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Introduction 
There are a number of developmental disorders that display uneven cognitive profiles in 
their developmental endstates, exhibiting areas of relative strength and relative weakness. 
For example, in Specific Language Impairment and developmental dyslexia, a relative 
weakness is observed in various aspects of language compared with relative strength in 
non-verbal abilities. Disorders that show differential performance in numerical cognition, 
face recognition, and motor co-ordination have also been identified. Neurogenetic 
developmental disorders can display more complex patterns of uneven performance 
affecting multiple domains, such as the cases of Williams syndrome (relatively stronger 
language, face recognition, and social cognition, relatively weaker visuospatial cognition, 
numerical cognition, and problem solving, against a background of low IQ) and autism (a 
central triad of deficits in communication, imagination, and socialisation). However, the 
theoretical implication of these uneven cognitive profiles remains a matter for debate. One 
of the central issues concerns the origin of cognitive modules that are specialised for 
functions such as language, visuospatial cognition and face recognition. Where do these 
modules come from, and can they be selectively disrupted in developmental disorders? 

One theoretical standpoint, which we will call innate modularity, argues that 
evidence of uneven cognitive profiles in genetic developmental disorders points to an 
innate basis for functional specialisation. High-level cognitive structures are taken to be 
pre-specified during normal development, preceding the influence of experience. 
Developmental disorders represent a case of differential perturbations to different innate 
modules. Such a proposal need not invoke innate knowledge within the modules, since a 
developmental process could serve to put in place the content of each component. If an 
innate module were atypical, this would lead to a differential deficit in the adult endstate 
for that domain, while initially normal components would lead to domains with normal 
endstate performance. However, initially normal components might be compromised by 
attempting to compensate across development for the faulty one(s). The uneven cognitive 
profile is then explained with reference to the functional (modular) structure of the normal 
adult system (since this is pre-specified). Proponents of this position do not rule out the 
possibility that qualitatively atypical functional structures could occur in developmental 
disorders. Instead they argue that the empirical evidence has not supported it. Thus, 
Temple and Clahsen (2002, p.770) argued on behavioural grounds that “there remains no 
empirical evidence in any developmental disorder that the ultimate functional architecture 
has fundamentally different organisation from normal, rather than merely lacking or having 
reduced development of components of normal functional architecture”. Tager-Flusberg 
(2000, p.33) commented that “despite some variation in size (either smaller or larger) and 
other surface features, in fact, across a wide range of disorders it is actually quite 
remarkable how similar the brains of different populations are to one another and to 
normally developing children… To be sure, there is some functional variation, but not 
much beyond the degree that is observed in normal people… We need to view the brain as 
a dynamic system that develops along flexible but fairly bounded and directed pathways”. 
More recently, Tager-Flusberg et al. (2003, p.22) added that “there is much less deviance 
in the developmental processes and neurocognitive organisation in people with genetically 
based disorders than has been portrayed in the literature”. 

A second theoretical standpoint called neuroconstructivism argues that assumptions 
of innate modularity are inconsistent with what is known about early brain and cognitive 
development (Elman et al., 1996; Karmiloff-Smith, 1998). For example, Karmiloff-Smith 
(1998) pointed out that current evidence indicates that there is no region-specific gene 
expression in the areas of cortex that come to underlie higher cognitive functions in adults. 
Moreover, brain imaging of infants suggests that modular structure may be emergent, in 
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that it is a product of the developmental process rather than a precursor to it. For example, 
both localisation and specialisation of ERP waveforms increase in response to faces and 
spoken words across the first two years of life (De Haan, 2001; Mills, Coffey-Corina, and 
Neville, 1997). In Karmiloff-Smith’s view, the uneven cognitive profiles found in adults 
with developmental disorders are due to subtle differences in the neurocomputational 
properties of neonate brain, constraints that are both less detailed and less domain-specific 
than the processing structures involved in higher-level cognitive functions. A cascade of 
developmental processes then attenuates or exaggerates these initial differences, so that the 
process of modularisation may be disrupted. The result could be an atypical modular 
structure in which even the cognitive processes underlying the relative cognitive strengths 
are atypical. Karmiloff-Smith (1998) suggested that the absence of overt evidence for 
atypical modularity stems from the poor sensitivity of standardised cognitive tests used to 
verify normal performance, and the restricted research attention paid to areas of strength in 
disorders. Reviewing evidence for face processing and language development in Williams 
syndrome, both areas of relative strength, she argued that behavioural and brain evidence 
are consistent with atypical processing underlying performance. Her conclusion was that 
abnormal cognitive phenotypes should not automatically be described with reference to 
normal adult functional structure because the structure itself may be atypical. 

In assessing the relative merits of these two positions, evidence from functional 
brain development in infancy does appear to support the idea that modularity is emergent 
rather than pre-specified, with functional specialisation of brain areas increasing with age 
and expertise. Proponents of innate modularity typically de-emphasise the developmental 
process in their explanatory models, and therefore do not offer accounts of existing infant 
data in terms of pre-specified structures. However, one could defend the innate modularity 
position in at least two ways. First, one could express scepticism that we know enough 
about brain development to rule out the possibility that specialisation occurs via intrinsic 
factors (representing the maturation of pre-specified modules), or argue that brain-imaging 
evidence as it stands holds little relevance to the development of cognitive structures per 
se. Thus Dudek (2001, p.146) predicted that “a unique gene will be found for each and 
every distinct cortical area”; and Fodor (1998, p.130) argued that “nobody knows whether 
the infant’s brain is plastic in respects that affect cognitive architecture” (italics in 
original). Second, one could claim that the modules present in the infant are less abstract 
than those found in the adult, and that development serves to glue these together into 
higher-level modules. Thus Baron-Cohen (1999) proposes a ‘minimalist’ innate modularity 
to explain theory-of-mind deficits in autism. 

However, the neuroconstructivist and innate modularity positions could converge if 
it were the case that the emergence of modularity was difficult to disrupt. That is, 
modularity could be a product of development as neuroconstructivism suggests, but the 
neurocomputational properties that guide the emergence of large-scale functional structure 
might not be altered by the kinds of genetic mutations found in developmental disorders so 
that normal patterns of specialisation emerge. By contrast, if the constraints that shape the 
properties of the eventual functional components are irrevocably tied to the constraints that 
drive the emergence of modularity, then neuroconstructivism and innate modularity must 
represent opposing and empirically distinguishable theories. 

The aim of this article, then, is to address whether there can be common ground 
between the two approaches, given what we currently know about the principles that guide 
the emergence of functionally specialised neurocomputational structures. Ultimately, we 
will introduce a set of computational simulations to investigate the constraints that would 
disrupt or preserve the emergence of functional architecture. However, to get to that point 
we need to do some groundwork. First, we need to unpack the theoretical claims of 
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neuroconstructivism regarding the emergence of modularity. We will illustrate the relevant 
issues using the example of the lateralisation of language in the brain. Second, we need to 
review current computational approaches to the emergence of modularity in order to 
identify the constraints that guide specialisation in the normal case. Third, we need to 
identify a set of architectures and sample cognitive domains through which we can 
investigate the effects of disruption to these constraints. Specifically, to explain uneven 
cognitive profiles in an emergent framework, we need to ask whether different parameters 
guide the emergence of specialised functional components versus the computational 
properties within the eventual components themselves. 

 
The emergence of modularity 
The proposal that functional structure is emergent (i.e., formed as a product of 
development) sits between two more extreme positions that contribute to current theories 
of functional modularity (Bates & Roe, 2001). The first is equipotentiality, which proposes 
that all areas of cortex are equally able to perform all cognitive functions at birth. The 
second is innate modularity (which Bates and Roe refer to as ‘irreversible determinism’). 
This states that areas of cortex are innately and irreversibly specialised for certain 
cognitive functions. The emergentist position seeks to reconcile two empirical facts: (1) at 
a broad scale, there is reasonable uniformity of outcome in the assignment of cortical areas 
to functions in normal adults; (2) there appears to be flexibility after early brain damage: 
following focal lesions, otherwise healthy children often show recovery to within the 
normal range of cognitive abilities. However, the exact extent both of uniformity and the 
completeness of recovery are still matters for debate. The constraints that guide the 
emergence of specialised structure must be strong enough to explain the uniformity but 
weak enough to accommodate the recovery. Once flexibility is added, it is also necessary 
to explain why the outcome should be an array of specialised systems rather than multiple 
redundant systems: if a component can aid in the recovery of a function, why did it not 
take on this function in the first place? 

The emergentist proposal is that two factors explain specialisation: (1) domain-
relevance and (2) competition between areas for functional specialisation (e.g., Elman et 
al., 1996; Karmiloff-Smith et al., 1998). Domain-relevance means that some brain areas 
are more suited to carrying out the computations for a given cognitive domain than others, 
without encoding any specific details of that domain. An area will bear differing degrees of 
computational relevance to a range of possible domains. Competition refers to a process 
where the activity of one component tends to increase at the expense of other components. 
To the extent that representational change is activity dependent, such change will occur 
differentially in the ‘winning’ component. 

Specialisation then occurs as follows. The initial substrate of the cortex is 
computationally heterogeneous. Different areas are more or less able to perform the 
computations required for different cognitive domains. These areas compete with each 
other to acquire the various cognitive domains, a competition biased by the information to 
which various areas are initially exposed by global connectivity. (For example, auditory 
areas would tend to beat visual areas to compute audition since they are biased by the rich 
connectivity that delivers auditory input to this area. This is independent of the relative 
ability of these areas to perform the computations.) The winners of the competition come 
to specialise in a given domain, modifying their structures to represent the regularities of 
each domain and thereby becoming domain specific. Importantly, areas may be able to 
process alternative domains but less efficiently. Following damage, the less-suited areas 
are then able to acquire, or develop a partial specialisation for, an alternative domain, so 
long as they can access the relevant information. This explains recovery. Overall, the 
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account produces two candidate constraints to guide specialisation: (1) the set of domain 
relevancies present in the initial state (that is, the default set of mechanisms present at the 
onset of development), and (2) the (biased) competition that drives eventual specialisation.  
 
The example of language 
The domain of language, and in particular the phenomenon of language lateralisation, 
serves to illustrate the type of data that support theories of specialised functional structure. 
In adults, the processing of syntax and semantics is mostly left lateralised, implying that 
language is specialised to structures in this hemisphere. However, this conclusion emerges 
more strongly from lesion data (where left-hemisphere damage produces aphasia but right-
hemisphere damage does not) than from brain-imaging data (where homologous areas of 
the right hemisphere show activation in some comprehension and production tasks, albeit 
at lower levels; see Price, 2003). The left-dominance of syntax and semantics exhibits 
uniformity of outcome. It is found in around 95% of adults, irrespective of handedness 
(Bates & Roe, 2001). Brain-imaging data suggest that left lateralisation for word 
recognition emerges in infancy. Mills, Coffey-Corina, and Neville (1997) found bilateral 
ERP patterns in response to single words in 13-17 month olds, but left lateralised and more 
focal patterns in 20 month olds. The restriction to the left hemisphere was more closely 
associated with comprehension ability than chronological age, arguing against a 
maturational effect strictly linked to age. 

The parameters that drive this emergent specialisation are as yet unknown. There 
are anatomical differences in brain structure between the hemispheres, for instance a larger 
left temporal plane, but this was found in only 65% of individuals, somewhat short of the 
95% that exhibit left lateralisation of language (Reggia & Schulz, 2002). Indeed, structural 
hemispheric differences have been argued to dissociate from functional differences, since 
rare individuals with situs inversus (left-right reversed internal organs) nevertheless still 
show left-lateralised language (Kennedy et al., 1999; Walker, 2003). Bates and Roe (2001) 
argued for a functional difference that might pull language development to the left side, 
specifically that left temporal areas are better than right temporal areas in the fine 
perceptual discrimination required to recognise (and later produce) speech sounds. 
Huttenlocher (2002) noted that the development of synapses in the auditory cortex 
precedes that in Wernicke’s area, which in turn precedes synaptogenesis in Broca’s area. 
This reflects the sequence of functional development found in these regions of cerebral 
cortex (perception of speech sounds precedes language comprehension which precedes 
language production), implying a possible role for plasticity in mediating specialisation. 

Despite evidence of left lateralisation at 20 months, the flexibility of the system is 
illustrated by the fact that if unilateral brain damage occurs prior to the age of 5-7 years, 
children recover to acquire language in the normal range. Although the side of damage 
predicts the profile of recovery, eventually, as adults, there is no obvious effect of side of 
damage, or a disadvantage for initial left-sided damage that can only be revealed by subtle 
psycholinguistic measures (Bates & Roe, 2001; Huttenlocher, 2002). Following early left-
sided damage, then, the greater plasticity of the child’s brain may permit the right 
hemisphere to acquire language. To do so, it is possible that the right hemisphere 
constructs a de novo language system. However, it is also possible that language 
development exploits derelict right-hemisphere structures remaining from the earlier phase 
of bilateral processing (Huttenlocher, 2002); or even that recovery takes advantage of 
existing redundant right-hemisphere systems that are suppressed during normal 
performance. Certainly in normal adults, homologous right-hemisphere areas appear to be 
inhibited by the left hemisphere during language production, and released from that 
inhibition after left hemisphere damage (for left and right pars opercularis: Blank et al., 
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2003). A similar effect has been observed in the perception of same-species vocalisations 
in rhesus monkeys: right-hemisphere inhibition in the temporal pole in the normal adult, 
followed by greater right hemisphere activation after disconnection from the left 
hemisphere (Poremba et al., 2004). Thus the brain’s position on a scale between 
specialisation and redundancy is not settled. 

Moreover, it has recently been claimed that specialisation is not fixed in adulthood, 
with the balance of left vs. right contributions changing across life span. Szaflarski et al. 
(2004) used fMRI to assess regions of interest in 121 right-handed children and adults 
between 5 and 63 years of age in a verb generation task. They reported that language 
became more left lateralised with age in children and young adults, reaching a maximum 
lateralisation between 25 and 35, and then started to become more bilateral again. These 
researchers suggested that the increase in specialisation reflects improved linguistic skills, 
maturation of the central nervous system, and pruning of synaptic connections, while the 
later reduction reflects compensation for age-related loss of functional capacity. 

Although specialisation has often been associated with expertise, the functional 
significance of left-sided language specialisation is not clear-cut. It has been suggested that 
women demonstrate more bilateral patterns of activation than men (e.g., in a reading task: 
Shaywitz et al., 1995), while performing better on language-related tasks (Kimura, 1992) 
and exhibiting better recovery from unilateral left-sided damage (Strauss, Wada, & Hunter, 
1992). Atypical language lateralisation is not necessarily associated with language 
pathology (Knecht et al., 2001), suggesting that different individuals may utilise different 
patterns of cortical organisation to process the same information and to produce normal 
behaviour (weakening claims of uniformity of outcome). Specialisation to a single 
hemisphere is therefore not necessarily associated with better performance and may be 
associated with greater vulnerability to damage. 

If emergent language lateralisation can stand as a proxy for specialisation, answers 
to the following questions remain unclear: (1) What are the neurocognitive factors that 
drive specialisation? (2) When does specialisation fully occur (if at all)? (3) To what extent 
does specialisation become fixed with age or experience? (4) Is recovery better explained 
by reorganisation or by bilateral redundancy? And (5) does specialisation necessarily 
convey an (externally observable) behavioural advantage? To investigate these questions 
further, the process of specialisation must be specified in greater detail, and for this we turn 
to computational modelling. 
 
Computational approaches to emergent modularity 
Three principal types of computational account have been put forward to account for 
emergent functional specialisation (Jacobs, 1999). In the mixture-of-experts approach 
(Jacobs, 1997; Jacobs et al., 1991), the initial system is comprised of components that have 
different computational properties. A separate mechanism gates the contribution of these 
components to the output. When the overall system is presented with a task, the gating 
mechanism mediates a competition between the set of components, allowing the most 
successful component for each training pattern both to drive output performance and to 
update its weights to become better at that pattern. Across training, certain mechanisms 
come to specialise on sets of patterns, by virtue of having an initial (perhaps small) 
advantage in processing those patterns. In the neural selectionism or parcellation 
approach, the initial computational system has a surplus of connections. However, during 
learning, many of these connections are weeded out (pruned), whereas others are stabilised 
depending on usage. In addition, a locality constraint favours the stabilisation of 
connections between nearby processing units. The result is that nearby units communicate 
with each other and come to perform the same functions, whereas those far apart do not 
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communicate and come to specialise in different functions (Jacobs & Jordan, 1992; 
Johnson & Karmiloff-Smith, 1992). In the wave of plasticity approach, the initial 
computational system experiences differential responsiveness to learning, both spatially 
and temporally. Plasticity is reduced over time across a sheet of computational units, so 
that one side of the sheet loses its plasticity earlier than the other. The result is that later 
maturing units can employ the functions computed by the earlier maturing units as input, 
thereby computing more abstract functions from them. The later maturing units effectively 
specialise in more abstract aspects of the problem domain (Shrager & Johnson, 1996). 

To date, the majority of computational modelling approaches to atypical 
development have focused on processing anomalies within pre-specified functional 
modules. For example, parameter variations have been used to explain characteristics of 
autism in categorisation networks, characteristics of dyslexia in reading networks, or 
characteristics of Williams syndrome and Specific Language Impairment in inflectional 
morphology networks (see Thomas & Karmiloff-Smith, 2002a, for a review). One model 
has offered a preliminary insight to atypical specialisation. Oliver et al. (2000) explored the 
parameters that affect the successful emergence of topographic maps in a self-organising 
network. In this model, the network was presented with four bars on an input retina and 
had to learn a map with four regions, one specialised to recognise each bar. Oliver et al. 
found that several computational parameters disrupted the organisation of the map, 
including reducing the length of lateral inhibitory connections in the output layer and 
altering the relative similarity of the four input patterns. They suggested that the 
simulations might offer a model of ‘encapsulation’ and the emergence of information-
processing modules. The parameter variations could therefore represent atypical 
modularisation via a disrupted parcellation process. However, the functional significance 
of the disrupted networks was hard to evaluate given the simple problem domain. 

Three other computational models are also relevant in that they establish some of 
the conditions under which specialisation can occur. Dailey and Cottrell (1999) used a 
mixture-of-experts model to capture the emergence of specialised structures for face 
recognition in a system also trained to recognise images of books, cups, and cans. The 
model had two components that competed to classify the images. In one version of the 
model, there was no processing difference between the two components other than their 
initial random connection weights. Partial specialisation of the faces to one mechanism did 
occur but the effect was not particularly strong. Nevertheless, this condition demonstrated 
that with very low domain relevance, competition is sufficient to produce specialisation. In 
a second version, one component was fed high spatial frequency information from the 
visual input while the other was fed low spatial frequency information. The result was 
much more reliable emergent specialisation for face recognition to the low spatial 
frequency component. 

Monaghan and Shillcock (2004) employed a similar approach to capture 
hemispheric asymmetries in a model of unilateral visual neglect. The hidden layer of a 
three-layer network was split so that the left side had gaussian units with narrow receptive 
fields, while the right side had gaussian units with wide overlapping receptive fields. This 
manipulation implemented the assumption that the two hemispheres have different spatial 
scales at which they prefer to operate. The model was trained to recognise the location and 
length of lines presented on an input retina. When the network was given a unilateral lesion 
after training, its performance on a line bissection task replicated a number of asymmetries 
found after cases of human brain damage. These included larger displacements of the 
centre of the line following damage to the coarse-coded right side than to the left side of 
the hidden layer, and faster recovery after left damage than right damage. In this model, 
there was no explicit competition process, yet domain relevance led to specialisation. 
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Finally, Reggia and Schulz (2002) reviewed a number of their models designed to 
explore the computational conditions under which two cerebral regions that communicate 
via a simulated corpus callosum produce emergent specialisation between the two 
hemispheres. Using both self-organising and backpropagation networks, they examined the 
effect of using excitatory vs. inhibitory connections between the hemispheres, as well as a 
range of other parameter variations. Their results demonstrated that specialisation can 
occur in the absence of competition between the hemispheres or even in the presence of 
excitation, so long as the parameter settings of the two hemispheres are different enough. 
However, specialisation effects were stronger with inhibitory connections implementing a 
competitive process. 
 
The current simulations 
In the following sections, we report the results of new computational work designed to 
investigate possible disruptions to the emergence of functionally specialised structures. We 
focused on four issues: 
• What are the computational parameters that affect emergent specialisation in 

associative (task-driven) systems? 
• What are the relative contributions of domain-relevance and competition, the two 

features of the emergentist approach, in driving emergent specialisation? 
• Are there computational parameters that determine whether a system with multiple 

components will exhibit pre-specified modularity, emergent modularity, or 
redundancy? 

• When a normally developed system with specialised components experiences damage, 
how do parameter settings alter the patterns of recovery? In particular, under what 
conditions do side-of-lesion effects persist after recovery (consistent with innate 
modularity) and under what conditions do side-of-lesion effects eventually disappear 
(consistent with emergentism), as in the case of language development after early 
unilateral brain damage (Bates & Roe, 2001)? 

 
Architectures, cognitive domains, and parameters: Previous modelling work has drawn a 
distinction between two types of neurocomputational learning systems (O’Reilly, 1998). In 
self-organising systems, the emergence of functional structure is based upon patterns of 
similarity in the input. Self-organising systems are normally used to learn categories within 
input sets. In error-driven systems, the emergence of functional structure is guided through 
an error signal. The error signal is normally used to allow the system to learn input-output 
transformations. It is possible that the key parameters guiding specialisation differ between 
the two types of system, and we therefore consider them separately. While the models are 
greatly simplified from neurobiological and behavioural reality, they are nevertheless 
based on some basic principles of biological neural elements, circuits and synaptic 
plasticity (Reggia & Schulz, 2002). We take two exemplar cognitive domains, one 
appropriate to a self-organising system, one to an error-driven system, both of which 
demonstrate emergent specialisation of functional structure in our chosen architectures. 
The two cognitive domains are relatively rich, facilitating evaluation of possible 
decrements on behavioural task performance caused by different parameter settings. The 
self-organising domain is a feature-based set of semantic representations. The error-driven 
domain is English past tense. As in previous simulations of developmental deficits, 
parameter manipulations are carried out prior to training the various models, and 
subsequent developmental trajectories and endstate deficits are then assessed (Thomas & 
Karmiloff-Smith, 2002b). The parameters we consider are the amount of processing 
resources for both self-organising and error-driven systems, plasticity and the nature of the 
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learning rule in the error-driven system, competition mechanisms in both systems, and 
changes in input frequency in both systems. 
 
Simulations 
 
Simulation 1: Specialisation in self-organising systems 
In this simulation, we consider the effects of parameter manipulations on the emergence of 
specialised structures in a self-organising feature map (Kohonen, 1995), one example of a 
self-organising system. This architecture is relevant to basic sensory development, e.g. of 
topographic maps. Our model is similar to that employed by Oliver et al. (2000) described 
previously, in that the relationship between inputs is reflected in the topography of the map 
formed on the cortical layer. The architecture we used had simpler activation dynamics but 
was exposed to a richer cognitive domain, permitting a consideration of the quality of the 
learned representations for driving categorisation. The example categories were drawn 
from semantics and included humans, animals, vegetables, fruit, dairy produce, kitchen 
utensils, tools, and vehicles, defined over a set of features. Our interest was to explore two 
constraints in the model: (1) a domain-relevant constraint – the level of resources available 
in the output layer (that is, the number output units available to represent the categories); 
and (2) the competition process occurring in the network. To alter conditions of 
competition, we either reduced the neighbourhood size of the units that would update their 
weights for a given pattern (i.e., the size of the region of units affected when a given unit 
became associated with a given pattern), or we altered the balance of the input set to favour 
some categories over others. The final self-organising maps were evaluated with regard to 
whether they maintained the same regions of specialisation, and whether they permitted the 
same degree of discrimination within each semantic category. 
 
Simulation details 
Architecture: We employed the Self-organising feature map (SOFM) available in the Matlab Neural 
Networks toolbox (Demuth & Beale, 2002). The SOFM is a 2-layer network with full connectivity between 
the layers. When a pattern is presented to the network, the output unit with the weight vector closest to the 
input vector becomes the winner. The weights for this unit and for those in a given neighbourhood 
surrounding it are then updated. The result is a topological arrangement of the SOFM, with neighbouring 
regions of the input space coming to be represented by neighbouring units on the map. The network was 
trained in two phases. The first ‘ordering’ phase defined the broad topology (with a large but reducing 
neighbourhood size and large but reducing learning rate). The second ‘tuning’ phase refined the topology 
(smaller fixed neighbourhood size and smaller and slowly declining learning rate). Six parameters defined 
training: the number of presentations of the training set in the ordering phase, the total number of 
presentations, the ordering phase learning rate, the tuning phase learning rate, and the final neighbourhood 
size. In the normal condition, the following values were used, respectively: 1000 presentations, 3000 
presentations, 0.9, 0.02, and a size of 1. Two atypical parameter sets were used to disrupt competition: we 
either set the neighbourhood size to zero throughout training (the ‘No neighbourhood’ condition); or we 
allowed a brief ordering phase of ten presentations of the training set before setting the neighbourhood to 
zero (the ‘Fast commitment’ condition). The output layer used a hexagonal topology, and a box-distance 
function to calculate the distance between two units. In the normal condition, a 14x14 output layer was used. 
These resources were progressively reduced to 12x12, 10x10, and 7x7 maps. The input layer comprised 154 
units. Each network was run three times with different random seeds for the initial weights. 

Training set: We exposed the network to a training set comprising semantic representations for 58 
concepts. The concept set was based on that used by Small et al. (1996), who constructed an item set from 
concepts employed in neuropsychological tests of semantic deficits. Our training set comprised 8 major 
categories: humans, animals, vegetables, fruit, dairy produce, kitchen utensils, tools, and vehicles. Concepts 
were defined over 154 meaningful semantic features (such as “has legs”, “is food”). Each concept activated 
on average 19 of these features. An individual input pattern consisted of 154 binary digits, indicating the 
presence or absence of each semantic feature. From the set of 58 prototypes, multiple exemplars (variations 
on a given prototype) were generated from each prototype to produce a final training set of 185 items (for 
example, if “apple” was the prototype, “green apple” and “red apple” might be two exemplars). A single 
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random order of the items was created and this was used in all conditions, to ensure that any variability 
stemmed from internal rather than external constraints. To investigate the effect of altering the balance of 
inputs from different categories, two Altered Input Competition conditions were created. One combined the 
exemplars for Living concepts with the prototypes of Non-Living (A) for a training set of 143 items. The 
other combined the prototypes for Living concepts with the exemplars for Non-living concepts (B) for a set 
of 100 items. 
 
Results 
The maps produced in each condition are presented in Figure 1 (a colour version of this 
diagram is available at http://www.psyc.bbk.ac.uk/people/academic/thomas_m/ ). To plot these 
diagrams, we used a cluster analysis of the similarity structure in the training set to assign a 
greyscale to each pattern. This colour was then assigned to the unit(s) that became 
activated on presentation of this pattern to the trained network. If several patterns activated 
the same unit, the colours were averaged. The number of patterns activating each unit 
determined the size of the circle representing that unit. Fig. 1(a) depicts the normal 
condition for the 14x14 map. The systematic change of shading across the map indicates 
that the network formed separate areas representing the major semantic categories. Of the 
network’s 196 output units, on average 78 (40%) were activated by one or more inputs. 
Figs. 1(b) to 1(d) illustrate the effect of reducing the map size. Three points are of note. 
First, for smaller maps, a similar organisation of specialised areas still emerged. 
Replications revealed some instability in whether fruit/vegetables or people/animals were 
to the right of vehicles, but Living patterns were always separate from Non-living. Second, 
for the smaller maps, the circles became progressively larger. That is, each unit came to 
respond to more input patterns. As a result, these maps were less able to discriminate 
between items within each category. Third, as the maps became smaller, they progressively 
filled up: on average the 12x12 activated 70 of its 144 units (48%), the 10x10 activated 58 
of its 100 units (58%), and the 7x7 36 of its 49 units (72%). 

Figs. 1(e) and (f) demonstrate the effect of altering the balance of input patterns 
from each category. These networks demonstrated comparable use of units and broadly 
similar organisation of the maps, although the location of areas could be different. The 
effects of altering the inputs were sometimes subtle, with expansion of areas for over-
represented categories and reduction of areas for under-represented categories, but little 
change in the discrimination that the maps offered within categories (at least with reference 
to the altered training sets). In the normal condition, Living occupied 60% of the active 
map space and Non-living 40%. For Competition A, where the Living category was 
considerably larger, Living items occupied 73% of the active map space and Non-living 
27%. For Competition B, where the proportion of Non-living items was larger, Non-living 
items occupied 72% of the active map space and Living 28%. Fig. 1(g) demonstrates the 
effect of eliminating neighbourhoods. The result is a very disordered map, sparsely filled 
(16 of 196 units), an absence of specialised regions defined by similarity, and very poor 
discrimination. Fig. 1(h) demonstrates the result of quickly shrinking the neighbourhoods. 
The result is an organisation that reflects the similarity structure of the input, but again, a 
sparsely filled network (9/196) and very poor (indeed absent) discrimination within 
categories. 
 
Discussion 
When the domain-relevant parameter of resource level was varied in the SOFM, the 
functional specialisation of regions was retained but within-category discrimination was 
lost. When competition was changed at the input level, regions for each category changed 
their relative sizes whilst retaining many of the features of overall organisation. When 
competition was altered at output (represented by changes in the neighbourhood function), 
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both organisation and discrimination were lost. This finding reflects observations from the 
empirical literature. Huttenlocher (2002) notes that healthy infants suffering either focal or 
diffuse damage to the cerebral cortex tend to exhibit an impairment in the overall 
efficiency of cortical functions (reflected in a decrease in IQ) rather than patterns of 
differential cognitive deficits. There are also parallels with much lower level functioning in 
the research on sensory map formation in the animal literature. In comparative studies of 
cortical field development in marsupials (the short-tailed opossum), it was found that 
reducing the size (processing resources) of the cortical neuroepithelial sheet unilaterally at 
an early stage of development nevertheless led to the normal spatial relationships between 
visual, somatosensory, and auditory cortical fields in the reduced cortical sheet, but an 
increase in neurons responding to multiple inputs (Huffman et al., 1999). By contrast, 
changing the competition between inputs by peripheral innervation of vision early in 
development led to a subsequent alteration in the organisation of adult cortical areas, with 
auditory and somatosensory systems expanding to capture the usual visual area (Kahn & 
Krubitzer, 2002). In sum, this simulation suggests that the level of processing resources is 
a parameter that can be disrupted (and lead to performance decrements) without 
compromising functional specialisation in self-organising systems. By contrast, functional 
specialisation is more readily altered when the parameter of competition is atypical. 
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Figure 1. Self-organising maps for variations in map size (a to d), variations in input (e to 
f) and variations in competition within the output layer (g to h) 
 
(a) Normal (14x14)     (e) Altered Input Competition (A) 

                                  
 
(b) Reduced resources (12x12)    (f) Altered Input Competition (B) 

                                      
 
(c) Reduced resources (10x10)    (g) Altered Output layer competition 
       (No neighbourhood) 

                                     
 
(d) Reduced resources (7x7)              (h) Altered Output layer competition 
                  (Fast commitment) 
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Simulation 2: The emergence of functional specialisation in Error-driven systems 
In this simulation, we consider the effects of parameter manipulations on the emergence of 
specialised structures in an error-driven system. We employed a base model that was 
required to learn the transformations for a quasi-regular domain, which is characterised by 
a predominant rule along with a smaller set of exceptions to the rule. The problem domain 
was drawn from work on language development, specifically the acquisition of English 
past tense within inflectional morphology. In this task, the model is required produce the 
past tense form of a word when presented with its present tense at input (for example, 
regular: “part-parted”, exception: “go-went”). This domain is useful for two reasons. First 
it has a bipartite organisation of regular versus exception mappings. We have previously 
shown that in a type of a mixture-of-experts model, those two classes of mapping can show 
emergent specialisation to two processing mechanisms (Thomas & Karmiloff-Smith, 
2002b). Second, there has been an extensive debate within the field of language 
development on whether the cognitive system deploys a priori separate mechanisms to 
learn the two parts of the past tense domain (Pinker, 1994, 1999), or whether acquisition 
proceeds via a single undifferentiated system (Rumelhart & McClelland, 1986). 
Researchers supporting the former theory have already speculated on the competitive 
processes necessary to control the two pre-specified mechanisms during development, 
which will become relevant in Simulation 3. In the meantime, this training set again 
provides a relatively rich cognitive domain against which we can assess both performance 
and functional specialisation. In this simulation, we took the base model of Thomas and 
Karmiloff-Smith (2002b) and explored the effect on emergent specialisation of varying 
four computational parameters determining the domain-relevant computational properties 
of the system. (We consider variations in competition in the following simulation). The 
four parameters were: (1) processing resources, (2) plasticity, (3) the nature of the 
associative learning rule, and (4) input frequency. 
 
Simulation details 
Architecture: The base model was a backpropagation network in which input and output layers are connected 
by two routes: either by direct connections (the Direct route) or via a set of hidden units (the Indirect route). 
The normal condition of the model was trained using the backpropagation algorithm with a cross entropy 
error measure, learning rate of 0.1 and momentum of 0, for 500 presentations of the training set (random 
order without replacement). The network had 90 input units and 100 output units, with 20 hidden units in the 
Indirect route. Processing resources were varied by including 100 hidden units in the Indirect route. Plasticity 
was varied by multiplying the learning rate by a factor of 4 either in the Direct route (the ‘41’ conditions) or 
the Indirect route (the ‘14’ condition). The learning rule was varied by changing the backpropagation to 
employ RMS error to the target (BP-RMS), producing a network more vulnerable to entrenchment (Thomas 
& Karmiloff-Smith, 2003). Six replications of each network were run using different random seeds. In all 
figures, error bars portray the standard error of the means across the six replications. 

Training: The training set comprised 508 training items, with a further set of 410 test items 
assessing regular generalisation. Performance was assessed on five categories of items: Regular mappings 
(410 items within the training set), generalisation of the regular Rule to 410 novel items similar to the regular 
items in the training set, and three types of exception patterns. Exception patterns varied in their level of 
inconsistency with regular items, which might alter the extent to which they are driven to use alternate 
processing mechanisms. EP1 exceptions (20) were most consistent with the regular training items. EP2 
exceptions (68) were less consistent with the regular training items. EP3 exception items (10) were most 
inconsistent, sharing input similarity with regular items but requiring a qualitatively different transformation. 
Training items were split into high and low frequency groups. To ensure the acquisition of the EP3 items, 
these were given a higher token frequency that all other patterns, hence they are labelled EP3f. This training 
set therefore permits assessment of the effects of mapping type on specialisation, including (1) a continuum 
of consistency and (2) the effect of token frequency. Performance was measured at 1, 2, 5, 10, 25, 50, 100, 
200, and 500 epochs of training (full details can be found in Thomas and Karmiloff-Smith, 2002b). 
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Results 
All parameter conditions led to successful acquisition of this quasi-regular domain, albeit 
with developmental trajectories that could be accelerated or delayed, and relative rates of 
acquisition of regulars and exceptions that could be altered. Figure 2(a) demonstrates the 
developmental trajectories for the five pattern types in the base model and includes the 
effect of token frequency on acquisition. The base model contains two processing routes 
(Direct and Indirect) and the problem domain contains two types of problem (Regular / 
Rule vs. Exceptions). Figure 2(b) demonstrates the specialisation of function of the 
problem types to the two routes. Specialisation was assessed by measuring the differential 
impairment of a unilateral lesion to each route, at a level that did not cause performance to 
stay at ceiling or hit floor (this corresponded to a loss of 50% of connections). Using the 
standard logic of neuropsychology, if a pattern type was impaired more by damage to the 
Direct mechanism than to the Indirect mechanism, it was assumed to be more specialised 
to the Direct mechanism. The Fig.2(b) indicates that partial specialisation of this system 
emerged across training, with Regulars and Rule-based generalisation preferring the Direct 
mechanism, EP1 relying equally on both routes, and both the more inconsistent EP2 and 
EP3f patterns preferring the Indirect route. Technically, this partial specialisation occurs 
because the model requires hidden units in order to learn exception patterns, since the 
mapping problem is linearly inseparable and cannot be solved with only one layer of 
weights. More broadly, the exceptions form the harder part of the problem that requires the 
power of the hidden units to solve. However, the one layer of weights in the Direct route is 
more plastic than the two layers of weights in the Indirect route, so most mappings are 
initially acquired by the Direct route and then progressively move over to the Indirect route 
with further training. Importantly, Fig.2 demonstrates that the token frequency of mappings 
modulates the pattern of specialisation, tending to accelerate the shift from Direct to 
Indirect routes – that is, the relatively frequency of items in the training set itself is 
sufficient to alter patterns of specialisation. 

Figure 3(a) depicts the developmental trajectories for the increased resources, BP-
RMS and differential plasticity conditions, while Fig. 3(b) illustrates the emergent 
specialisation for these conditions. Altering the learning algorithm has a subtle effect on 
specialisation, changing the ability of the Direct route to accommodate both EP1 and EP3f 
patterns early in training, and driving EP1 across to the Indirect route. However, both 
resource changes and plasticity changes have marked effects on specialisation. Provision of 
extra resources in the hidden layer pulls all functions across to this route. The relative 
plasticity of the two routes is able to override structure-function correspondences (i.e., how 
well the two routes are suited to computing the two parts of the problem domain) and 
impose functional specialisation by a method that might be called the ‘who gets there first’ 
approach. However, all conditions achieved only partial rather than full specialisation by 
the end of training. 
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Figure 2. (a) Acquisition profile of the dual-route network, including the impact of token 
frequency. (b) Specialisation of the patterns to each route. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Discussion 
This model demonstrates that structure-function correspondences can lead to emergent 
specialisation of function in an error-driven system, but that resources and relative 
plasticity of the processing routes play a significant role in driving specialisation. More 
subtle effects were produced by modifications to the learning rule. Even the token 
frequency of the patterns could modulate trajectories of specialisation. The influential role 
of plasticity reproduces similar findings by Reggia and Schulz (2002) in their simulations 
of hemispheric asymmetry. It is also consistent with proposals by Huttenlocher (2002) that 
the differential rates of plasticity in different cortical areas (indexed by synaptogenesis) 
may play a role in driving functional specialisation. However, differential plasticity can 
only have an effect when the relation between mechanisms and domains is ‘relevant’ rather 
than specific; that is, each mechanism must have at least some ability to process each 
domain. 

Returning to the broader picture, inappropriate levels of resources or region-
specific changes of plasticity appear as constraints that would alter emergent functional 
structure in error-driven systems. However, importantly, the outward behavioural 

Mean performance 
High Frequency 
Low Frequency 

(a) 

(b) 



Atypical modularity                                                        Thomas & Richardson    p. 16 

 

consequences of these alterations were subtle, producing little more than uneven or 
delayed development. On the other hand, the results did not point to any parameters that 
would allow the emergence of normal functional structure while showing circumscribed 
performance decrements. If anything, they pointed in the opposite direction: performance 
similar to normal could be achieved by an atypical underlying functional structure. 

 
 

Figure 3. (a) The effect of parameter changes on acquisition profiles. (b) The effect of 
parameter changes on emergent specialisation. 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Simulation 3: Varieties of competition 
In this simulation, we consider variations to the competition process in error-driven 
systems. To foreshadow the results, it turned out that competition alone could mediate 
between a developmental system with pre-specified modularity, one with emergent 
modularity, and one with multiple redundant components. To understand this, we need to 
take a brief step backwards: A question one might ask of the preceding simulation is why 
specialisation occurred at all. While the architecture included two processing mechanisms 
like a traditional mixture-of-experts model, there was no gating mechanism to force the 
two routes to compete. Why, then, did they specialise? Why didn’t each route attempt to 
compute all the patterns to the best level it could, thereby producing redundancy of 
function? 
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Further analysis revealed that a different form of competition was operating in this 
network, one that we will call ‘Update’ competition. For each input, both routes generate a 
contribution to the output layer. The difference between this output and the target leads to 
an error signal that allows weights to be changed in both routes. However, if one route is 
producing the correct answer before the other route has figured out its contribution, there 
will be no disparity between output and target, and therefore no error signal to drive further 
weight change in the non-contributing route. This form of competition is sufficient to drive 
specialisation. However, Update competition does not prevent weaker routes from making 
a contribution per se, it merely freezes the contribution when the error at output has been 
eliminated. As a result, Update competition encourages co-operation and partial emergent 
specialisation. Monaghan and Shillcock’s (2004) model of hemispheric asymmetries in 
unilateral visual neglect provides an example of specialisation through update competition. 

Update competition contrasts with two other forms of competition: (1) ‘Input’ 
competition and (2) ‘Output’ competition. In ‘Input’ competition, each mechanism is only 
presented with the patterns that it must learn. Because Input competition can ensure that 
each component is exposed only to patterns from a single cognitive domain, it is a way to 
implement pre-specified modularity. One might envisage at least three ways in to 
implement Input competition: (i) it might stem from the initial pre-wiring of the system, 
what Elman et al. (1996) call the global architecture. Certain areas of the cortex receive 
certain inputs and not others by virtue of their location. (ii) It might be the outcome of a 
self-organising process, whereby connections from certain inputs may be pruned as a 
function of learning. For example, when the self-organising map learns, strengthening the 
weights from the input layer to the winning area of the map means that connections to 
other areas are weakened. Eventually, areas distant from the winning location will simply 
stop receiving the signal for a given input and therefore can no longer compete to be 
activated by it. (iii) Input competition might be achieved by some kind of intelligent 
‘gatekeeper’ that directs the input patterns to various mechanisms depending on their 
identity. Fodor (2000) argues that the gatekeeper to support this form of Input competition 
would have to be a (rather powerful) domain-general processing mechanism. Such a 
gatekeeper figures in a recent proposal by Pinker (1999) for a dual-component cognitive 
system for acquiring the English past tense. Construed in terms of our base model, Pinker’s 
proposal amounts to training the Direct route only on Regular patterns. A gatekeeper 
would need to identify these from exception mappings, even though the two are fairly 
similar at input. 

The third form of competition is ‘Output’ competition. In this case, all mechanisms 
are allowed to compute an answer for a given input. However, only the ‘best’ output will 
drive behaviour, while the other mechanisms are either ignored or potentially inhibited. For 
instance, in the example of language, we saw earlier that activation of left-sided language 
areas causes inhibition of homologous right-sided areas, consistent with some bilaterally of 
language function that is silenced by Output competition (Blank et al., 2003). Pinker’s 
(1994) model of past tense formation also includes Output competition, whereby (in terms 
of our current architecture) the Indirect route would overrule the Direct mechanism and 
drive output under certain circumstances. One complication with Output competition is 
how to decide which mechanism is providing the ‘best’ output, particularly if the overall 
system is presented with a novel pattern where neither mechanism necessarily has a 
‘correct’ answer. One possibility is to take something like the highest activation level. 
Finally, the use of Output competition is consistent with producing multiple redundant 
systems where all components attempt to learn all parts of the problem. 

Although we have identified three different types of competition, combinations of 
these three types are possible. For example, within this scheme the traditional mixture-of-
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experts model is a combination of Update and Output competition. In this simulation, we 
explore the implications of all combinations of Input, Update, and Output competition on 
the emergence of specialised or redundant structures, as well as on the external 
developmental trajectories exhibited by each type of overall system. The domain-relevant 
computational properties of the system are held constant. 

 
Simulation details 
Architecture and training: We employed the same architecture as in Simulation 2. For simplicity, competition 
types were treated dichotomously, as present or absent. Update competition was implemented by training 
both Direct and Indirect routes in tandem, so that both contributed simultaneously to the output and error was 
propagated back to both routes. Input competition was implemented by training the Direct route in isolation 
on the Regular patterns, and the Indirect route in isolation on the Exception patterns. It was thus implemented 
in an absolute form. The output layer was common to both and therefore the routes were constrained to use 
the same threshold settings on the output units. Output competition was implemented by training both routes 
in isolation as above but now on the whole training set. During testing, the output activations were computed 
separately for each route. To determine the ‘best’ output, a thresholded version of each was created, with 
values set to 1 if a unit was activated above 0.5, and 0 if it was activated below 0.5. The Euclidean distance 
between each actual output vector and its thresholded version was then calculated. The route with the 
smallest distance reflected the most ‘binary’ output. Since all targets in the training set were 0 or 1, a more 
binarised output could be judge a more confident response. The most binary output vector from the two 
routes was assigned the winner and therefore the output from the whole system. Again, this is an absolute 
implementation of Output competition. Note that traditional the mixture-of-experts architecture permits 
weighted combinations of each route (see Dailey & Cottrell, 1999). 

Input, Update, and Output competition could each be employed in the network, providing 8 
combinations. However, Update competition is meaningless if both routes are not being supplied with the 
input (i.e., if Input competition is on), since a route without input cannot contribute to the output during 
training. This leaves 6 combinations. The network was trained using the parameters of Simulation 2 for these 
six combinations. When the Indirect route was trained in isolation, its 20 hidden units risked making it 
underpowered to learn a given set of mappings. An additional condition using 100 hidden units in the Indirect 
route was therefore also assessed. Since generalisation to novel inputs was one of the performance metrics, 
networks trained with Input competition were tested by presenting the input to both routes, as in Pinker’s 
(1994) instantiation of Input competition. 

 
Results 
Figure 4 shows the developmental trajectories for the six conditions. Where acquisition 
was only successful with 100 hidden units in the Indirect route, only this trajectory is 
plotted. Two of the combinations were unsuccessful in acquiring the quasi-regular domain. 
Otherwise, competition decisions tended to modulate developmental trajectories, 
sometimes differentially across regulars and exceptions. 

The two unsuccessful combinations failed for the following reasons. The network 
trained without Input competition but with Update and Output competition (NYY) was 
unsuccessful because the mechanisms that had co-operated in reducing the error on the 
output layer were now required to function in isolation and in competition. The division of 
labour meant neither had enough labour on its own. The network trained with Input 
competition but without Update and Output competition (YNN) was unsuccessful because 
two mechanisms trained in isolation were not co-ordinated at output, and therefore 
interfered with each other’s responses. 

The network with Input competition, Output competition, but no Update 
competition (YNY100) captures the combination proposed by Pinker (1994) for how the 
child acquires this domain of grammar  (a modification of this model proposed by Pinker, 
1999, was also explored, however the results are not reported here). Two things are notable 
here. First, this combination produced a pre-specified modular system that successfully 
acquired the domain. Second, the conditions under which acquisition was successful were 
rather circumscribed. The hidden layer of the Indirect route required 100 hidden units. But 
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Varieties of competition: Performance during training
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even in this case, performance (as selected by Output competition) was mostly driven by 
the Direct route. This is because the Exception patterns were learnt by a mechanism with 
two layers of weights rather than one. The two layers take more training to produce an 
equivalent level of binarisation of output values. Thus, even when the Indirect route had 
the correct answer, the Direct route was more confident of the incorrect answer. Only by 
biasing the output competition (increasing the ‘confidence’ measure of the Indirect route 
by a factor of 200, a value determined via a parameter search) was the Indirect route 
successfully able to drive the output for its set of patterns. It is possible that such a 
calibration could have been acquired by learning, e.g., by gradually biasing the Output 
competition each time a route produced the correct answer but did not win the output 
competition. Nevertheless, under the conditions used here, pre-specified modularity to 
drive performance at a common output was not a robust solution for acquisition. 

 
 

Figure 4. (a) Acquisition profiles for different combinations of competition. (b) 
Specialisation profiles. The first letter indicates the presence of Input competition (Y or N), 
the second letter indicates the presence of Update competition (Y or N), and the third 
Output competition (Y or N). 100 indicates the use of 100 hidden units in the Indirect 
layer. Mod. = Pre-specified modularity, Em. Spec. = Emergent specialisation, Red. = 
Redundancy. * = Indirect route had to be biased during Output competition to permit 
successful acquisition. 
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As we saw in Simulation 2, the sole use of Update competition produced emergent 
specialisation (NYN, NYN100). Successful acquisition was achieved with only 20 hidden 
units, implying that emergent specialisation represents an efficient use of resources. Use of 
additional resources (Fig.3b) also produced partial specialisation, but now with the heavily 
resourced route playing the dominant role. 

When neither Input nor Update competition was used (NNN100, NNY100), 
acquisition was successful with or without Output competition, so long as additional 
resources were used in the Indirect route. As we shall see in the next simulation, these 
combinations produced redundant systems. The system performed better with Output 
competition, since the routes did not have to shout over each other to drive performance – 
the most confident route could produce behaviour. At the end of training, 90% of Regulars 
were produced by the Indirect route, 100% of Exceptions, and 50% of Rule 
generalisations. The main contribution of the Direct device was therefore in generalisation 
(see Taatgen & Anderson, 2002, for a similar result with an ACT-R hybrid symbolic-
associative model acquiring the past tense domain). A summary of the outcomes of 
competition combinations can be found in Table 1. 

 
Table 1. The effect of varying types of competition on specialisation in a dual route 
network 

Output Competition Input 
Competition 

Update 
Competition Yes No 
Yes N/A N/A Yes 
No Pre-specified modularity Unsuccessful acquisition 
Yes Unsuccessful acquisition Emergent specialisation No 
No Redundancy Redundancy 

 
 
Discussion 
This simulation demonstrated that in error-driven systems, competition is exceedingly 
important in driving functional specialisation because, for a given set of domain-
relevancies / structure-function correspondences, it can differentiate between pre-specified 
modularity, emergent specialisation and redundancy. For example, one could have an 
otherwise equipotential system segregated by Input and Output competition into a pre-
specified modular system. In this case, the equipotentiality could be demonstrated by 
taking a processing element from, say, the vision component and placing it in the audition 
component, where it would be equally at home and start to be conditioned by the 
input/output mappings of that domain. Such equipotentiality of function would, however, 
be fully consistent with pre-specified modularity. Therefore the theoretical distinction 
between innate modularity and equipotentiality that we encountered in the Introduction is 
not necessarily a dichotomy – in this case the two exist as different settings of a 
competition parameter.  

Although the conceptual outcome of the combinations of competition might have 
been anticipated in advance, implementation demonstrated that (1) emergence was a 
resource-efficient form of acquisition, (2) competition decisions nevertheless had 
implications for developmental trajectories even when acquisition was successful, and (3) 
pre-specified modularity required a more delicate balance of parameters than the other 
combinations to learn this particular problem domain. Overall, the implication of this 
simulation is that if the conditions of competition are not perturbed, modular architecture 
should not be disrupted. 
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Simulation 4: Recovery patterns of systems with different functional structure 
In the Introduction, we noted the challenge of trying to reconcile uniformity of outcome in 
functional specialisation with the flexibility implied by recovery after damage. This 
simulation sought to assess the implications of the specialisation induced by competition 
for recovery after damage. It did so with particular reference to (1) the possibility of 
redundant systems aiding recovery (e.g., for language, see Blank et al., 2003); and (2) 
whether systems produced side-of-damage effects, either during recovery or once recovery 
was complete (e.g., for language, see Bates & Roe, 2001). The combinations of 
competition from Simulation 3 that successfully acquired the problem domain were given 
either a bilateral lesion to both routes, unilateral damage to the Direct route, or unilateral 
damage to the Indirect route, and their patterns of recovery observed. Note that these 
models assume unchanging plasticity with age. 
 
Simulation details 
Architecture and training: For the successful networks in Simulation 3, a probabilistic lesion of 75% of 
network connections was applied either to both routes, to the Direct route alone, or to the Indirect alone. 
Networks were then retrained for 500 epochs, using same parameter settings as in Simulation 3. Performance 
was measured after 1, 2, 5, 10, 25, 50, 100, 200, and 500 epochs of training after damage. 
 
Results 
Figure 5 demonstrates the recovery profiles following a bilateral lesion, for the pre-
specified modular system, for the emergent specialisation systems with 20 and 100 hidden 
units, and for the redundant system with 100 hidden units and Output competition. For 
Regular and Rule patterns, only the pre-specified modular system failed to show strong 
recovery. For Exception patterns, recovery was weaker in the emergent system with 
limited resources and the redundant system, and stronger in the rich emergent and modular 
networks. Rich resources aided recovery. Interestingly, the rich emergent system was more 
successful in recovering from overall damage than the redundant system. This was because 
it could use its remaining resources co-operatively. In most cases, recovery was aided by 
frequency, either the higher type frequency of Regulars or the higher token frequency of 
the EB3f exceptions. 
 
Figure 5. Recovery profiles for different dual route systems following a lesion to both 
routes. 
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Figure 6 (a) to (c) contrast recovery patterns following unilateral lesions to each route for 
the pre-specified modular, emergent, and redundant systems. For the two conditions with 
Output competition (modular and redundant), Fig. 6(d) indicates which route was driving 
performance across recovery. 

The emergent systems (Fig.6a) exhibited differential vulnerability for the two types 
of damage. Direct damage caused a decrement across the board and Indirect damage 
targeting Exceptions. Recovery after Direct damage was fast for the resource rich version, 
and slow and incomplete for the resource poor version. Recovery after Indirect damage 
was slower for both versions and complete only for the resource rich version. Overall, the 
resource rich emergent system, with co-operation between its routes, demonstrated the 
strongest recovery. The trajectories of recovery differed depending on the side of damage, 
but notably, following recovery, no there was no evidence of the initial side of damage. By 
contrast, the pre-specified modular system (Fig.6b) revealed extreme side of lesion effects 
and poor recovery. Damage to the Direct route produced complete and irrecoverable loss 
of Regular and Rule patterns, because the Indirect route now dominated the output 
competition. Damage to the Indirect route produced Exception impairments with slow and 
incomplete recovery, as the Direct route now tended to dominate the output. The redundant 
system (Fig.6b) was robust to Direct route damage but showed vulnerability of Exception 
mappings to Indirect damage and incomplete recovery. 

Finally Fig.6c demonstrates how the presence of Output competition causes a 
system to shift to driving behaviour from an intact mechanism following unilateral 
damage. This is adaptive only if the intact mechanism possesses the appropriate knowledge 
for correct performance. The recovering mechanism may later start to influence behaviour 
once more. In the current case the recovering mechanism primarily drove the (limited) 
recovery of Exception performance in the modular and redundant systems. 
 
Discussion 
The redundant system was robust to damage but did show some unilateral vulnerability. 
This stemmed from the different domain relevancies of the two processing routes in the 
network. The Direct route was less able to learn both parts of the domain than the Indirect 
route, therefore loss of the Indirect route was more serious. Unless the two routes are 
equipotential, even redundant systems will show unilateral vulnerability under some 
circumstances. 

The system with emergent specialisation and rich computational resources 
demonstrated the strongest recovery. It illustrated the importance of having abundant 
computational resources available to relearn the problem domain, but also the ability to 
exploit remaining resources in a co-operative fashion. Most notably, this system 
reproduced the pattern found in the recovery of language after early unilateral damage 
(Bates & Roe, 2001). Recovery patterns were conditioned by side of damage but final 
performance levels were independent of side of damage. 

The emergentist position is therefore an account that may be able to explain both 
uniformity of outcome (driven by initial domain relevancies) and recovery from early 
injury (because structure-function correspondences are relevant rather than specific). By 
contrast, pre-specified modularity appears only able to explain uniformity of outcome. 
However, its strong side-of-damage effects and limited recovery is characteristic of adult 
aphasia. If the emergent system best explains developmental damage and the pre-specified 
modular system best explains the adult state, this suggests some qualitative change of the 
system with age, presumably in its effective plasticity or available resources. 
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Recovery from unilateral lesions: Emergent systems

0%

20%

40%

60%

80%

100%

Pattern Type

P
er

ce
n

ta
g

e 
C

o
rr

ec
t 

 .

Emergent Direct lesion

Emergent Indirect lesion

Rich emergent Direct lesion

Rich emergent Indirect lesion

Regular                   Rule                     EP1                      EP2                     EP3f

Recovery from unilateral lesions: Redundant and Modular systems
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Output competition in Redundant and Modular systems
Which route drives Output during recovery?

0%

20%

40%

60%

80%

100%

Pattern Type

R
ou

te
 d

ri
vi

ng
 O

ut
pu

t  
 . Redundant Direct

lesion

Redundant Indirect
lesion

Pre-sp. Modular Direct
lesion

Pre-sp. Modular
Indirect lesion

Regular                   Rule                     EP1                      EP2                     EP3f

Figure 6. Recovery profiles for unilateral lesions. (a) Systems with emergent specialisation. 
Rich = use of 100 hidden units in the Indirect route. (b) Redundant and Pre-specified 
modular systems. (c) The route that drives behaviour during recovery for the Redundant 
and Modular systems. 
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Conclusion 
We first summarise the main findings with regard to the specific aims of the simulation 
work. We then relate these to our wider theoretical questions. The modelling work 
indicated the following: (1) For self-organising systems, changes in competition disrupted 
specialisation, with changes to intrinsic competition in the output layer more powerful than 
changes to the input (for the parameter variations we considered). Reductions in resources 
led to the same functional structure but poorer categorical discrimination. (2) For error-
driven systems, we evaluated a version of the mixture-of-experts model. This revealed that 
differential properties of areas of heterogeneous computational substrate (i.e., the experts) 
could mediate patterns of functional specialisation. Differential settings of plasticity and 
levels of resources between areas were particularly powerful modifiers of emergent 
specialisation. (3) In error-driven systems, once again, competition was a powerful factor. 
Indeed the choice of competition settings was sufficient to mediate between outcomes with 
pre-specified modularity, emergent specialisation, and redundancy in a system with 
otherwise identical domain-relevant computational properties. (4) Consideration of 
recovery after damage indicated that systems with emergent specialisation (defined by 
Update competition) were best positioned for recovery so long as they were sufficiently 
resourced, because this form of emergent specialisation arises from conditions encouraging 
co-operative processing. The system with emergent specialisation demonstrated a recovery 
profile found in language development in children experiencing early unilateral brain 
damage. This supports the idea that the emergentist position can reconcile normal 
uniformity of outcome with flexibility after early damage, by specifying suitable 
constraints on learning. Pre-specified modularity could account for uniformity of outcome 
but (as implemented here) it was not a robust solution for successful acquisition. 
Moreover, it showed greater vulnerability and poorer recovery after damage than either 
emergent or redundant systems, a pattern more in common with deficits after adult focal 
brain damage. 

We now return to our broader theoretical questions regarding the origins of 
specialised functional structures. First, of the neurocomputational factors that drive 
specialisation, can separate parameters affect specialisation versus functioning within the 
subsequent individual components? The answer is a qualified ‘yes’. In self-organising 
systems, resources could affect within-component processing but leave emergent structure 
untouched. However, this did not lead to uneven performance across components. In error-
driven systems, competition was a parameter that altered specialisation without changing 
the functioning of components. However, changes to the computational properties of 
individual components led to an alteration in specialisation. In short, we did not find 
conditions were uneven profiles of performance arose at the same time as normal 
functional structure. 

Second, we asked when does full specialisation occur, if at all? Self-organisation 
appeared to drive fairly complete specialisation. In the error-driven system, when the 
competition parameter guided the system to emergent modular structure or redundancy, 
specialisation was only partial. For error driven systems, complete specialisation required 
pre-specification of functional modules. 

Third, we asked if specialisation becomes fixed. We did not consider alterations to 
plasticity across the ‘age’ of the system. However, the recovery data suggested that 
emergent modularity captured recovery after focal damage in childhood, while pre-
specified modularity was more reminiscent of more limited adult recovery. These two 
findings would be reconciled if there were a change of state with age in the parameters 
affecting functional specialisation. 
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Fourth, we asked whether recovery (such as in the case of language and unilateral 
brain damage in children) might be better explained by bilateral redundancy rather than 
reorganisation. The results indicated that a resource-rich emergent model captured the data 
better than a redundant system. Notably, however, in systems with Output competition, 
focal damage could immediately cause a different mechanism to drive behaviour. 
Depending on whether the alternate mechanism could support normal behaviour, this could 
represent robustness or an immediate source of errors. In both cases, the damaged 
component could take over driving performance if it later recovered. This finding 
demonstrates the difficulty of drawing inferences from deficits, since behaviour after 
damage may reflect the functioning of a different component. 

Fifth, we asked whether specialisation necessary conveys a behavioural advantage. 
The results indicated that pre-specified modularity was not a robust solution for acquisition 
where both components were required to drive the same output, since their competition 
needed to be calibrated. Both the emergent modular system and the redundant system were 
flexible after damage, the emergent system more so. The emergent modular system had the 
additional advantage of being resource efficient. However, pre-specified modularity may 
be advantageous where the modules must drive separate outputs - see Calabretta, Di 
Ferdinando, Wagner and Parisi (2003), for a model where pre-specified modules are a 
superior solution for learning to output the identity versus the location of an object on an 
input retina. 

Evidence of more bilateral brain activation patterns in some developmental 
disorders (for example, in face processing in Williams syndrome; see Karmiloff-Smith, 
1998) might be taken as evidence for reduced specialisation. This could be explained as 
less competition operating in the cognitive system, either an absence of Input competition 
(via initial over-connectivity or insufficient pruning) or an absence of Update competition. 
However, reduced specialisation may also be a consequence of reduced processing 
resources. When we carried out severe startstate lesions to both routes of the base model 
(Thomas & Karmiloff-Smith, 2002b), the result was poorer acquisition and an absence of 
specialisation. In effect, the system exhibited an all-hands-to-the-pump approach, because 
both mechanisms were necessary to produce any kind of correct performance. Emergent 
specialisation and redundancy are a luxury born of sufficient resources. 

Finally, what do the simulation results tell us about the possible causes of uneven 
cognitive profiles in developmental disorders? They point to two possible sources: (1) 
Focal changes in the domain-relevant computational properties of different areas of the 
initial substrate (i.e., changes restricted to a subset of future specialised components) or 
focal changes in connectivity modifying the input to a restricted subset of future 
components. For either of these initial differences not to affect the emergence of other 
modular structures, the atypical area of substrate must either be self-organising or not 
interact / compete with unaffected regions during normal development. (2) The uneven 
profile is caused by an atypical overall structure, where shifts in the conditions of 
competition or the domain-relevant properties cause different specialisation to emerge. 
Importantly, the simulations suggested that variations in functional architecture might only 
modulate the external behavioural trajectories of development in subtle ways. Sensitive 
empirical measures may be necessary to discriminate between different possible functional 
architectures underlying variations in development. 

In conclusion, the indication is that the emergence of normal modularity despite 
focal problems in a subset of functionally specialised components could only occur under 
circumscribed conditions. This implies that innate modularity and neuroconstructivism 
represent diverging explanations of uneven cognitive profiles in developmental disorders. 
The key question remains the extent to which the functional structure varies in atypical 
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development, either for disorders with wide-ranging cognitive deficits such as autism and 
Williams syndrome, or for disorders in which the deficits are apparently narrower, such as 
Specific Language Impairment and dyslexia. The answer to this question will tell us much 
about the origins of modular structure in the human cognitive system. 
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