version,
and dow and incomplete for the resource poor verson. Recovery after Indirect damage
was dower for both versons and complete only for the resource rich verson. Overdl, the
resource rich emergent system, with co-operation between its routes, demonstrated the
strongest recovery. The trgectories of recovery differed depending on the side of damage,
but notably, following recovery, no there was no evidence of the initial side of damage. By
contrast, the pre-specified modular system (Fig.6b) reveded extreme dde of leson effects
and poor recovery. Damage to the Direct route produced complete and irrecoverable loss
of Regular and Rule patterns, because the Indirect route now dominated the output
compstition. Damage to the Indirect route produced Exception impairments with dow and
incomplete recovery, as the Direct route now tended to dominate the output. The redundant
sysem (Fig.6b) was robust to Direct route damage but showed vulnerability of Exception
mappings to Indirect damage and incomplete recovery.

Findly Fig.6bc demonsrates how the presence of Output competition causes a
gydem to shift to driving behaviour from an intact mechanism following unilaerd
damage. This is adaptive only if the intact mechanism possesses the appropriate knowledge
for correct performance. The recovering mechanisn may laer dat to influence behaviour
once more. In the current case the recovering mechanism primaily drove the (limited)
recovery of Exception performance in the modular and redundant systems.

Discusson

The redundant sysem was robust to damage but did show some unilaterd vulnerability.
This demmed from the different doman relevancies of the two processing routes in the
network. The Direct route was less able to learn both parts of the domain than the Indirect
route, therefore loss of the Indirect route was more serious. Unless the two routes are
equipotentid, even redundant sysems will show unilaterd vulnerability under some
circumstances.

The sygdem with emergent specidisation and rich computational  resources
demondrated the strongest recovery. It illustrated the importance of having abundant
computational resources available to relearn the problem domain, but aso the ability to
exploit remaning resources in a co-operaive fashion. Most notably, this system
reproduced the pattern found in the recovery of language after early unilatera damage
(Bates & Roe, 2001). Recovery patterns were conditioned by sde of damage but find
performance levels were independent of side of damage.

The emergentist pogtion is therefore an account that may be able to explain both
uniformity of outcome (driven by initid doman rdevancies) and recovery from ealy
injury (because dructure-function correspondences are relevant rather than specific). By
contrast, pre-specified modularity gopears only able to explan uniformity of outcome.
However, its strong sde-of-damage effects and limited recovery is characteristic of adult
gohada. If the emergent system best explains developmenta damage and the pre-specified
modular system best explains the adult dtate, this suggests some quditative change of the
system with age, presumably in its effective pladticity or available resources.
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Figure 6. Recovery profilesfor unilatera lesions. () Systems with emergent specidisation.
Rich = use of 100 hidden unitsin the Indirect route. (b) Redundant and Pre-specified
modular systems. () The route that drives behaviour during recovery for the Redundant
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Conclusion

We firdg summaise the man findings with regard to the specific ams of the smulaion
work. We then relate these to our wider theoreticd questions. The moddling work
indicated the following: (1) For sdf-organisng systems, changes in compstition tended to
disupt specidisation, with changes to intrindc competition in the output layer more
powerful than changes to the input (for the parameter varigions we consdered).
Reductions in resources led to the same functiond dructure but poorer categorica
discrimination. (2) For error-driven sysems, we evauaed a verson of the mixture-of-
experts mode. This reveded that differentid properties of areas of heterogeneous
computational substrate (i.e, the experts) could mediate paterns of functiond
specidisation. Differentid settings of plagticity and levels of resources between areas were
paticularly powerful modifiers of emergent specidistion (3) In error-driven systems,
once again, competition was a powerful factor. Indeed the choice of competition settings
was aufficient to mediate between outcomes with pre-specified modularity, emergent
goecidisation, and redundancy in a sysem with othewise identicd doman-reevant
computational properties. (4) Consderation of recovery dfter damage indicated that
sysdems with emergent gpecidisation (defined by Update competition) were best
positioned for recovery so long as they were sufficiently resourced, because this form of
emergent specidisation arises from conditions encouraging co-operative processing. The
system with emergent specidisation demondrated a recovery profile found in language
devdopment in children experiencing early unilatera brain damage. This supports the idea
that the emergentis pogtion can reconcile normd uniformity of outcome with flexibility
after early damage, by specifying suitable condraints in learning. Pre-specified modularity
could account for uniformity of outcome but (as implemented here) it was not a robust
solution for successful acquidition. Moreover, it showed greater vulnerability and poorer
recovery after damage than ether emergent or redundant systems, a patern more in
common with deficits after adult focal brain damage.

We now return to our broader theoreticd questions regarding the origins of
goecidised functiond dructures. First, of the neurocomputationa factors that drive
poecidisation, can separate parameters affect specidisation versus functioning within the
subsequent individua components? The answer is a qudified ‘yes. In sdf-organigng
sysems, resources could affect within-component processing but leave emergent structure
untouched. However, this did not lead to uneven performance across components. In error-
driven sysems, competition was a parameter that dtered specidisation without changing
the functioning of components. However, changes to the computationa properties of
individual components led to an dteration in specidisaion. In short, we did not find
conditions were uneven profiles of peformance arose a the same time as normd
functiond sructure,

Second, we asked when does full specidisation occur, if a al? Sdf-organisation
gppeared to drive fairly complete specidisation. In the error-driven sysem, when the
competition parameter guided the system to emergent modular sructure or redundancy,
goecidisation was only patid. In this case, complete specidisation required pre-
specification of functiona modules.

Third, we asked if specidisation becomes fixed. We did not condgder dterations to
plagticity across the ‘age of the sysem. However, the recovery data suggested that
emergent modularity captured recovery after foca damage in childhood, while pre-
specified modularity was more reminiscent of more limited adult recovery. Thee two
findings would be reconciled if there were a change of dtae with age in the parameters
affecting functional specidisation.
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Fourth, we asked whether recovery (such as in the case of language and unilaterd
bran damage in children) might be better explaned by bilaterd redundancy rather than
reorganisation. The results indicated that a resource rich emergent mode captured the data
better than a redundant system. Notably, however, in sysems with Output competition,
focd damage could immediady cause a different mechanism to drive behaviour.
Depending on whether the dternate mechanism could support norma behaviour, this could
represent robustness or an immediate source of erors. In both cases, the damaged
component could take over driving peformance if it later recovered. This finding
demondrates the difficulty of drawing inferences from deficits, snce behaviour after
damage may reflect the functioning of a different component.

Fifth, we asked whether specidisation necessary conveys a behaviourd advantage.
The reaults indicated that pre-specified modularity was not a robust solution for acquigition
where both components were required to drive the same output, sSince their competition
needed to be cdibrated. Both the emergent modular system and the redundant system
were flexible after damage, the emergent sysem more s0. The emergent modular system
had the additiond advantage of being resource efficient. However, pre-gecified
modularity may be advantageous where the modules must drive separate outputs - see
Calaoretta, Di Ferdinando, Wagner and Paris (2003), for a model where pre-specified
modules are a superior solution for learning to output the identity versus the locetion of an
object on an input retina.

Evidence of more bilaterd brain activetion peatterns in some developmentd
disorders (for example, in face processng in Williams syndrome; see Karmiloff-Smith,
1998) might be taken as evidence for reduced specidisation. This could be explained as
less competition operating in the cognitive system, ether an absence of Input competition
(via initid over-connectivity or insufficient pruning) or an absence of Update competition.
However, reduced gpecidisation may aso be a consequence of reduced processng
resources. When we carried out severe dtartstate lesons to both routes of the base mode
(Thomas & Karmiloff-Smith, 2002b), the result was poorer acquisition and an absence of
goecidisation. In effect, the sysem exhibited an dl-hands-to-the-pump approach, because
both mechanisms were necessary to produce any kind of correct performance. Emergent
specidisation and redundancy are aluxury born of sufficient resources.

Findly, what do the smulation results tdl us about the possble causes of uneven
cognitive profiles in developmenta disorders? They point to two posshble sources. (1)
Focd changes in the domain-relevant computationa properties of different areas of the
initid subdrate (i.e., changes redricted to a subset of future specidised components) or
focd changes in connectivity modifying the input to a redricted subst of future
components. For ether of these initid differences not to affect the emergence of other
modular dructures, the atypicd area of substrale must ether be sdf-organisng or not
interact / compete with unaffected regions during norma development. (2) The uneven
profile is caused by an atypicd overdl dructure, where shifts in the conditions of
competition or the domain-rdevant properties cause different specidisation to emerge.
Importantly, the smulaions suggested that variations in functiond architecture might only
modulate the externd behaviourd trgectories of development in subtle ways. Sendtive
empiricd measures may be necessary to discriminate between different possible functiona
architectures underlying variations in development.

In concluson, the indication is that the emergence of normad modularity despite
focd problems in a subset of functiondly specidised components could only occur under
circumscribed conditions. This implies that innate modularity and neuroconstructivism
represent diverging explanations of uneven cognitive profiles in developmenta disorders.
The key quedtion is remains the extent to which the functiond dructure varies in aypica
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development, either for disorders with wide-ranging cognitive deficits such as autism and
Williams syndrome, or for disorders in which the deficits are gpparently narrower, such as
Specific Language Imparment and dydexia The answer to this question will tel us much
about the origins of modular structure in the human cognitive system.
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