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Abstract 

We set out to implement a model of one aspect of language development that linked 

between multiple levels of description: genome, neurocomputation, overt behaviour, and 

environment. The goal was to render explicit assumptions linking the three levels of 

description and to evaluate their consequences via implementation in a complex learning 

system. By combining Artificial Neural Networks with Genetic Algorithms, we simulated 

population variability in development. We employed English past tense acquisition as an 

illustrative problem domain and compared model performance to empirical data from a 

population of 442 English 6-year-old children (Bishop, 2005). Assuming a polygenic 

framework and additive genetic effects, we assessed the contributions of individual 

‘genes’ (which coded for neurocomputational parameters) and environmental factors 

(which coded for variations in information content, implementing the effects of socio-

economic status) in generating behavioural variability across development in a large 

number of simulated individuals. Results explored: (1) changes in population variability 

over development; (2) effect sizes of genetic and neurocomputational parameters in 

predicting behavioural variability, including simulated association analyses; (3) the 

power of the environment to predict behavioural variability, including a novel prediction 

subsequently confirmed by the empirical data; (4) mechanisms of resilience in 

development, including gene-environment interactions and apparent gene-gene 

interactions. The model unifies an account of developmental change and individual 

differences within a single explanatory framework, and highlights possible disparities 

between causal and statistical relationships in mapping between genes, environment and 

behaviour. 
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Introduction 

The aim of this paper 

The aim of this paper is to explore the mechanisms that contribute to population 

variability in cognitive development; and specifically, to consider the contribution of 

genetic variation and environmental variation to the range of behaviours exhibited by a 

population during the acquisition of a given ability. To do so, we employ connectionist 

models of development, and exemplified our approach with the case study of English past 

tense acquisition. The behavioural variability exhibited by a population of neural network 

models was compared to the performance of 442 6-year-old children on a past tense 

elicitation task (Bishop, 2005). Our goal was to simulate empirical data on the 

distribution of performance levels exhibited by these children and the role of the 

environment in predicting variation; and then to explore what associations might be 

expected between behaviour and, respectively, neurocomputational and genetic levels of 

description. 

 

Beyond the average child – individual differences in development 

Most studies of cognitive development seek to characterise the average child, and trace 

the improvement of cognitive abilities with age. Variation of cognitive abilities around 

the average profile of development is more often considered within the framework of 

individual differences or intelligence research, or in cases of more extreme variation, 

within the study of development disorders and giftedness at the respective ends of the 

distribution. Studying average development allows for more focused sampling, because 

the average of a sample can give a reasonable approximation of the average of a larger 
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population. Sampling and averaging naturally de-emphasise the consideration of 

variability within a developmental context. 

Population studies of cognitive development are challenging to carry out for 

practical reasons. Large numbers of children must be assessed over an extended time 

period. Such studies are usually undertaken within a clinical framework, to identify the 

expected range of abilities at different ages so that children falling outside of this range 

can be targeted for intervention. Population studies of development are effectively 

undertaken when researchers seek to create standardised tests, for example of verbal 

versus non-verbal abilities, or at a finer granularity, receptive versus productive language. 

By their nature, standardised tests often have limited sensitivity (in the sense that they 

rely on accuracy data) and constitute fairly blunt measures of individual cognitive 

processes. By contrast, the kinds of sensitive experimental measures that target individual 

cognitive processes are impractical to give to population samples. Nevertheless, in 

principle, population studies would allow us to address a range of interesting questions. 

For example, one might ask whether the causes of cognitive variability are the same 

across the range of ability observed in the population, or whether they differ in the lower 

and upper tails. One might ask whether the causes of variability remain constant over 

developmental time or whether they alter. What mechanisms cause children to change 

their rank order in the population, for example in the case of late developers? Are the 

mechanisms that explain within-age variation the same as those that explain between-age 

variation, so that being more intelligent is in fact equivalent to having extra cognitive 

development? Or does intelligence operate over orthogonal dimensions to development? 
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We will argue here that shifting our focus to individual differences with respect to 

development is, in addition, a powerful way to relate genetic, neural, and behavioural 

levels of observation. Such a foundation is likely to prove important for targeting 

educational and intervention strategies to those children who will maximally benefit. By 

understanding the influence of internal constraints, the effects of environmental variation 

can be optimised. 

 

Using population studies to partition genetic and environmental influences 

Despite the practical difficulties, population studies are more common within the fields of 

epidemiology, behavioural genetics, and molecular genetics. While these fields have not 

focused on characterising the mechanisms of cognitive development, the findings 

emerging from behavioural genetics have had increasing implications for the study of 

cognition. These stem from evidence of high degrees of heritability for cognitive abilities 

(e.g., Plomin, Owen & McGuffin, 1994), to sophisticated designs to unpick the influence 

of genes versus parenting in the transmissions of behaviours across generations (e.g., 

Caspi et al., 2004; Jaffee et al., 2005), to an increasing number of candidate genes for 

explaining population variation in behaviours such as language, attention, and general 

cognitive ability (e.g., respectively, Smith, 2007; Posner, Rothbart & Sheese, 2007; 

Deary, Spinath & Bates, 2006), as well as genes implicated in disorders such as autism, 

dyslexia, schizophrenia, and attention deficit hyperactivity disorder (e.g., respectively, 

Abrahams & Geschwind, 2008; Fisher & Francks, 2006; Schwab & Wildenauer, 2009; 

Gizer, Ficks & Waldman, 2009). Moreover, as large cohorts of twins are followed 

longitudinally over development, there are increasing opportunities to gain a richer 
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understanding of causal relations over time. With regard to the investigation of 

mechanisms of cognitive development, however, these population studies still incur 

practical limitations. Specifically, they often use standardised tests and questionnaire data 

that serve as only coarse measures of cognitive processes. Nevertheless, a number of key 

findings are now becoming apparent. 

                           

What have behavioural and molecular genetic studies told us about the mechanisms 

underlying cognitive development? 

Behavioural genetic researchers use population studies to evaluate the extent to which 

relatedness between individuals predicts similarity in behaviours, while making 

assumptions about the similarity of the environment in which the individuals are raised. 

The workhorses of this approach are twin studies and adoption studies. For example, 

under the assumption that twins raised together experience the same environment, then 

any greater similarity in behaviour in identical or monozygotic (MZ) twins over fraternal 

or dizygotic (DZ) twins must come from their greater genetic similarity. Large sample 

sizes are typically required to achieve the requisite statistical power in behavioural 

genetic analyses, hence the need for population studies, sometimes involving thousands 

of twin pairs. Behavioural genetics has now offered a plethora of findings to the 

researcher in cognitive development, of which there is space here to mention only a few 

(see Plomin, DeFries, McClearn & McGuffin, 2008). 

Most well known is the finding that genes exert a large influence on individual 

differences in behaviour, often accounting for 50% of the variance. Moreover, heritability 

often increases with age. Environmental effects tend to be unique to individuals even if 
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objectively the environment seems similar (e.g., being raised in the same family). This 

has led to the view that genes operate to make individuals similar while environments 

operate to make them different (Plomin et al., 2008). Analytical techniques permit 

researchers to investigate whether the genes that account for very low or very high 

performance are the same as those accounting for variation in the normal range. For 

cognitive abilities, the answer appears to be yes, leading to the claim that ‘the abnormal is 

normal’; that is, that in many cases disorders are the extremes of normal population 

variability (e.g., Kovas, Haworth, Dale, & Plomin, 2007). 

Multivariate methods permit researchers to assess whether the variation in two 

different abilities is caused by the same or different genes. For the normal population, this 

approach has led to the claim that the general factor of intelligence (g) accounts for 

nearly all of the genetic variance of diverse psychometric cognitive tests (Plomin & 

Spinath, 2002). The finding that relatedness mainly contributes to the similarity in 

children’s performance across different abilities, while the environment contributes to 

differences in performance, has led to claims that genes are generalists and environments 

are specialists (Kovas et al., 2007). Multivariate analyses can also be used on the same 

measure at different points in time: are the same genes responsible for variability in 

behaviour at time 1 as time 2? Longitudinal analyses of children’s cognitive abilities 

suggest that age-to-age stability is primarily mediated genetically, while the environment 

contributes to change from age to age (e.g., Kovas et al., 2007). Lastly, multivariate 

methods can be used to explore the genetic unity of the behavioural characteristics of 

developmental disorders such as autism (e.g., Ronald, Happé, Price, Baron-Cohen & 

Plomin, 2006). 
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Evidence of heritability implies that variation in DNA causes behavioural 

variation. The next step is to find the DNA sequences in order to understand the 

mechanisms by which genes affect behaviour (Plomin et al., 2008). In many cases, the 

behaviours we are studying are not all-or-nothing traits but vary quantitatively, e.g., 

performance on a reasoning task or a language task or a visuospatial task. Research has 

focused on genes that contribute to this variation, referred to as Quantitative Trait Loci. It 

has indicated that the heritability observed in quantitative traits typically arises from the 

contribution of many genes, each contributing a small amount to the variability in 

behaviour. In the normal population, single gene variants of large effect size have proved 

hard to find for complex cognitive abilities. Association analyses, which test the 

possibility that a particular gene variant is responsible for some portion of the 

behavioural variation, have found candidate variants that increase risk for disorders such 

as schizophrenia, autism, dyslexia, speech and language disorders, and attention deficit 

hyperactivity disorder (see, e.g., Plomin et al., 2008; Smith, 2007; Posthuma & de Geus, 

2006, for reviews). Gene variants have also been found that contribute to individual 

differences in the normal population, for example in general cognitive ability (e.g., 

Harlaar et al., 2005).  Moreover, in some cases, it has been found that gene variants that 

contribute to disorder risk also predict variance in the normal population (e.g., attention 

processes in normal children vs. those diagnosed with attention deficit hyperactivity 

disorder; Schmidt et al., 2001). However, since the contribution of individual gene 

variants to predicting behaviour is usually so small in association analyses, even with 

large populations, there are many false alarms and failures to replicate across different 

samples (Posthuma & de Geus, 2006).  
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For current purposes, two points are worth noting regarding molecular genetic 

findings on cognitive ability. First, where the contribution of individual genes to 

cognitive variability has been uncovered in the normal population, the genes appear to 

relate to general neurocomputational properties. For example, two genes whose variants 

have been much studied (COMT: catechol-O-methyl-transferase, and BDNF: brain-

derived neurotrophic factor) have basic neural functions and it is argued that their effects 

in the brain are likely to be widespread in terms of structure and function (Kovas & 

Plomin, 2006; Plomin & Kovas, 2005; though see Marcus & Rabagliati, 2006, for 

speculations on specificity). Second, although behavioural genetics has led to a focus on 

genetics as a cause of behavioural similarities across individuals, the methodology also 

stresses the importance of the environment. The environment frequently accounts for half 

of the variability in behaviour. However, because children are usually raised by relations, 

genetic and environmental effects are often conflated. Behavioural genetic methods allow 

environmental causes to be isolated by controlling for genetic influences, for example by 

assessing the extent to which MZ twins diverge in their behaviours (e.g., Caspi et al., 

2004). 

 

Three current controversies 

The challenge facing researchers in cognitive development is to integrate these 

behavioural and molecular genetic findings into their understanding of the mechanisms 

driving developmental change. However, several controversies make this integration 

more complicated. First, the greater focus on genetic factors (driven in part by their 

amenability to study via the methods of modern biology) has masked our limited 
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understanding of the environmental causes of cognitive variation. Thus Plomin et al. 

(2008, p. 303) recently commented: ‘we know much more about genes than we do about 

the environment . . . where in the brain are environmental influences expressed, how do 

they change in development, and how do they cause individual differences in behaviour?’ 

Second, there has been disagreement regarding the extent to which partitioning 

behavioural variation into separate genetic and environmental contributions moves us 

closer to understanding the mechanisms by which development occurs. This is because 

developmental processes will always involve on-going interactions between genetic and 

environmental factors. Third, it is still a challenge to identify what the involvement of 

genes (either in the guise of relatedness or particular gene variants / mutations) tells us 

about the mechanisms of development at the much higher level of the whole organism, 

that is, in terms of the behaviours over which the patterns of heritability are observed 

(e.g., language, attention, reasoning, and so forth). 

Let us briefly consider these points in turn. Beginning with the first, some 

researchers have argued that despite plentiful evidence for unique environmental effects 

on individual variability, it has proved difficult to identify the actual sources of this 

variation, even when researchers have deliberately set out to do so (Turkheimer & 

Waldron, 2000). This extends to animal studies under laboratory conditions, where all 

effects of the environment can in principle be controlled or measured (see Kan et al., in 

press, for discussion). Indeed, Kan et al. have proposed that the statistical phenomenon of 

unique environmental variation (e.g., the extent to which the behaviour of MZ twins 

differs) may be intrinsically hard to access at a mechanistic level because it results from 

non-linear properties of brain development. Under this view, small differences between 
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individuals in the starting conditions lead to ever greater differences across 

developmental time. Other researchers have resisted this conclusion as premature. For 

example, Plomin, Ashbury and Dunn (2001) argued that together, a range of measures of 

differential environments in children’s development could explain 13% of the variance in 

adjustment, personality and cognitive outcomes (Plomin et al., 2008). These measures 

included family constellation, differential parenting behaviour, sibling interaction, and 

peer or teacher interaction. Nevertheless, even where such predictors pick up variance, 

these are correlation data; it is a yet a further step to identify the relevant causal 

mechanisms and pathways. For instance, socio-economic status is known to explain 

variance in cognitive and language development (e.g., Hart, Petrill, Deckard & 

Thompson, 2007; Petrill, Pike, Price & Plomin, 2004), and even to predict differences in 

functional hemispheric specialisation (Raizada, Richards, Meltzoff & Kuhl, 2008). Yet as 

Stevens, Lauinger and Neville (in press) argue, socio-economic status indexes a range of 

confounded factors, among them differences in prenatal care, nutrition, depression, 

neglect, cortisol levels, money, quality of schooling, perception of inequality, parental 

attitudes, parental education, social support, and availability of books in the home. It is 

not clear by which causal route socio-economic status effects operate, or the relative 

weighting across the routes if (as is likely) several routes contribute. Yet for the 

developmental psychologist, the causal mechanisms are the key issue. 

The second controversy concerns the utility of the variance partitioning methods 

of behavioural genetics, where genes and environment are modelled as main effects 

predicting behavioural variation. Researchers from the Developmentalist school (e.g., 

Gottlieb, 1995) argue that biological characteristics emerge from a matrix of 



13 

 

developmental interactions between biological and environmental factors. Partitioning 

variance and assigning greater or lesser weight to genetic or environmental causes does 

not necessarily shed light on the mechanistic basis of these interactions. Thus Turkheimer 

(2004, p.165) commented:  ‘it is still an open question whether multivariate behaviour 

genetics and molecular behavioural genetics will . . . [succeed in] . . . providing a quasi-

experimental bridge between population-based variance partitioning and causally 

specified developmental models’. In the context of cognitive development, it is worth 

noting that behavioural genetic methods focus on individual differences and are not 

sensitive to species-universal properties (e.g., behaviours that show no variation; genes or 

environments that are shared by all members of the species). The window that individual 

differences provide on processes of cognitive development ultimately depends on the 

mechanistic basis of the relationship between these two sources of variation (within age 

and across age, respectively). Empirical work has yet to resolve the relationship and there 

are relatively few theoretical frameworks that incorporate both types of variation (see, 

e.g., Baughman, 2009; Davis & Anderson, 1999; Thomas & Karmiloff-Smith, 2003a). 

The third point of controversy is that, even if we accept the importance of 

specifying causal mechanisms, the levels of gene and behaviour are remote (see, e.g., 

Fisher, 2006; Johnston & Lickliter, 2009). One pertains to the expression of individual 

proteins within a single cell, the other pertains to the behaviour of the whole organism 

embedded in a physical and social context. Taking the findings of gene-behaviour 

association studies at face value, thus far we are gaining only hints about the nature of the 

causal pathways between these levels of description. Here are four examples: genetic 

variations appear to modulate attention skills via a pathway that alters the efficiency of 
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dopamine receptors in the fronto-striatal systems that deliver behavioural control (Posner, 

Rothbart & Sheese, 2007); the disorders Rett syndrome and Fragile X have been argued 

to represent different causal pathways by which the production of proteins necessary for 

synaptic plasticity is demodulated (Kelleher & Bear, 2008); developmental language 

impairment and autism have both been linked to a gene variant that alters production of a 

protein sitting in the membranes of neurons, which influences interactions between 

different cells during the development and wiring up of the nervous system (Vernes et al., 

2008); developmental dyslexia has been linked to four gene variants associated with 

neuronal cell adhesion, perhaps pointing towards regional disruptions of neural migration 

and axonal guidance in early brain development (Galaburda et al., 2006). 

These recent findings are exciting and highly suggestive, but of course, further 

understanding is still required. First, we do not yet have an understanding of how the 

brain circuits deliver the high-level behaviours measured by cognitive tasks, sufficient to 

be confident about the consequences of the low-level differences in synapse formation or 

neural migration. Second, the properties picked out by the gene variants often appear too 

general for the more specific behavioural outcomes that they are intended to explain. And 

third, the developmental context of the causal account is often missing. It is unclear how 

differences in, say, dopaminergic signalling or synaptic plasticity or neuronal migration 

would lead to particular high-level behavioural consequences, because these low-level 

differences represent alterations to an adaptive system that must follow a sometimes 

protracted pathway of development before the whole organism can exhibit the target 

behaviour which led to the identification of the gene-behaviour association in the first 

place. 
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Nevertheless, attempts to close the explanatory gap between genes and behaviour 

have stimulated the emergence of a range of new fields. Plomin and colleagues have 

outlined the bottom-up approach of functional genomics beginning at the level of cells 

and molecular biology (e.g., Plomin, 1999). Computational neurogenetics follows the 

bottom-up approach and explores the integrations of dynamic neuronal models with gene 

models (Kasabov & Benuskova, 2004). Behavioural neurogenetics is similarly interested 

in elucidating the role of genes in brain development, and in the emergence of species-

specific behaviour (e.g., Baumgardner, Green & Reiss, 1994). Behavioural genomics 

takes a top-down approach, attempting to understand how genes work at the level of the 

behaviour of the whole organism, spanning behaviour, psychology and neuroscience 

(e.g., Plomin & Crabbe, 2000). Cognitive genetics aims to link three levels of description, 

cognitive, neural systems, and cellular levels (Scerif & Karmiloff-Smith, 2005). Both 

bottom-up and top-down approaches face challenges. The challenge for the bottom-up 

approach is the sheer complexity of the molecular processes involved. As Plomin et al. 

(2008) point out, each synapse is affected by more than a thousand protein components; 

and a synapse is a long way from understanding a functional neural circuit. The challenge 

for the top-down approach is that researchers in cognitive neuroscience still only have a 

sketchy view of how the brain implements cognition. The top-down approach must move 

below the cognitive level to construe developmental theories in terms relevant to the 

influence of neurocomputational parameters, whilst retaining contact with the overt 

behaviours expressed by individuals. This is the aim of the current paper. 
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A top-down approach to closing the explanatory gap: computational models of 

development 

In this paper, we pursue a top-down strategy to closing the explanatory gap between 

genes and behaviour. The strategy involves the use of implemented computational 

models that explicitly simulate the interaction between genetic and environmental factors 

during the development of high-level behaviours; and it involves simulating variability at 

the population level, thereby addressing development and individual differences within a 

single explanatory framework. The next sections lay some groundwork, before 

introducing the specific model and the target empirical data to which it will be applied. 

We briefly outline how computational models have been used to explore cognitive 

development over the last twenty years; we show how more recently these models have 

been extended to consider cognitive variation through the manipulation of 

neurocomputational parameters; and we show how computational models of high-level 

behaviours can be linked to a genomic level of description via the use of Genetic 

Algorithms. 

 

Connectionist models of development 

Over the past two decades, computational models that exploit machine learning have 

proved useful in developmental psychology because they permit formal specification of 

transition mechanisms. These mechanisms demonstrate how a child can move between 

producing different patterns of behaviour at different ages through interaction with a 

structured training environment. One of the most influential approaches, connectionist 

modelling, has demonstrated how the structure of the learning environment can interact 
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with the system’s internal constraints to shape the developmental trajectories in 

behaviour. In this context, connectionist or artificial neural network models embody 

constraints drawn from neurocomputation while targeting high-level cognitive 

behaviours. Connectionist models have been applied to a range of phenomena including 

infant category development, language acquisition, and reasoning in children (Elman et 

al., 1996; see Thomas & McClelland, 2008; Mareschal & Thomas, 2007, for reviews; 

Spencer, Thomas, & McClelland, 2009, for comparisons to related dynamic systems 

approaches). However, as in developmental theory, such models have tended to 

characterise the ‘average’ child. Where variability in development does occur, for 

example through initial randomisation of the starting weights in the artificial neural 

networks or chance presentation orders of the items in the training set, the results are 

averaged out over multiple runs. 

 

Neurocomputational parameters as mechanisms of variability 

Computational models of development are well placed to explore the mechanistic basis of 

individual differences. Models contain parameters, such as the learning rate or level of 

resources, which affect both the model’s efficiency to learn and the complexity of the 

representations it can acquire. Moreover, changes to the way in which the problem 

domain is presented to the network (i.e., its input and output representations, or the 

constitution of the training set) can alter its performance compared to the metric of 

normality (Thomas et al., submitted). In this way, connectionist models have been 

extended to explore potential causes of atypical development, for example in disorders 

such as autism, dyslexia, Specific Language Impairment (SLI), Williams syndrome, and 
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attention deficit hyperactivity disorder (e.g., Harm & Seidenberg, 1999; Joanisse, 2004; 

Lewis & Elman, 2008; Richardson & Thomas, 2006; Thomas & Karmiloff-Smith, 2003b; 

Triesch et al., 2006). In these cases, a single neurocomputational parameter is usually 

altered in the startstate of the model, based on psychological or neuroscientific data on 

the disorder, with the intention of demonstrating that the normal developmental trajectory 

of behaviour can then be deflected to exhibit the deficits observed in the disorder. Far 

fewer proposals have been made regarding methods to simulate individual differences 

(Garlick, 2002; Thomas et al., submitted; see Thomas & Karmiloff-Smith, 2003a, for 

discussion). The limited amount of population modelling of cognitive development that 

exists has been restricted to mathematical models or dynamic systems modelling, where 

no actual acquisition of a cognitive ability is simulated (e.g., Anderson & Nelson, 2005; 

Turkheimer, 2004; van der Maas et al., 2006). 

 

Genetic connectionism: genomes to encode variation 

In order to bring together computational models of development with studies of 

population variability that consider genetic and environmental influences, it is necessary 

to take three steps: (i) encode some of the computational properties of a connectionist 

network in a genome; (ii) allow variation in the genome between ‘individuals’, which 

then produces variations in computational properties; and (iii) allow variation in the 

structured training environment to which each system is exposed. 

The idea of encoding the properties of a computer program in the form of a 

genome is a familiar one. Genetic Algorithms are a method of optimising computer 

programs by breeding generations of programs and selecting the ‘fittest’ (according to 
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performance on the target problem) to populate the next generation. Genetic algorithms 

constitute a valuable tool for optimisation in machine learning because they permit an 

efficient search of complex parameter spaces, where the settings of a large number of 

variables serve to optimise the performance of a computer program on a given problem. 

In principle, genetic algorithms can be applied to any computer program. The minimal 

requirement is that the parameter settings for the program must be encodable in a 

genome, and every version of the genome created by mechanisms that induce genetic 

variability (such as breeding) must correspond to a legal computer program. Genetic 

variability operators, inspired by sexual reproduction, include ‘cross-over’, where the 

genomes for two computer programs are combined in some way to produce two new 

genomes, and ‘mutation’, where elements of a genome are changed at random. Genetic 

algorithms typically proceed by generating a large initial population of genomes with 

random variability. These are translated into the equivalent computer programs, which 

are then exposed to the problem domain. A fitness measure rank orders performance on 

the problem domain. Poor performers are discarded, and good performers are copied. 

Operators of genetic variability are then applied to create the individuals of the next 

generation. The process is iterated and usually results in improvement in the average 

performance of the population over generations (see Mitchell, 1997, for introduction). 

From the beginning of the field’s recent incarnation, researchers in connectionism 

have seen the value of integrating their network models with genetic algorithms, leading 

one author to refer to the discipline of ‘genetic connectionism’ (Chalmers, 1990). Applied 

to artificial neural networks, genetic algorithms could in principle be used in three ways. 

First, they could be used as a type of training algorithm, with the aim of find the optimal 
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connection strengths for a network on a given problem. In this case, connection weight 

values would be specified by the genome and no learning would take place. Second, the 

genome could merely determine the initial parameter values of a network, and each 

network could then undergo a phase of learning on the target problem before the fitness 

metric was applied. Third, these two methods could be combined, so that some 

parameters would be fixed by the genome whilst others would be allowed to vary. 

All three approaches have been pursued. For example, research has demonstrated 

the value of having fixed weights (phenotypic rigidity) versus permitting learning 

(phenotypic plasticity). One study indicated that in the presence of a stable environment, 

plasticity is advantageous for early generations, after which phenotypic rigidity becomes 

increasingly important (Hinton & Nowlan, 1987). Research has also explored the synergy 

between evolution and learning, where evolution can produce systems that are better 

placed to learn, known as the Baldwin effect (e.g., French & Messinger, 1994; Nolfi, 

Elman & Parisi, 1994). Simulation work has also pointed to the computational 

intractability of Lamarkian evolution, the proposal that learned behaviours are passed on 

to next generation via modifications to an individual’s DNA during its lifetime. In 

complex systems, it is immensely difficult to solve the reverse problem of isolating the 

genes that are responsible for a given learned behaviour (Turney, 1996). Of course, this is 

the same problem that is targeted by gene-behaviour association studies. 

Most of these computational investigations used highly simplified problem 

domains. However, Nakissa and Plunkett (1998) demonstrated how genetic algorithms 

could be used to evolve a self-organising learning system that rapidly acquired 

categorical representations for speech perception. The genome encoded both the 
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architecture and learning rules of the artificial neural network, and each network was 

trained by exposure to speech spectra from different human languages. Other research 

has used the marriage of artificial neural network and genetic algorithm approaches to 

explore the advantages of modular architecture and of age-dependent plasticity for 

cognitive development (Bullinaria, 2005, 2007, 2009). 

The computational studies we present in this article differ from this previous work 

in that, while we use genetic algorithms to encode some of the computational properties 

of the learning systems, we do not use selection.
1
 Selection is a key feature of 

optimisation. However, when genetic algorithms are used for optimisation, the 

consequence is to reduce population variability over subsequent generations, because 

only the better performing individuals are retained (see Appendix A). Variability will 

only persist across generations if there is some exact balancing mechanism that serves to 

refresh it or if the metric for selection is itself non-stationary across generations. By 

contrast, the starting point for the current investigation is that behavioural variability is 

the empirical given. Therefore, although we will employ the familiar mechanisms of 

genetic algorithms, in the absence of selection we will not expect to observe substantial 

change in the population variability across generations. In other words, in what follows, 

we will not consider (other than tangentially) the evolutionary origins of the genetic 

variation; rather, our focus is the mechanisms that explain the observed behavioural 

variability in a population of learning systems embedded in a given environment. 

 

                                                 
1
 Within the wider modelling framework, our assumption is not that selection is not operating at all. It is 

that selection is not operating with respect to the behaviours generated by the system we are simulating. 
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Mechanisms of environmental variation 

While Genetic Algorithms provide a means to encode neurocomputational dimensions of 

variation within a computational implementation of development, we must separately 

consider how to implement variation in the quality of the environment. Psychological 

evidence on the role of the environment on cognitive development relies on 

circumstances where the quality of the environment varies. Three major sources of 

evidence are the role of socio-economic status (SES), the role of deprivation, and the 

effectiveness of enrichment programmes. We focused on the first of these literatures to 

motivate the assumptions of our model. 

A great deal of research has accumulated on the role of SES in influencing both 

cognitive development and neurocognitive functioning. Reviewing recent findings, 

Hackman and Farah (2009) noted how the effect of SES is uneven across cognitive 

domains, affecting language development and executive functioning more than memory, 

spatial cognition, and visual cognition. Moreover, effects on neural processes (e.g., as 

measured by event-related potentials) can be observed even when there are no overt 

differences in behaviour (e.g., D’Angiulli et al., 2008). In terms of language 

development, Farah et al. (2006) created a language composite score of performance on 

vocabulary and phonological processing tasks in first graders (5-6 year olds), and were 

able to predict 32% of the behavioural variance using SES. Other reported effect sizes are 

more modest. Petrill et al. (2004) tested expressive vocabulary and grammatical 

complexity via parental report in a sample of 6000-8000 twins. SES predicted 3.2% of 

the variance at age 3 and 3.6% at age 4. Hart et al. (2007) tested 287 pairs of twins of 
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elementary school age on a test of general cognitive ability at two time points two years 

apart. SES predicted 5.8% of the variance at time 1 and 2.9% of the variance at time 2. 

There are two main difficulties with employing SES as a marker for environmental 

variation. First, the exact definition of SES is controversial, typically involving factors 

such as parental education, income, and occupation (Hackman & Farah, 2009). Second, 

the causal mechanisms by which it exerts its effects remain to be elucidated. In their 

review, Hackman and Farah (2009) listed the following causal factors confounded with 

SES that might act on brain development: lead exposure, cognitive stimulation, nutrition, 

parenting styles, transient or chronic social hierarchy effects, and chronic stress. In a 

review of the effects of SES on language development in particular, Ginsborg (2006) 

considered the SES-related factors of parental education, home environment, the 

relationship between principal caregiver and child, the language environment experienced 

by the child and the nature of the interaction between mother and child (including the 

quantity of the speech addressed to the child and the nature of child-directed speech). 

Moreover, several causal pathways may operate simultaneously, and their respective 

contributions may differ at different stages in development. 

In constructing a computational model, we must commit to a particular 

implementation of environmental variation. We considered two options. First, the 

environment may influence the computational properties of the learning system, perhaps 

via SES-related influences such as nutrition and stress. We did not pursue this option in 

the first instance (though see Thomas, Forrester & Ronald, in prep.). Second, SES may 

operate by influencing the nature of the information available in the environment. This 

might occur in three ways. It might alter the quality of the information available in the 
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environment. It might alter the quantity of the information in the environment. Or it 

might influence the motivation of the child to engage with the information available, 

perhaps through differences in reward and encouragement (effectively, the subjective 

information that the child actually exploits). We turned to the literature to evaluate which 

of these options was the case. 

Although few in number, large-scale longitudinal observation studies of the 

development of spoken language in young children have addressed the role of SES. For 

example, in a landmark study, Hart and Risley (1995) followed children in 13 

professional/managerial families, 23 working class families, and 6 families living on 

benefits, between the ages of 8 months and 3 years, recording all language produced by 

the child or available around the child for 1 hour per month. The most salient difference 

at different SES levels was not the quality of the language spoken to the child but the 

quantity. Professional families addressed 2100 words to their child in the average hour 

compared to 600 in the welfare families. Moreover, higher SES was associated with a 

greater incidence of affirmative feedback and lower incidence of prohibitions. Quantity 

and motivation therefore appeared to be most salient differences. This fits with the view 

that language acquisition is a ‘data-crunching process and conversation is a delivery 

mechanism whose value lies . . . in the nature of the data that it delivers’ (Hoff & Naigles, 

2002, p.422). Notably, Huttenlocher, Vasilyeva, Cymerman and Levine (2002) found that 

SES did not predict the frequency of complex speech produced by children once parental 

input and teacher input were controlled for (see Ginsborg, 2006). 

The study of children raised by their biological parents permits the possibility that 

correlations between parental and child language are mediated genetically. 
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Environmental variation could therefore play a weaker role than the correlations imply. 

However, research has explored variation in the school environment, specifically 

correlating gains in language development with the quality of teacher language over the 

school year. Data have tended to support the view the environmental variation in 

language indeed plays a causal role in development (Huttenlocher et al., 2002; Klibanoff 

et al., 2006; Vasilyeva et al., 2006). For example, the proportion of complex sentences 

produced by the teacher predicted 18% of the variance in the improvement in 

performance on a syntax comprehension task over the school year (Huttenlocher et al., 

2002). 

In sum, our review of the literature led us to the view that, as an initial assumption, 

it was reasonable to implement the effects of SES on development in terms of variations 

in the information content of the environment. 

 

Target empirical domain: Acquisition of the English past tense 

The principal aim of the current study is to explore the viability of linking three levels of 

description (genome, neurocomputational, overt behaviour) within an implemented 

developmental model. This is best achieved with reference to a concrete set of empirical 

data, and in the context of a body of research on what a plausible ‘average’ model of 

development might look like. Children’s acquisition of the English past tense fulfils both 

of these criteria. 

Children’s acquisition of the English past tense, along with other aspects of 

inflectional morphology, has been the focus of a great deal of empirical research. This is 

because of the dual nature of the domain, with its split between regular and irregular 



26 

 

inflection. Verbs may form their past tenses following a rule, or they may be exceptions 

to that rule. Theorists have debated whether separate cognitive mechanisms may be 

required to acquire the two verb types, and whether this indeed constitutes an innate 

component of the language system (e.g., Marcus et al., 1992; Pinker, 1999; Rumelhart & 

McClelland, 1986). For our purposes, past tense is useful because research into the 

domain includes a significant body of work using computational models of development, 

particularly employing connectionist networks, starting with the pioneering work of 

Rumelhart and McClelland published in 1986 (see Thomas & McClelland, 2008, for 

recent review). Past tense abilities, and underlying cognitive processes, have been 

assessed in multiple human populations using multiple methods. These included the 

trajectory of acquisition in typically developing children (e.g., Marcus et al., 1992), 

differences in development due to gender (e.g., Hartshorne & Ullman, 2006), 

performance in children with behaviourally developmental disorders such as SLI and 

dyslexia (e.g., Joanisse et al., 2000; Rice, Wexler & Hershberger, 1998; van der Lely & 

Ullman, 2001), and in children with genetic disorders such as Williams syndrome and 

Down syndrome (e.g., Ring & Clahsen, 2005; Thomas et al., 2001). Methods have 

extended to the use of genetically sensitive twin study designs (e.g., Bishop, 2005) 

Research on past tense has also addressed variation in the quality of the environment to 

which children are exposed during acquisition (e.g., Hart & Risley, 1995). Finally, 

connectionist computational models have been applied to simulating the types of 

variability observed in developmental and acquired disorders (e.g., Joanisse & 

Seidenberg, 1999; Joanisse, 2000; Hoeffner & McClelland, 1993; Marchman, 1993; 

Thomas, 2008; Thomas & Karmiloff-Smith, 2003b; Westermann, 1998). 
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The English past tense possesses an interesting structure as a problem domain 

because it is characterised by a predominant rule (e.g., talk-talked, drop-dropped, etc.) 

that extends to novel stems (e.g., wug-wugged), but also contains irregular verbs of 

different types (go-went, hit-hit, sing-sang). Because of this structure, the past tense 

affords an examination of the effects of problem type on population variability in 

development, and in particular the effects of consistency, type frequency, and token 

frequency within the learning environment. These features of problem domains are 

argued to influence many aspects of cognitive development (e.g., Bates & MacWhinney, 

1987, for wider arguments in language development). In particular, the regular past tense 

has the highest type frequency and forms a consistent set of mappings (reproduce the 

stem, add an inflection). The different classes of exception verb fall on a continuum of 

inconsistency, with no-change past tenses (hit-hit) least inconsistent (reproduce the stem 

but don’t add an inflection), vowel change past tenses (hide-hid) at an intermediate level 

(partly reproduce the stem, no inflection), and arbitrary past tenses (go-went) most 

inconsistent (no relation between stem and past tense). Arbitrary past tenses have the 

lowest type frequency but require the highest token frequency in order to be acquired. 

A limited amount of research has considered how environmental factors influence 

the acquisition of the English past tense. Rice, Wexler and Hershberger (1998) examined 

the associated between SES (as measured by maternal education) and the acquisition of 

regular past tense formation in 21 children with SLI and 20 typically developing children 

followed longitudinally over a 3-year period. In contrast to vocabulary and phonological 

awareness (Farah et al., 2006), Rice and colleagues reported that maternal education did 

not reliably predict variation in past tense development, explaining less than 1% of the 



28 

 

variance. Hart and Risley (1995) nevertheless reported large differences in the number of 

past tense verb forms addressed to the children, with professional families using 3 times 

as many as those on welfare. They noted there was little difference across SES in the 

richness of the past tense verbs used, where richness was defined as the number of past 

tenses per utterance. There is a question, then, of whether for the case of past tense, 

variations in the environment are associated with differences in rates of acquisition. 

Together, the past tense problem presents a wealth of data to consider variability 

from at least three sources: differences in internal computational constraints, be they 

developmental or acquired; differences in behaviour due to the structure of the problem 

domain itself (e.g., the different influences of type frequency, token frequency, and 

similarity that distinguish regular verbs from irregular verbs); and differences in the 

quality of the language environment to which the child is exposed. Our target empirical 

data for the following simulations comprised performance on a past tense elicitation task 

of a population of 442 6-year-old children, for whom SES information was available 

(Bishop, 2005; Petrill et al., 2004). These data were originally collected as part of a twin 

study (Bishop, 2005).
2
  

 

Research questions 

In moving beyond using a computer model to simulate the average child, we initially 

simulated one thousand individual trajectories of development in past tense formation in 

each of four populations that differed in the relative influence of genetic and 

environmental factors. We then ask three broad questions of these simulated data. (1) 

                                                 
2
 We are very grateful to Dorothy Bishop for making these data available to us. 
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What is the nature of the population distributions of performance and how do 

distributions change across development? (2) Given that we have stipulated all sources of 

variability at a mechanistic level, how good are our various measures (genotypic, 

neurocomputational, environmental) in predicting population-level variability behaviour, 

either in the normal range or at the extremes? (3) In addition to these main effects, what 

interactions emerge between specified factors, for example, in the form of gene-

environment interactions? Where possible, simulation results were compared to the 

empirical data. Table 1 includes a set of more specific research questions. (The reader is 

invited to predict the answers to each of these questions in advance, because one role of 

modelling, if successful, is to make the answers to some questions appear obvious in 

retrospect.) 

=================== 

Insert Table 1 about here 

=================== 
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Method 

Empirical methods 

The English past tense data are taken from a study by Bishop (2005) on the performance 

of a sample of 442 6-year-old children, predominantly pairs of twins, on a sub-test of a 

language battery designed to assess risk of heritable language impairment (Rice & 

Wexler, 2001). The data represent accuracy levels in producing the inflected forms for 

regular and irregular English past tense verbs. In the Past Tense probe subtest, children 

are shown a picture of an action being carried out, while the experimenter describes the 

picture using a sentence containing the target verb in the present tense. The child is then 

shown a second picture with the action completed. The child is encouraged to describe 

the second picture. The task is designed to elicit the past tense in a full sentence with an 

overt subject. The test contains 11 regular verbs (brush, clean, climb, colour, jump, kick, 

paint, pick, plant, play, and wash) and 8 irregular verbs (catch, dig, fall, make, ride, 

swim, throw, and write). The test/retest reliability for the Past Tense probe subtest is r = 

.82 (Rice & Wexler, 2001).  

 Participant details: the population contained 442 children with mean age 6 years 

and 6 months (range: 6 years and 0 months to 7 years and 1 month). There were 250 boys 

and 192 girls. The children were originally recruited as twin pairs and in this sample, 224 

were MZ twin pairs and 218 were DZ twin pairs. Based on a parental questionnaire 

carried out when the children were aged four, 215 of the children had been flagged as at 

risk for language impairment. The questionnaire combined responses indicating whether 

the children were talking in full sentences, whether they had low vocabulary, and whether 

the parents were worried that the child's language was developing slowly (see Bishop, 
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2005, for details); 10.6% of the original full sample of 5426 children had been so flagged. 

Children were excluded from the study if English was not the only language spoken at 

home and, for reasons of planned future molecular genetic studies, non-white families 

were also excluded to reduce the risk of ethnic stratification (Bishop, 2005). At six years 

of age, 304 of the 442 children were viewed as normal (i.e., had not been diagnosed with 

any disorder), implying that markers of risk had disappeared in about a third of the 

original at-risk children. Of the children subsequently diagnosed with disorders, 96 

(21.7%) had been diagnosed with SLI, 7 (1.6%) had been diagnosed with autism, and 35 

(7.9%) had been diagnosed with general delay. 

A measure of socioeconomic status (SES) was also available for the families of 

each of these children (Petrill et al., 2004). Demographic information was obtained via 

questionnaire from the first contact with the family. Five pieces of information were 

collected: the father’s highest educational level and occupational status, the mother’s 

highest educational level and occupational status, and the age of mother at birth of the 

eldest child. From these data, an index of SES was created based on a factor analysis. 

Petrill et al. (2004, p.448) report the following method. Using principal components 

analysis, a single-factor solution yielded an eigenvalue of 2.51, accounting for 50% of the 

variance. Based on these results, a single composite was created. The five variables were 

standardized and then summed using unit weights. This method yielded a scale ranging 

from -1.57 (low SES) to +1.54 (high SES), with a mean of -0.16 and a standard deviation 

of 0.72. Of the 442 children, SES data were missing for 25 (11%). For these children, the 

missing data were replaced by the population mean.  
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Simulation methods 

The base computational model of development 

For our base model in the following simulations, we adopted a model proposed by 

Plunkett and Marchman (1991, 1993, 1996). These authors were part of a school of 

thought that argued that both the productive regular verbs and the exception verbs can be 

acquired by an otherwise undifferentiated connectionist network that learns to associate a 

vector-based representation of the phonological form of each verb stem to a similar 

representation of its past tense form. Our choice of base model is in part a practical one, 

because it is a relatively simple model and therefore tractable for large-scale population 

simulations.
3
 More complex models of inflectional morphology have since been 

proposed, including models that embed past tense in a more general system responsible 

for inflecting all content words and involving the integration of lexical-semantic, 

phonological, and grammatical information (e.g., Karminis & Thomas, 2009). Some 

researchers maintain that symbolic approaches are more appropriate for explaining past 

tense acquisition, at least for regular verbs, where regularity is viewed as reflecting the 

operation of a rule-based mechanism (Pinker, 1999). However, in the main, these more 

linguistically oriented theories have not been realised in computational implementations 

of the developmental process. The Plunkett and Marchman model captures a number of 

                                                 
3
 In this paper, we report on results of 9 populations of 1000 individual networks. The performance of each 

network was measured 1000 times across development, on a training set of 500 items and a test set of a 

further 500 items. Simulation of a single network took a little over two hours on a standard PC running 

Linux, translating to around 95 days of processing time per population. Substantial gains in efficiency are 

likely to be available by the optimisation of code and use of parallel processing on machines with multiple 

chips. 
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basic empirical effects in child past tense acquisition, including differential performance 

depending on the type and token frequency of verbs, as well as error patterns across 

development (Plunkett & Marchman, 1991, 1993, 1996). 

 

Simulation details 

Training set 

For our training set, we used the “phone” vocabulary from Plunkett and Marchman 

(1991, p. 70). This comprised an artificial language set constructed to reflect the most 

important structural features of English past tense formation. There were 508 

monosyllabic verbs, constructed using consonant-vowel templates and the phoneme set 

of English. Phonemes were represented over 19 binary articulatory features, a distributed 

encoding based on standard linguistic categorisations (Fromkin & Rodman, 1988). 

Separate banks of units were used to represent the initial, middle, and final phonemes of 

each monosyllable. The output layer incorporated an additional 5 features to represent the 

affix for regular verbs. Networks thus had 3x19=57 input units and 3x19+5=62 output 

units. There were four types of verbs in the training set: (1) regular verbs that formed 

their past tense by adding one of the three allomorphs of the +ed rule, conditioned by the 

final phoneme of the verb stem (e.g., tame-tamed, wrap-wrapped, chat-chatted); (2) 

exception verbs whose past tense form was identical to the verb stem (e.g., hit-hit); (3) 

exception verbs that formed their past tenses by changing an internal vowel (e.g., hide-

hid); (4) exception verbs whose past tense form bore no relation to its verb stem (e.g., go-

went). The token frequency of this last type of exception verb had to be higher for the 

network to learn them successfully (see Plunkett & Marchman 1991), as is the case in 
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real languages. As a result, this verb type experienced three times as much training as the 

other verb types. The type frequencies were as follows. There were 410 regular verbs, 

and 20, 68, and 2, respectively, of each exception verb type. We added 8 additional 

arbitrary past tenses to allow for finer graduations of performance; although this slightly 

deviates from structure of English, it permits better assessment of role of high token 

frequency for items that must be rote learned. Following Plunkett and Marchman (1991), 

the verbs were given a token frequency structure. For computational convenience, token 

frequency was implemented by mediating the weight change generated by the difference 

between the actual output and the target output (Plaut et al., 1996). The weight change of 

high frequency arbitrary verbs was multiplied by 0.9 during a given training presentation 

and that of low frequency arbitrary verbs by 0.6. The weight change of all other high 

frequency verbs (regulars, no change, and vowel change) was multiplied by 0.3 and of all 

other low frequency verbs by 0.1. Finally, a separate set of novel verbs was constructed 

to evaluate the generalisation performance of the network. These verbs could differ 

depending on their similarity to items in the training set. For simplicity, 410 novel verbs 

were used, each of which shared two phonemes with one of the regular verbs in the 

training set. Generalisation was evaluated depending on the proportion of these novel 

verbs that were assigned the correct allomorph of the regular past tense rule. 

 

Model architecture and parameters  

The original connectionist model employed a three-layer artificial neural network, 

comprising an input layer, a layer of internal or ‘hidden’ units, and an output layer. It was 

trained using the backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986), a 
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type of supervised learning. The free parameters in the model were the number of hidden 

units, the learning rate, and the momentum (see below). An expanded set of 14 

parameters was employed in the current simulations, in many cases for additional 

analogues to known neurocomputational properties. However, backpropagation itself is 

not viewed as biologically plausible. We use it here in place of a more biologically 

plausible error correction algorithm for simplicity of implementation (see Thomas & 

McClelland, 2008, for discussion). The parameters and model architecture are depicted 

schematically in Figure 1. The parameters were as follows: 

Building the network: 

- Architecture: In addition to the 3-layer network, a 2-layer network without a layer 

of hidden units, and a fully connected network were used. A 2-layer network has 

less computational power. A fully connected network contains both direct 

connections from input to output and a hidden layer, and produces a 

computationally more powerful system. 

- Hidden units: For networks with a hidden layer, the number of hidden units could 

vary. 

- Sparseness: Of the potential connections between processing units in a given 

architecture, only a certain proportion were created. The sparseness parameter set 

the probability that any given connection would be created. 

- Weight variance: Connection weights were assigned an initial random value 

within a range depending on this parameter. E.g., if set to 0.5, weights would be 

randomised between +/- 0.5. 
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Processing dynamics: 

- Processing noise: The net activation a receiving unit receives from a given 

sending unit is a product of the sending unit’s activation and the connection 

strength between them. Transmission noise was added to this net activation. 

Gaussian noise was used and the parameter specified the standard deviation of the 

noise distribution around zero. 

- Unit threshold function: A receiving unit sums the net activation from all sending 

units and uses an activation function to determine its consequent output. We used 

a common activation function, the sigmoid or logistic function, equivalent to a 

smoothed threshold. This function has a parameter, the temperature, which makes 

the smoothed threshold either steeper or shallower. A shallow function denies a 

unit the opportunity to make large output changes in response to small changes in 

net input, whereas a steep function approximates a threshold thereby producing a 

unit with binary response characteristics. Either too shallow or too steep a 

function retards learning (see, e.g., Thomas, 2005). 

Network maintenance: 

- Connection weight decay: each connection’s magnitude was reduced by a small 

proportion on each presentation of a training pattern, according to the weight 

decay parameter. 

- We did not simulate the increase in synaptic density observed in human cortex 

during infancy and early childhood; we did, however, implemented the pruning of 

spare resources from mid-childhood (Huttenlocher, 2002). The pruning process 
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eliminated small connection weights and involved three parameters: onset, 

threshold, and probability 

- Connection pruning – onset: Connections that were not being used were 

probabilistically pruned away after a certain point in training. The onset parameter 

determined the point in training when pruning began (see Thomas & Johnson, 

2006). 

- Connection pruning – threshold: Connections stood a chance of being pruned 

after onset only if their magnitude fell below a threshold determined by this 

parameter. The rationale is that small weights are assumed not to transmit strong 

activations and therefore not to be playing a key role in computations. They may 

therefore be removed to save on resources. 

- Connection pruning – probability: If the magnitude of a connection fell below 

threshold after pruning has begun, it was eliminated probabilistically based on this 

parameter. High probability leads to faster loss of unused connections. Low 

probability leads to slower loss. 

Network adaptation: 

- Learning algorithm error measure: The backpropagation algorithm was used with 

two different metrics to determine the error signal marking the disparity between 

the network’s current output and its intended target. These were Euclidean 

distance and cross-entropy (Hinton, 1989). Cross-entropy retains greater plasticity 

in the network even when it has committed to a solution that proves to be non-

optimal. 
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- Learning rate: This parameter determined how much the connection weights were 

altered in response to a certain disparity between output and target during 

supervised learning. A large learning rate produces a system that learns more 

quickly but that also may be unstable, flipping between high performance on 

different parts of the problem domain. 

- Momentum: This parameter allowed some proportion of the weight change on the 

previous learning trial to be carried over. It serves a smoothing function to prevent 

learning from getting stuck in local, sub-optimal solutions. 

Network response: 

- Nearest neighbour threshold: Network output comprised a vector of continuous 

activation values between 0 and 1, while legal responses of the network were 

binary vectors. An algorithm determined which legal phoneme was closest to the 

activation patterns at onset, nucleus, and coda. However, the phoneme was only 

recognised as a response if the activation was sufficiently close to the legal 

phoneme (using a root mean square or RMS measure). This was determined by 

the nearest neighbour threshold. (The legal phonemes could of course still be the 

incorrect ones for the target verb). The nearest neighbour computation may be 

viewed as equivalent to the settling of an unimplemented recurrent attractor 

network into a particular response state (see Plaut et al., 1996, for a model of 

reading development in which this attractor network was implemented). The 

nearest neighbour threshold parameter then indexes the efficiency of this attractor 

network to generate a response within some notional deadline. A high threshold 

allows an approximate output to be recognised as correct (i.e., larger error is 
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tolerated); a low threshold requires a more exact initial output. The use of a 

nearest neighbour algorithm allowed the network to generate accuracy levels. The 

disparity between the actual output activations and the target output (in terms of 

RMS error) has been used in the past as a proxy for reaction time, on the grounds 

that output activation states closer to the final response would enable faster 

settling of the notional attractor network (see Bullinaria, 1995). 

 

=================== 

Insert Figure 1 about here 

=================== 

Calibrating parametric variation 

Two of these parameters were categorical: the architecture and learning algorithm metric. 

The others were continuously valued. In order to produce variability in the population 

according to these remaining parameters, we calibrated them as follows. An initial 

‘normal’ set of parameters was defined based on previous research. Each of the 

continuously valued parameters was then varied in turn, holding the all other parameters 

at their initial values. For each parameter, the range was derived that produced failure of 

learning up to highly successful learning. In some cases, parameters were monotonic 

(e.g., hidden units, where more was better); in other cases, there was an optimal 

intermediate value (e.g., activation function). Our aim was to determine an average or 

adequate value for each parameter, which we defined heuristically as ‘just enough to 

succeed and then a little bit more’. We then derived values that would cause increasingly 

poorer or increasingly better performance around this value. We attempted to make 
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poorer and better performance roughly symmetrical around average performance for each 

parameter. This caused some parameter ranges to be skewed. For example, 50 hidden 

units was determined as the average value in a 3-layer network. Values of 40 or 30 would 

cause poorer performance. However, to achieve equivalent differences above average 

level, 100 or 200 hidden units might be necessary. We chose to emphasise behavioural 

symmetry around the average parameter value rather than parametric symmetry, on the 

grounds that the symmetrical bell curve is a common pattern observed in human abilities. 

The ranges for each parameter are included in Figure 2. 

We did not vary the encoding of the problem domain. This decision was made for 

practical reasons. Our previous work suggests that, within certain limits, varying the 

problem encoding has similar effects on the developmental trajectory to altering 

computational parameters (Thomas & Karmiloff-Smith, 2003b). However, recoding the 

problem domain can in principle have extreme effects on learnability, if key distinctions 

in the input or output are lost in the recoding. Some models of developmental language 

impairment and dyslexia propose that differences in encoding of phonology cause 

subsequent behavioural deficits in grammar and reading acquisition (e.g., Harm & 

Seidenberg, 1999; Hoeffner & McClelland, 1993; Joanisse, 2004). 

 Although only main effects of each parameter were considered as sources of 

variability during calibration, we fully expected interactions between these 

neurocomputational parameters in subsequent learning. For example, large numbers of 

hidden units can partially compensate for a shallow sigmoid function in those processing 

units. Having a more sparse initial connectivity is likely to reduce the amount of weights 

eliminated via pruning because their magnitudes will be larger. High weight decay can be 
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countered by a higher learning rate. An aberrant, over-keen pruning process (e.g., with a 

low threshold and high probability) can be alleviated if its onset occurs very late in 

training when weights have become large, but made worse if the onset is early. And so 

forth. Large numbers of parameter combinations were possible within our scheme: given 

the number of levels specified for each parameter, around two thousand billion unique 

parameter combinations were available. 

 

Specifying a genome for the model and the mechanism for breeding 

The use of genetic algorithms entails creation of a genome to encode the neural network’s 

parameter values, such that all possible genomes correspond to legal parameter sets. In 

creating the genome, we made the following assumptions. There were two copies of each 

gene, with genes residing on pairs of chromosomes. For simplicity, each gene had only 

two variants or alleles, one which was more efficient for the gene’s function, one which 

was less efficient. The influence of genes was purely additive: we did not include 

dominant or recessive effects, and genes had the same effect in combination as in 

isolation. This simplification is driven by the finding within behavioural genetics that the 

effect of genes variants is predominantly additive on phenotypic outcomes (Plomin et al., 

2008). All neurocomputational parameters were polygenic. That is, their value was 

determined by the additive action of a collection of genes. However, for simplicity, we 

assumed that the action of genes was not pleiotropic; that is, with respect to 

neurocomputational parameters, we assumed that no gene affected the value of more than 
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one parameter at once.
4
 The assumption of polygenicity was motivated by the fact we are 

using computational models to capture cognitive-level phenomena, and is a point worth 

emphasising. We expect many low-level neural variations to influence 

neurocomputational functions at the level of cognitive processes in neural circuits. We 

therefore view it as unlikely that a single gene would modulate a neurocomputational 

parameter responsible for normal cognitive variation.
5
  

Next, in this first formulation of the framework, we assumed that the combination 

of alleles for each polygenic neurocomputational parameter had a deterministic relation 

to the value of that parameter in the instantiated network (see Discussion). We assumed 

                                                 
4
 Note that the current theoretical view is that the relationship between genes and cognitive processes is 

most likely pleiotropic (see, e.g., Kovas & Plomin, 2006). 

5
 The following list gives some examples of the low-level variations one might expect (taken from 

Sapolsky, 2005). At the level of individual neurons, conservatively, one might expect variation between 

individuals in the number of dendritic spines, the number of axon terminals, the level of resting potentials, 

the size of the dendritic wavelet caused by pre-synaptic activity, the excitability of the axon hillock, and the 

speed of propagation of the axon potential. At the level of two neurons communicating, one might expect 

individual variations in the amounts of neurotransmitter released, the numbers of receptors, the efficiency 

of receptors in binding neurotransmitters, the efficiency of producing neurotransmitters, the efficiency of 

producing receptors, and the proportions of different types of receptors. At the level of long-term 

potentiation, one might expect variation between individuals in how much glutamate neurotransmitter is 

released, the number of glutamate receptors, the ratio of the two types of glutamate receptor, the level of 

calcium ion release, and the level of phosphoration of the receptors. It is likely that a range of gene variants 

contribute to each of these neural parameters. Our higher-level models encode much coarser 

neurocomputational parameters such as “level of processing noise” or “learning rate”, which would 

correspond to the combined effect of many of the more detailed neural properties.  
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(and did not instantiate) a much larger part of the genome that was species universal and 

coded for the basics of, for example, creating the processing units, the connections, the 

activation dynamics, the sensorium, the input-output connectivity, and the mechanics of 

experience-dependent systems. 

Turning to mechanisms of breeding, we assumed that there was sexual 

reproduction, so that each gene had a 50% chance of being passed on to a gamete (egg or 

sperm), which combined with a gamete of another individual to create a new offspring. 

Although reproduction was sexual in this sense, we did not consider sex effects in these 

simulations (i.e., there were no genetic differences between males and females). During 

breeding, we assumed that there was uniform crossover and no linkage disequilibrium, 

the latter falling beyond the scope of the project. That is, the presence or absence of a 

given allele in a gamete was independent of the presence or absence of any others. This 

assumption is violated in humans because genes on the same chromosome have a greater 

than 50% chance of being transferred into a gamete together, and the closer they lie on a 

chromosome, the higher the chance. 

When Genetic Algorithms are used for machine learning optimisation, the most 

successful individuals of the previous generation are often retained in the next generation. 

In our case, after breeding, the previous generation died. Breeding allowed individuals to 

be created with different degrees of relatedness, for instance as twins or siblings. MZ 

twins shared the same genome. Dizygotic twins and siblings were created by generating 

two offspring from the same set of parents, but from a different sperm and egg. Dizygotic 

twins and siblings shared 50% of their alleles on average. Also in contrast to the more 

common use of Genetic Algorithms, we did not include genetic mutation during 
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reproduction. In humans, the mutation rate is extremely low (e.g., Strachan & Read, 

2003, cite a rate of between 1 and 4 mutations per 100,000 genes per generation). 

Mutations serve to reduce the average genetic similarity of siblings below 50%, and our 

preference was to maintain retain the 50% value, since it is the one deployed in standard 

behavioural genetic models. Several other aspects fell beyond the scope of this project. 

We did not model the effects of epistasis (interactions between genes) or epigenetic 

effects on gene expression; we did not model assortative mating – in our simulations, 

mates were selected at random from the population; and we did not model gene-

environment correlations (Plomin et al., 2008) – variation in the quality of the 

environment had no correlation with the quality of an individual’s genotype. 

The total of number of genes used to encode the value of the 14 computational 

parameters was 126 (or two copies of 63). Figure 2 includes the range of values for each 

parameter and their frequency of occurrence in the population. The number of genes 

encoding each parameter is given in the legend. The translation of a genome into a 

parameter set was implemented by assigning efficient alleles the value 1 and inefficient 

alleles the value 0, and then deriving the total for all the genes influencing the parameter 

(thereby ensuring additivity). The parameter value was calculated from the total using a 

lookup table, created by hand for each parameter to reflect the range of values identified 

during the calibration stage. Table 2 shows an example table for the temperature 

parameter linking the number of more efficient alleles in the gene set to the parameter 

value. 

============================= 

Insert Figure 2 and Table 2 about here 
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============================= 

A more constricted range of genetic variation was also considered for each 

computational parameter, shown in Figure 2 in grey. This required fewer genes to 

encode, leading to a genome with only 60 genes (2 copies of 30). Because the parameter 

of learning algorithm only had two values in the original formulation, we restricted the 

range of variation by fixing the parameter to use cross-entropy, thus removing variation 

in this gene. Two other conditions of genetic variation were considered when we came to 

assess the power of association analyses to predict behavioural variability from the values 

of the genes. In the first populations, efficient and inefficient alleles had an equal 

frequency. In these latter populations, the frequency of efficient and inefficient alleles 

was unbalanced. In one population, alleles were efficient with a probability of 70% and 

inefficient with a probability of 30%. In the second, alleles were efficient with a 

probability of 30% and inefficient with a probability of 70%. 

Finally, although the genome of each network represented a deterministic 

specification of parameter values or ranges, the genome should not be viewed in terms of 

the old-fashioned ‘blueprint’ view of the relation of genotype to neural substrate. The 

parameters corresponded not only to how the network was built (e.g., number of layers, 

internal units, and connections) but also how it ran (processing noise, threshold 

functions), how it was maintained (weight decay and pruning), and how it adapted 

(learning rate, momentum). Some of these parameters could be seen to index genetic 

effects on brain development operating early on and not thereafter (e.g., neurogenesis, 

neural migration), while others could be seen to index on-going gene expression in the 



46 

 

maintenance of function (neural dynamics) and adaptive processes (plasticity, pruning, 

decay). 

 

The stability of genetic variation across generations 

The empirical starting point for our simulations was the presence of behavioural 

variability in the human population. We have proposed a framework in which sexual 

reproduction permits the transmission of the genetic contribution to this variability 

between generations, under the assumption that direct selection does not operate in 

respect of our target behaviour, past tense formation. It was important to demonstrate that 

the outlined mechanisms for genetically encoding parameter information and for sexual 

reproduction together served to maintain the level of variability across subsequent 

generations. Should these mechanisms actually lead to the elimination of genetic 

variation over a small number of generations, then our framework would have to be 

viewed as inadequate for explaining the origins of population variation, which persists 

across human generations. 

The stability of allele frequencies across generations is in fact a well-known 

concept within population genetics (see Appendix A for further explanation and a 

demonstration using the breeding methods assumed in the model). It is known as the 

Hardy-Weinberg principle (see, e.g., Halliburton, 2004). The frequency of alleles, and 

therefore the genetically encoded variability, will remain constant at the population level 

so long as the following five conditions hold: there is no mutation, there is no 

immigration into or emigration out of the population, the population is large, individuals 

mate at random, and reproductive success is random. It is understood within population 
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genetics that the Hardy-Weinberg principle rarely holds in natural populations. However, 

it provides a foundation to consider how gene frequencies can change across generations 

in a given population (that is, the process of evolution) by observing which of the 

assumptions is violated. The fact that we stipulate that the five conditions hold in the 

current modelling framework marks another level of simplification in our investigation of 

cognitive variability. 

 

Modelling variation in the environment 

In machine learning terms, we operationalised environmental quality as a time-varying 

function with respect to the training set. We assumed that there was a ‘perfect training 

set’, in this case comprising all of the past tense verbs available in the language, along 

with their accepted past tense forms. We defined the function for variations in the 

training set as follows: 

 

(Eq.1) 

 

The training set for Person n at time t is a function f of the perfect training set and three 

parameters: X = proportion of valid training trials, Y = proportion of invalid training 

trials, and Z = proportion of noise trials. Invalid trials have the same input as a training 

pattern but a different output. Noise trials have different inputs and outputs or include 

partial information consistent with training patterns. In principle, the function could be 

influenced by Person n’s behaviour or experiences at t-1. This accommodates the 
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possibility of, for instance, reduced reward leading to reduced attention and therefore a 

subsequently smaller proportion of valid training trials. 

 We made the following assumptions in our implementation. First, once 

instantiated, we gave each network a pre-conditioning phase to produce divergent initial 

connection weights. This comprised a version of the training set with X set to 0, Y set to 

0, and Z set to 1. The training set was made up of 30 random binary vectors at input and 

output, uniquely created for each individual, and trained for 50 epochs. This phase was 

intended to simulate the effect of early subjective experience prior to using the relevant 

learning system for, in this case, modulating phonological forms via tense information. 

Next, we created a training set for the past tense information available in each family 

environment. To do so, we generated a family quotient for each simulated child. This was 

a number between 0 and 1. This value was used as a probability whether each verb in the 

perfect training set would be included in the family’s vocabulary. In terms of Equation 1, 

X=family quotient, Y=0, Z=0. The family training set was then fixed throughout 

development. However, performance was always assessed against the perfect training set 

(analogous to a standardised test of past tense formation applied to all children). The 

family quotient manipulation corresponds to a reduction in type frequency for both 

regular and irregular verbs, while the token frequency of each verb (3 times greater 

presentation for high than low frequency) was retained. Our final decision was how to 

sample the family quotient values. Inspection of SES distribution in Hart et al.’s (2007) 

maternal education data indicated a normal distribution with a large standard deviation 

but a positive skew. The distribution from Bishop (2005) for the composite SES measure 

had a similar normal distribution with large standard deviation but with a negative skew. 
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We selected a uniform distribution, which slightly exaggerated the incidence of high and 

low SES. We selected two ranges of environmental variation, a narrow range, sampling 

family quotient values between 0.6 and 1, and a wide range, sampling quotient values 

between 0 and 1. 

 

Summary of implemented sources of variation 

Table 3 summarises the causal factors producing variation in population development. 

These are split into the categories of genetic factors, environmental factors that are 

common to individuals raised in the same family, and environmental factors that are 

unique to individuals. In Table 3, we follow the standard behavioural genetic definition in 

treating instances of noise or stochastic variation as unique environmental causes. 

Measurement error also falls within this category. We consider the simulation of 

measurement error in the Results section. We return to the attribution of causes to the 

three categories in the Discussion section, where, for example, we discuss whether in 

reality neurocomputational parameters might themselves be partly environmentally 

determined. 

=================== 

Insert Table 3 here 

=================== 

 

Simulation design 

Each population was created as follows. An initial ‘breeding’ population of 1000 

individuals was produced with random binary genomes. From this, two individuals were 
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picked at random to mate and produce two offspring. This was repeated without 

replacement to produce the next generation of 1000 individuals, whose development was 

then assessed. Populations constituted pairs of MZ or DZ twins. Twins were used for two 

reasons. First, our target empirical data on past tense formation comprised MZ and DZ 

twin pairs. Second, the simulated twin pair data were amenable to later investigation of 

the heritability of acquired behaviour. We consider analyses of heritability in a separate 

work (Thomas, Forrester & Ronald, in preparation). For the rest of this paper, we will 

ignore the twin status of the individuals and include both twins in the population. 

However, every empirical result was also analysed using only the first of each twin pair 

in a reduced population of 500 individuals and, unless reported otherwise, the same 

qualitative pattern of results was found to hold. 

Given a population of 1000 genomes, individuals were then trained as follows. 

The individual was trained initially on a unique pre-conditioning training set to produce 

unique and divergent starting weights. A family quotient value was then generated and 

used to generate the family training set. For separate populations, this was sampled to 

produce either narrow or wide environmental variation. Following pre-conditioning, each 

network was trained for 1000 epochs on its family training set. At each epoch, 

performance was measured on the perfect training set. Performance was assessed on 

regular verbs, on exception verbs of three types (no change, vowel change, and arbitrary), 

and on generalisation of the past tense rule to novel forms. Performance was measured in 

two ways, either in terms of nearest-neighbour accuracy (% correct) or in the RMS error 

between the network output and the target output (i.e., how close the activation values 

were to what they should have been for that verb). 
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=================== 

Insert Table 4 here 

=================== 

Four populations were run in a 2x2 design, shown in Table 4. Genetic variation 

was either wide (full range of neurocomputational parameter values) or narrow (restricted 

range of values), and environmental variation was also either wide (full range of variation 

in family quotient) or narrow (restricted range of family quotient). This permitted 

evaluation of the respective influence of genetic and environmental factors for different 

levels of variation in each. The results for each population were compiled in a database 

that permitted recovery of the population distribution of performance for any measure at 

any point in training. Since the full genomes, the full set of neurocomputational 

parameters, and the family quotient values were available for all individuals, it was then 

possible to assess the extent to which these predictors explained population variability for 

any point in training. 
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Results 

Mean performance and population variability on the past tense task 

Empirical data 

Bishop (2005) reported the performance of 442 6-year-old children on Rice and Wexler’s 

(2001) Past Tense probe sub-test. While Bishop combined responses into a single score, 

here we separate performance into the accuracy of elicited regular past tenses (n=11 

items) and irregular past tenses (n= 8 items). The irregular verbs in the sub-test were 

mainly vowel-change past tenses. Figure 3a shows the population mean and standard 

deviation on the two verb types. Regular past tenses were produced more accurately than 

irregulars (t(441)=43.22, p<.001), and with a smaller standard deviation due to a ceiling 

effect. Figure 4a and b depict the population distributions for the two verb types. Regular 

verbs exhibited a highly skewed distribution, with many children getting all 11 past 

tenses correct, while irregular verbs demonstrated a more normal distribution. There was 

some suggestion of bimodality in the irregular verb distribution, with a low performing 

sub-population centred on 35%, and a higher performing sub-population centred on 70%. 

The disparity between regular and irregular patterns demonstrates that the population 

distribution in performance depended on the measure used to assess knowledge of the 

past tense domain. In previous research, disparities between the quality of regular and 

irregular verb performance have been taken as evidence that separate cognitive 

mechanisms are responsible for acquiring the two verb types (see, Pinker, 1999). 

========================== 

Insert Figure 3 and 4 about here 

========================== 
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Fitting the model to 6-year-old performance 

Four simulated populations acquired the past tense. Our first requirement was to 

determine which point in development corresponded to that of 6-year-old children. We 

calibrated the models against performance on irregular verbs, determining for each 

population the epoch in training when the mean accuracy in vowel-change verbs was 

closest to the 37.4% exhibited by the children. Using the terminology that G stands for 

the range of genetic variation, E stands for the range of environmental variation, and one 

epoch corresponds to a single presentation of the family’s training set, the calibration 

points of training were as follows: G-wide-E-narrow = 63 epochs, G-wide-E-wide = 177 

epochs, G-narrow-E-narrow = 88 epochs, and G-narrow-E-wide = 190 epochs. The 

population means and standard deviations for the four populations are shown in Figure 

3b. Mean performance levels on regular verbs were slightly lower than for the empirical 

data, reflecting the fact that we are using a simplified model of past tense acquisition
6
, 

but all capture the qualitative difference in accuracy depending on verb type. 

A brief comment is necessary regarding measurement noise. It is clear that the 

behavioural data include measurement noise, since we know that the test-retest reliability 

of the Past Tense Probe sub-test is 0.82 (Rice & Wexler, 2001). However, the 

performance of the models reported above represents a pure measure of the specific 

cognitive mechanism hypothesised to drive this behaviour (though some individual 

                                                 
6
 There are several ways to increase the relative efficiency of regular past tense learning, via changes to the 

input encoding or to the architecture. See Thomas and Karmiloff-Smith (2003), Karaminis and Thomas 

(2009) for discussion of more complex inflectional models. 
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networks possessed intrinsic variability in their behaviour due to processing noise within 

this mechanism). For the purposes of our analyses, we did not add measurement noise to 

our simulated behaviour. This is because we wished to later test the best-case scenario of 

predicting variations in behaviour from genetic, neurocomputational, and environmental 

measures. In the presence of noise, the predictive power of these variables would 

obviously be lower. In separate work, where we assessed the heritability of behaviour, it 

became more important to include measurement noise, since this is a component of 

unique environment effects (Thomas, Forrester & Ronald, in prep.). 

In sum, the simulations gave a qualitative fit to the empirical data both for the 

mean performance level and population distributions for regular and irregular verbs. 

 

Simulating population variation and its developmental context 

For ease of exposition, we initially focus on the G-wide-E-narrow condition for 

considering population distributions for each past tense measure. We then consider how 

these distributions change across development, how they depend on measure sensitivity, 

and how they are influenced by the relative range of genetic and environmental variation. 

Figure 4c and 4d show the population distributions for regular and vowel-change 

irregular verbs when the population level of development was matched to 6-year-olds. 

These data qualitatively replicate the different distributions for each verb type: the high-

skewed regular performance, with an extended lower tail, and the more normally 

distributed irregular performance. Note these differential distributions are not, in this 

case, an indication that separate cognitive mechanisms are responsible for acquiring the 
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two verb types; rather, they reflect the differential difficulty of a single mechanism in 

acquiring mappings with varying levels of input-output consistency.
7
 

Interestingly, the distribution for irregular verbs was more uneven than that for 

regular verbs, suggesting that the distribution is made up of sub-populations defined by 

this measure. There are many simultaneously varying computational parameters that 

might have marked effects on learning, thereby generating apparent sub-populations, and 

we explore this in more detail later. Here, we picked two parameters that previous 

modelling work suggested might be important: did the network use a 3-layer network 

with hidden units (+) or a 2-layer architecture (–); and did the learning algorithm use 

cross entropy as an error signal for backpropagation (+) or Euclidean distance (–). These 

two contrasts defined four potential sub-populations with, respectively, 841, 57, 95, and 7 

simulated individuals. Figure 5a and b plot the contribution of these individuals to the 

regular and irregular verb distributions. The sub-populations contribute equally to the 

skewed regular verb distribution. However, for the irregular verbs, the –/+ group 

contributed a low-performing normal distribution centred near 15% and the +/– group 

contributed to the number of individuals close to floor performance. This pattern is 

consistent with the view that in the model at least, computational parameters marked out 

sub-populations within irregular verb performance but not regular verb performance. 

======================== 

Insert Figure 5 around here 

======================== 

                                                 
7
 Though see Thomas, Forrester & Ronald (in prep.). Performance on regular and irregular verbs in this 

population in fact showed different heritability as well. 
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One has to be cautious here, however. The regular verb distribution is skewed 

because regular verb performance is at ceiling in many individuals. If we traced 

performance back to an earlier developmental stage in the simulations, to a point where 

there was greater variability in regular verbs, perhaps we would find that the same sub-

populations were now marked out in regulars too? Figure 5c and d address this question, 

now examining distributions for 10 epochs of training compared to the 63 epochs used 

above. Comparison of Figures 5c and 6b indicates that the story is more complicated. The 

+/– sub-population contribute low performance to both regular and irregular verbs 

(compare dashed lines in Fig.5b and 5c). However, the –/+ population (2-layer using 

cross entropy) only contributed low performance to irregular verbs (Fig.5b, grey line). In 

Figure 5c, the –/+ distribution follows that of the larger +/+ population and is similar to 

the population as a whole. In short, the ability to detect sub-populations depends on the 

variability present in the measure (which itself depends on the stage of development). But 

the simulations demonstrate that it is quite possible for sub-populations to exist in one 

behavioural measure of a domain (irregulars in past tense) but not in another (regulars). 

The differential pattern is caused by computational properties whose variation is more 

relevant for some behaviours than for others. While the empirical data also exhibited 

evidence of sub-populations in irregular verb performance, we would be cautious in 

viewing this as a real effect until it was replicated in a further large sample. Nevertheless, 

we do know that the children in our population contained a subset of 31% with a 

behavioural diagnosis of SLI. 

One focus of the simulation work was to place the population distribution within 

its developmental context. Our empirical data only contained an age range of 13 months. 
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Age did not predict a reliable amount of the variance in regular verb performance within 

this range (R
2
=.005, F(1,440)=2.37, p=.124) and only a borderline significant level of 

variance in irregular verb performance (R
2
=.009, F(1,440)=3.91, p=.049). Our 

simulations therefore move beyond the empirical data at this point. Figure 6 includes five 

plots showing how population variation changed across development for each of our 

behavioural metrics: performance on regular verbs, generalisation of the past tense rule to 

novel verbs, and performance on the three types of irregular verb, no-change (hit-hit), 

vowel-change (hide-hid), and arbitrary (go-went). Distributions are plotted for nine points 

in learning, at epochs 1, 5, 10, 25, 50, 100, 250, 500, 750, and 1000 epochs. These data 

indicate that each verb type begins with a floor effect (the majority of the population 

failing to score), extends an upper tail through development, shows a roughly normal 

distribution midway through training and, depending on the verb type, finishes with a 

skewed distribution at ceiling. Verb type modulated this pattern by being relatively 

smoother for regular verbs and arbitrary irregulars, and by being relatively delayed and 

more uneven for no-change and vowel-change irregulars. One interpretation of this 

modulation is that high type frequency (regulars) and high token frequency (arbitrary 

irregulars) drive through both faster and more uniform development at the population 

level. Irregular verbs with lower frequency appeared more vulnerable to the vagaries of 

computational variations in the learning system and imperfections in the training 

environment. 

======================== 

Insert Figure 6 around here 

======================== 
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One concern with these data is that the distributions were very much shaped by 

floor and ceiling effects, that is, limitations in the sensitivity of the behavioural measure. 

As Figure 5 demonstrates, this can cause difficulties in comparing across behaviours 

since, for a given point in development, the distributions were quite different due to the 

floor and ceiling effects. We therefore considered how population distributions changed 

across development using a more sensitive measure. Instead of measuring past tense 

performance via accuracy (which used a nearest neighbour calculation to ‘clean-up’ the 

output), we employed a distance metric, calculating how close the output activations were 

to the correct unit activations for each verb. The metric was the RMS error. To produce a 

more intuitive scale, we transformed the error using the negative of the log: for 

comparability with accuracy distributions, larger numbers now corresponded to better 

performance. We expected this measure to be more sensitive and therefore less likely to 

exhibit floor and ceiling effects. Figure 7 shows the resulting distributions. The more 

sensitive measure indeed retained greater variation in the population, with regular verbs 

in particular exhibiting a normal distribution through to the end of training. The measure 

also retained the respective ordering of the different verb types. However, our intention 

was later to exploit the greater range of variation in the –log(error) as a target for 

predicting population level variability. But the –log(error) measure proved hard to 

predict using parameter or allelic values, with summed variance dropping from around 

50% when the dependent variable was accuracy to 3% when it was RMS error. The 

difficulty in predicting error compared to accuracy in part stemmed from a non-linear 

relationship between RMS error and accuracy. This implies that both measure sensitivity 
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and the linearity of a measure’s relationship with predictors (such as age or ability) are 

important factors in studying the origins of population variability. 

======================== 

Insert Figure 7 around here 

======================== 

Lastly, we assessed the impact of the relative range of genetic and environmental 

variation for population distributions. Figure 8 depicts these distributions for our 2x2 

design for regular verbs and vowel-change irregulars, for an early point in development 

(50 epochs) and a late point in development (750 epochs). The range of environmental 

variation proved to be the most important factor in determining the distribution, with 

wide variation producing a greater spread in performance, an effect that persisted across 

development. This disparity is mainly due to calibration: our manipulation of wider 

environmental variation encompassed poorer conditions, whereas a wider genetic range 

involved both better and worse neurocomputational conditions. The combination of wide 

genetic variation and wide environmental variation produced a population with the 

poorest performance. This is because for an individual, it maximised the opportunities for 

failure, either of a collection of poor gene variants or of a bad environment. Note that 

assortative mating, not implemented here, might attenuate this effect, since the poor gene 

variants would be associated with the poor environments. 

 In sum, these results showed the importance of the behaviour being measured 

(here, verb type) and the sensitivity of the measure, both in generating the population 

distribution and predicting how it would change across development.  

======================== 
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Insert Figure 8 around here 

======================== 

 

The predictive power of the environment 

Empirical data 

For the children’s data, the sole environmental measure available to pick up variation in 

past tense acquisition was the SES composite derived by Petrill et al. (2004), which 

combined information on parents’ education and occupation along with the mother’s age 

at the birth of her first child. The relationship between this measure and past tense 

production for regular and irregular verbs is shown in Figure 9a and b. SES predicted 

0.7% of the variance in regular performance when all children were included, and 2.0% 

when only one twin was selected from each pair chosen at random (all: R
2
=.007, 

F(1,440)=3.01, p=.084; one twin: R
2
=.020, F(1,218)=4.37, p=.038). The predictive power 

of SES was compromised for regular verbs due to ceiling effects. Irregular verbs 

possessed a larger range of variability and here SES predicted 3.7% of the variance for all 

children, and 2.8% when only one twin was included (R
2
=.037, F(1,440)=16.69, p<.001; 

R
2
=.028, F(1,218)=6.15, p=.014). There was a reliable interaction between SES and verb-

type when all children were considered (F(1,440)=6.68, p=.010, ηp
2
 = .015). In the one-

twin analysis, SES predicted more of the variance in regular and less in irregular verbs, 

rendering the SES by verb-type interaction non-significant (F(1,218)=.48, p=.489, ηp
2
 = 

.002). While SES data were missing for 11% of the sample, analyses run with or without 

these children produced almost identical results. 
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SES therefore predicted reliable but small amounts of variance in past tense 

acquisition. In the full analysis, it predicted more variation in irregular verb performance 

than regular, although this may have arisen from ceiling effects in the latter. This 

empirical result contrasts with findings from a longitudinal study of Rice, Wexler and 

Hershberger (1998), which examined the association between SES as measured by 

maternal education and regular past tense formation in 20 typically developing children 

and 21 children with SLI. Rice et al. found that their measure of SES explained less than 

1% of the variance, which was not statistically reliable. In the absence of other 

environmental predictor variables, these authors concluded that past tense development 

was under maturational control (Rice et al., 1998, p.1428). Differences in rates of 

acquisition across children were attributed to genetic differences in specification of the 

timing of linguistic properties (Rice & Wexler, 1996). By contrast, with the larger sample 

provided by Bishop (2005), we see small but reliable effects of environment on past tense 

acquisition for these 6-year-old children. Nonetheless, 96% of the variance must be 

explained by other sources, be they environmental or genetic. 

 

Simulation data 

Figure 9c and 9d plot the corresponding data for the G-wide-E-narrow population, at a 

point in development that matched accuracy on irregular verbs. The index of 

environmental variation was the family quotient value, which determined the size of the 

sub-sample of the ‘perfect’ past tense training set available in a given family. The lower 

the quotient, the more restricted the training set. The model successfully replicated the 

weaker predictive power of the environmental manipulation on regular verb performance. 
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Family quotient values explained 0.7% of the variance for regular verbs and 2.0% of the 

variance for irregular verbs (regular: R
2
=.007, F(1,998)=6.76, p=.009; R

2
=.020, 

F(1,998)=20.07, p<.001; interaction of family quotient x verb-type: F(1,998)=8.32, 

p=.004, ηp
2
 = .008). While the variance proportions are numerically similar to the 

empirical data, this may be viewed as somewhat co-incidental, since genetic and 

environmental variation were not calibrated to achieve this result. Moreover, as indicated 

earlier, we included no measurement error in the simulation data. To achieve the requisite 

correlations in the presence of measurement noise, the contribution of environmental 

variation would have to be stronger than that used in the G-wide-E-narrow condition. 

======================== 

Insert Figure 9 around here 

======================== 

Once more, the simulation data allow us to consider this result within a 

developmental context, and more widely, what patterns would be expected under 

different relative influences of genes and environment. Figure 10a to d display these 

results, plotting the percentage of variance explained by the family quotient value for 

each population of 1000 networks for each verb type across training for the 2x2 design, 

using a linear regression in each case. Unsurprisingly, under conditions of wide 

environmental variation shown in Figure 10b and d, the predictive power of the family 

quotient value was much higher, explaining between 60-80% of population variation. 

Three other results are of interest. First, in general, the predictive power of the 

environmental manipulation increased across training. Only generalisation to novel verbs 

showed a decrease. Second, differences in predictive power did not appear to be strictly 
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related to the degree of skew in the population distribution caused by floor or ceiling 

effects. Consider the degree to which environment explained variation in regular verb 

performance late in training. Figure 8c indicates that for G-narrow-E-narrow and G-wide-

E-narrow conditions, late in training there was a skewed distribution in performance due 

to ceiling effects. Yet Figure 10a and c show that in the former case, environment 

predicted around 35% of the variance, while in the latter, it predicted only 2%. 

Differential amounts of variance can be predicted even when the population distribution 

is very skewed. Third, the range of the genetic and environmental influences interacted 

with verb type. There were clearly properties of the input-output mappings that were 

differentially sensitive to sources of variation. Arbitrary irregular past tenses tended to be 

predicted most strongly by environmental variation. This is because, if this idiosyncratic 

information was not available in the input, it could be inferred from other training 

instances. Perhaps most striking was the interaction between regular and irregular verbs 

under conditions of narrow environmental influence, when genetic influence can be 

narrow or wide (Figure 10a and c). When genetic variation was wide, genetic factors 

determined variation in regular verbs more than in irregular verbs (that is, environment 

predicted regular variation less, shown in Figure 10c). When genetic variation was 

narrow, it determined variation in irregular verbs more than regular verbs (that is, 

environment predicted regular variation more, shown in Figure 10a). 

Putting these from environmental variation together, the model suggests the 

following interpretation of the empirical data. A pattern where the environment predicted 

only small amounts of variation in the acquisition of past tenses implies narrow 

environmental variation (Fig.10a or 10c). A pattern where environment predicted 



64 

 

irregular verb variation more strongly than regular verb variation fits with conditions of 

wide genetic variation combined with narrow environmental variation (Fig.10c). 

However, the simulation results do not directly equate to Rice et al.’s (1998) conclusion 

that regular verb acquisition is under the control of ‘maturation’, since the simulated 

acquisition process here is driven by experience-dependent changes in a general-purpose 

learning mechanism that provided with the appropriate information input-output 

information to acquire the skill. Identifying the weak predictive role of the environmental 

measure should not lead to the conclusion that environmental input is unnecessary for 

learning.  Nevertheless, the simulation results concur with the view that genetic variation 

explains more of the behavioural variability than environmental factors, for this particular 

English-speaking population. 

======================== 

Insert Figure 10 around here 

======================== 

 

A novel prediction: environment as a predictor of giftedness versus delay 

The current simulation framework is consistent with the view that the causal mechanisms 

operating to produce performance in the tails of the population distribution are the same 

as those causing variation in the normal range. There are no special mechanisms here that 

operate to produce delayed development or gifted development, simply an accumulation 

of less or more efficient alleles on the genetic side and poorer or richer family training 

sets on the environmental side. Nevertheless, we were interested in the role of the 

environment in predicting performance in the tails, and in particular whether it played a 
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symmetrical role in predicting delay as it did in predicting giftedness. For our 2x2 design, 

we considered performance on irregular vowel-change verbs at the stage of training 

matched to 6-year-old children. At this point, we classified networks by whether they fell 

in the bottom 10% or not, and whether they fell in the top 10% or not. Irregular verb 

performance was used because it provided a wide range of variation to perform this 

categorisation. The family quotient value was then used to predict the status in each case, 

either delayed or not, or gifted or not. Table 5 includes the resulting effect sizes of this 

analysis. 

======================== 

Insert Table 5 around here 

======================== 

When environmental variation was wide and genetic variation narrow, environment 

played a symmetrical role in predicting success and failure, because it explained the same 

amount of variance (~15%). In all other conditions, however, environment tended to be a 

more powerful predictor of success than failure, most markedly when both environmental 

and genetic variation were wide (top 10%: 20.4% of the variance; bottom 10%: 5.0% of 

the variance). For conditions of narrow environmental variation, environment didn’t 

predict delay at all (neither was statistically reliable; all other values p<.001). What is 

most striking here is that although a poor environment did not predict delay, we know 

that it did cause delay. Since we constructed this model, we know that impoverishing the 

composition of the training set indeed causes poorer performance in acquisition. We 

return to this disparity in the discussion. 
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In the previous section, we saw that the G-wide-E-narrow condition was the closest 

fit to the empirical data. This condition indicated that we should not expect the 

environment to account for any of the variance in whether children fell in the bottom 

10% of population for irregular past tense performance, but we should expect it to 

account for around 2% of the variance in whether children fell in the top 10%. We tested 

the prediction using the data of Bishop (2005) and the SES composite of Petrill et al. 

(2004). This constituted a fairly strong test of the modelling framework, since the 

empirical data were not collected with this comparison in mind, and the implementation 

of the real SES measures in terms of a training set manipulation was only provisional. 

Nevertheless, the results were in line with the model’s prediction (Table 5, bottom row). 

SES did not reliably predict children falling in the bottom 10% (R
2
=.001, F(1,440)=.55, 

p=.460; excluding cases with missing SES data: R
2
=.001, F(1,394)=.56, p=.456); but SES 

did reliably predict children falling in the top 10%, accounting for 2.5% of the variance 

(R
2
=.025, F(1,440)=11.51, p=.001; excluding cases with missing SES data: R

2
=.029, 

F(1,394)=11.71, p=.001). 

 

Predictive power of genes and neurocomputational parameters: Simulated association 

analyses 

For the current simulations, there were several ways we could seek to predict population 

variance using factors intrinsic to each individual. Not all of these methods are currently 

available to behavioural and molecular geneticists working with human populations. For 

example, for the simulations, we know the actual value for each neurocomputational 

parameter for each individual; we know which genes specify the value of that parameter; 
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and we know the way that the gene variants are linked to the computational parameters. 

Molecular geneticists have identified gene variants showing correlations, and in some 

cases begun to unpack the biochemical processes in which protein products are involved. 

They do not, however, know the full set of variants affecting a parameter, nor the shape 

of the function linking the relevant variants with their consequences on behaviour via 

modulation of the neurocomputational parameter. 

 For an illustration, consider the temperature parameter, which alters the shape of 

the activation function determining how the activity of an artificial neuron is related to its 

net input. Figure 11a plots the function derived during calibration, where this parameter 

was altered while the other parameters were held constant (with the exception of 

stochastic factors during training; see Table 3, right column). A quadratic function 

linking the temperature value with behaviour accounted for 87% of the variance, 

suggesting that network performance worsened if the parameter was set either too high or 

too low. This type of relationship has been proposed to link, for example, cortical 

dopamine levels with working memory performance (Goldman-Rakic, Muly & Williams, 

2000). Figure 11b plots the relationship between the temperature parameter value and 

population performance on irregular past tenses, for the G-wide-E-narrow population 

benchmarked to the performance of 6-year-old children. The parameter value now 

predicts much less of the variance, at only 12%. Additional variance is now produced by 

variation in the other parameters and by the environment. Moreover, there is no longer 

equal incidence of individuals with each value of the parameter. 

As investigators, we might, however, have less information available than this. 

We might only have identified the gene-variants relevant to our target 
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neurocomputational property, without knowing how the variants altered its value. There 

are 10 binary alleles specifying the temperature value, organised into five pairs. The 10 

alleles produced 11 possible sums of the number of more efficient alleles (from 0 to 10 

1s; see Table 2). Under these circumstances, one logical way to organise the data would 

be to rank the genotypes from 1 to 11 in order of the performance levels they produced in 

behaviour. Figure 11c demonstrates this genotype-behaviour relation. The function is 

now monotonic (by definition). A linear fit to the categorical data explains a similar level 

of variance to the quadratic parameter-behaviour relation. This analysis shows that 

identifying the relevant genes and their variants sufficient to account for a significant 

proportion of behavioural variance does not in itself recover the non-linearity of the 

relationship between neurocomputational parameter and behaviour. Statistical 

relationships need to be complemented by investigation of the mechanisms delivering the 

computational function. 

We may have still less information available than this. Through association 

analyses, we may have independently identified five genes that appear to predict some 

amount of variability in past tense development, while failing to link these genes to a 

common neurocomputational effect. Figure 11d displays the population performance split 

by the three genotypes for each gene, 00, 10/01, and 11. There are small differences in 

the means for each genotype, along with a great deal of variability. Three of these genes 

showed additive effects of the alleles (1, 2, and 4), while two showed interactions (3 and 

5). Most of what we know about neurocomputation suggests that it must be non-linear, in 

order for subsequent layers of neurons to add computational power in a hierarchical 

system (see, e.g., Elman et al., 1996, p. 222). However, under the assumption of 
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polygenicity in the current model, variants of individual genes (defined by pairs of 

alleles) have limited opportunity to reveal the non-linearity of processing, because their 

contribution shifts performance only a small way up or down the function linking the 

neurocomputational parameter to behaviour. Thus the variation in behaviour produced by 

individual genes (as per Fig.11d) may provide too restricted a view of the relevant 

neurocomputational function to reveal its true level of non-linearity (as per Fig.11a) and 

make the contribution of small variations more additive than they actually are. 

=================== 

Insert Figure 11 here 

=================== 

Figure 11 identifies possible ways that we could relate behavioural variation to 

the intrinsic factors of the model.
8
  To simulate association analyses, we proceeded as 

follows. We first considered the relationships between computational parameters and 

population variability. Second, we dropped to a lower level, considering what 

associations can be recovered by directly linking gene variants to behaviour. In both 

cases, we employed just a single condition from the 2x2 design, that of G-wide-E-narrow, 

to maximise the chance of identifying parameter-behaviour or gene-behavioural 

correlations. We then investigated two additional aspects. We sought to place these 

                                                 
8
 The data depicted in Figure 11 are for one behavioural measure, at one point in development, for one 

population. The framework employed 14 parameters, 5 behavioural measures, 1000 points in development, 

and initially 4 populations. Figure 11 therefore represents just 1 of 280,000 similar parameter-behaviour 

plots. The current section selects some of more salient findings from the simulated association analyses but 

a full description is beyond the scope of this report. All databases and parameter sets are available from the 

authors as Excel spreadsheets 
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correlations within a developmental context; and then assessed the extent to which 

parameter- / gene- behaviour correlations replicated across different populations. The 

latter issue is relevant for modern association analyses, because many gene-behaviour 

associations are found not to replicate across different samples. Under the artificial 

simulation conditions of zero measurement noise, could small gene-behaviour relations 

be consistently detected across different populations? 

 

Parameter-behaviour associations 

Figure 12 depicts the proportion of variance explained by each of the 14 computational 

parameters, for each verb type (regulars, novel verbs, no-change irregulars, vowel-change 

irregulars, and arbitrary irregulars). Effect sizes were calculated for population accuracy 

levels at three points in training, early (50 epochs), mid (100 epochs), and late (750 

epochs). For practical reasons, we used linear methods. Since many parameter-behaviour 

functions were non-linear, this likely underestimated the amount of variance each 

parameter can explain. However, for the number of regressions involved, it was too 

cumbersome to individually model each non-linear function to maximise the explained 

variance. Most parameters explained less than 5% of the variance, but some parameters 

exerted stronger effects. The architecture, the learning algorithm, and the nearest-

neighbour threshold explained from 10% to 25% of population variance. 

It is notable that while the shape of the plots across the different verb types is 

broadly similar, there were differences. For example, learning algorithm was most 

important for regular verbs, while architecture played a stronger role for irregulars, and 

nearest-neighbour threshold played a marked role for novel verbs. These modulations 
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demonstrate that the mapping problems presented by each verb type rely differentially on 

the different computational properties of the general purpose learning system 

implemented by an artificial neural network. Karmiloff-Smith (1998) described this 

theoretical possibility in terms of domain-relevant computational properties. That is, 

learning algorithms and architectures do not encode information specific to the domain of 

regular verbs versus irregular verbs. Nevertheless, variation in these parameters can have 

differential influence in the acquisition of this domain of language morphology when a 

general purpose learning mechanism is exposed to the appropriate information. 

Karmiloff-Smith (1998) viewed domain-relevant properties within more general purpose 

learning systems
9
 as candidate low-level differences to explain the origin of domain-

specific deficits in high-level behaviours in developmental disorders. 

Comparison of the effect sizes calculated at different points in training indicates 

that values are not constant across development. Given that these are statistical 

correlations, one might expect effect sizes to vary depending on the range of variation 

observed in the dependent variable. As we saw in Figure 7, the distributions change 

across development, exhibiting different levels of skew due to floor and ceiling effects. 

However, the fact that the predictive power of some parameters goes up across 

development (e.g., learning algorithm and architecture) while that of others goes down 

(e.g., nearest neighbour threshold and temperature) indicates that developmental 

differences cannot solely arise from changes in the performance distribution on each 

measure. Indeed, some of the patterns make computational sense. Nearest neighbour 

                                                 
9
 ‘General purpose’ here refers to computational principles. They may be instantiated in a domain-specific 

system, with respect to the information provided by input-output connectivity. 
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threshold becomes less important later in development. The threshold is a parameter that 

determines how close an output activation pattern has to be to a legal set of phonemes to 

be counted as correct. A lax threshold will give a network ‘help’ in getting an answer 

correct with only an approximate set of output activations. As the networks are better 

trained, their outputs will typically fall much closer to the target activations for the verbs 

they have acquired, so the setting of the threshold becomes less important: it is no longer 

required to ‘clean up’ the output. Temperature is a parameter that modulates the 

activation function of processing units. A low temperature means that processing units 

won’t be sensitive to small differences in the input they receive. However, a low 

temperature can be compensated by larger weights on the connections arriving at a unit, 

since the larger weights can exaggerate the size of the differences in the input signal. 

Connection weights become larger with more training, so that a low temperature becomes 

less influential on performance. Conversely, both learning algorithm and architecture 

become more important in predicting population variability across development. This is 

because both parameters delimit the best representations that the network can develop. 

While the pathway to the end of development can be influenced by a range of factors 

(including the environment), its destination has fewer determinants. As performance 

asymptotes, learning algorithm and architecture become more important in predicting an 

individual network’s ultimate performance level (at least, for the G-wide-E-narrow 

condition). In sum, it makes sense that the predictive power of computational parameters 

should alter across develop in an experience-dependent learning system. 

=================== 

Insert Figure 12 here 



73 

 

=================== 

 

Gene-behaviour associations 

Figure 13 drops to the lowest level of description, and plots the predictive power of all 

126 alleles on behaviour on regular and vowel-change irregular performance. Each allele 

had the value of 0 or 1 and its value was used to predict population variability. (Here we 

have chosen to treat alleles independently rather than split them into pairs corresponding 

to genes. Due to the additive way in which the effect of alleles was exerted, identifying 

the summed effect for each gene / allele-pair would have constituted an arbitrary way of 

collapsing the effect of the alleles; it was the total of all relevant alleles that determined 

the parameter value.) Calculations were carried out at early, mid, and late points in 

training. Figure 13 also marks the computational parameter that each allele codes for, so 

that for instance, the first 10 alleles fall in the ‘hidden unit’ region of the genome. The 

analysis at a given point in training involved 126 independent regressions. Given the 

large number of comparisons, how large should an effect size be to be statistically 

reliable? To address this issue, a binary allele was created at random (1000 digits, 

corresponding to the 1000 individuals) and this value was used to predict population 

variance. The process was iterated one thousand times to create a distribution of the gene-

behaviour effect sizes that could be produced by chance. Figure 13 includes the effect 

size at the 95
th

 percentile (solid horizontal line). An effect size larger than this value 

would have only a 1 in 20 probability of occurring at random. The criterion value altered 

depending on the distribution of the dependent variable but was typically around 0.5% of 

the variance. 
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 Figure 13 demonstrates that a number of the alleles predicted reliable amounts of 

variance in behaviour, even though the effect sizes were typically small (mostly below 

2%). These associations were visible despite the presence of an experience-dependent 

development process between the operation of the genes (on the parameters) and the 

measurement of the overt behaviour. Two further points are of note. First, the alleles with 

the strongest effects could differ depending on the measure of performance. That is, an 

allele in the nearest-neighbour threshold (NNT) region showed a stronger effect for 

regular verbs than irregular, while an allele in the learning rate (LR) region showed a 

stronger effect for irregular verbs than regular verbs. One could label these respectively 

as a ‘gene for regular verbs’ and a ‘gene for irregular verbs’ to mark the differential 

correlations. Second, the predictive power of alleles was sensitive to development. Some 

effect sizes increased across development, while others reduced. These changes were 

directly inherited from the computational level. If the predictive power of a parameter 

changed across training, for the reasons we outlined in the previous section, so too would 

that of any alleles that contributed to determining the parameter’s value. Overall, two 

factors constrained the effect sizes that each allele could exhibit: (1) the effect size of the 

computational parameter for which it coded, and (2) the number of alleles that 

contributed to the variation in that parameter. 

=================== 

Insert Figure 13 here 

=================== 
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The replicability of simulated gene-behaviour association analyses 

To assess the stability of these effect sizes, we first re-ran the G-wide-E-narrow 

population, preserving the genomes but randomly exposing individuals to new 

environments. Without assortative mating, a network previously trained in a poor 

environment might now be trained in a rich environment. Figure 14a compares the effect 

sizes of the original and retrained populations at 50 epochs, while Figure 14b compares 

the effect sizes of the computational parameters. It is evident that the pattern of results 

replicated across the two runs at the levels of both parameter and allele. 

We next created two new populations, re-sampling the genomes with the same 

method used to create the original G-wide-E-narrow population. Therefore, there was the 

same probability of parameter values in the population. These two new populations were 

exposed to new environments. Figure 15 compares the effect sizes of the original and two 

re-sampled populations for irregular vowel-change verbs at 50 epochs of training. In 

Figure 15a, it is evident that the allele effect sizes did not replicate particularly well 

across genetic re-sampling. Figure 15b, however, indicates that the effect sizes of the 

computational parameters did replicate fairly well. How can this disparity emerge? Closer 

inspection of Figure 15a reveals that re-samplings often have different spikes but all 

within the same region. For instance, pruning probability contains no reliable spikes, but 

learning rate contains many. The reason for the disparity is that in different populations, 

different alleles contributed to the variation in parameters. Different alleles threw their 

hats in the ring, as it were, on each re-sampling, whereas the parameter value was 

determined only by the number of hats in the ring. The implication of this simulation 

result is that under a polygenic model, individual association analyses from the allelic 
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level are predicted not to replicate, even under conditions of zero measurement error. The 

predictive power increases if one identifies all of the alleles that contribute to a particular 

parameter, equivalent to observing that spikes occur in the same region in Figure 15a. 

======================= 

Insert Figures 15 and 16 here 

======================= 

 We considered one further condition for replication. In the original populations, 

there was an equal frequency of efficient and inefficient alleles (i.e., the bits for the 

alleles were equally likely to be set to 1 or 0). We created two new populations, one in 

which for the initial breeding population, there was a 70% incidence of more efficient 

alleles and 30% of less efficient, which we termed the highskew population; and a second 

in which there was a 30% incidence of more efficient alleles and a 70% incidence of less 

efficient, which we termed the lowskew population. Note that the functions linking allele 

values to computational parameter values were the same, but now the population 

frequencies of different computational values would be different. Figure 18 compares the 

effect sizes for the original population, highskew, and lowskew populations for irregular 

vowel-change verbs at 50 epochs of training. It shows that once more, effect sizes 

calculated from alleles did not replicate across populations. Now, however, effect sizes of 

parameters did not replicate either. This was because the computational balance of the 

systems had changed. For example, the lowskew population had generally worse 

parameters and poorer performance. Networks, therefore, tended to rely on the nearest-

neighbour threshold far more to accept ‘just good enough’ output activations as correct 

answers, exaggerating the predictive power of this parameter in the lowskew population. 
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The simulation results imply that association analyses would not be expected to replicate 

across populations with different allele frequencies, but in this case, one would not expect 

parameter associations to replicate either (though note, in reality such 

neurocomputational associations are beyond our ability to measure at the present time). 

=================== 

Insert Figure 17 here 

=================== 

 

Correlation versus causation in association analyses 

In some respects, the gene-behaviour plots shown in Figures 14-17 look a little like the 

results of real gene-behaviour association analyses, as if the peaks above the significance 

threshold served to identify the candidate genes involved in producing variance in past 

tense acquisition. But it is important to note, all of the genes shown in these figures were 

causal in producing parameter variation. We know this, because in the design of the 

model, each parameter value was determined by the summing the number of more 

efficient alleles. The differential pattern of correlations exhibited by the alleles arose 

from the way the parameter values happened to have been determined by the polygenic 

contributions in a particular population. In another population, different alleles could turn 

out to contribute more to the sum. In one sense, this is merely restating the point that, 

where there are additive polygenic effects, individual gene-behaviour associations may 

not replicate across populations. In another sense, it is highlighting the point that an 

absence of correlation is not definitive evidence for an absence of causality, a point to 

which we return in the discussion. 



78 

 

 

Mechanisms of resilience I: Gene x environment interactions 

We have considered separately the power of environmental measures versus intrinsic 

measures in predicting population variability in behaviour. In this section, we consider 

how these two influences may interact. This does not refer to the causal process of 

experience-dependent change that necessarily involves the on-going interaction of 

environmental and intrinsic factors. Instead it refers to the possibility that the statistical, 

predictive power of a genetic factor may depend on the environment to which the 

individual is exposed. This is sometimes viewed in terms of resilience, where individuals 

exhibit unexpected levels of competence given the level of environmental adversity to 

which they have been exposed (Cicchetti & Blender, 2006). Knowledge of genetic 

variation may help identify individuals most at risk to adverse experiences, while 

protective functions of genes may also be discovered. 

For the current simulations, we examined whether the variation in performance 

caused by changes in a given computational parameter was modulated by the family 

quotient value. This admittedly corresponds to a narrow notion of ‘environment’, 

following our implementation decision that for these simulations, environmental variation 

should translate only to manipulations in information content. For illustrative purposes, 

we took one parameter, the number of hidden units, and evaluated population 

performance in the G-narrow-E-wide population, split into quartiles of family quotient. 

We picked three hidden units levels, low (30), medium (50), and high (100). Our 

questions were: (1) did we observe gene-environment interactions; (2) was the pattern 

modulated by verb type; and (3) did the interaction change across development? Figure 
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17 depicts the population variation in regular verbs and vowel-change irregulars at an 

early and late point in development, depending on genetic and environmental conditions. 

=================== 

Insert Figure 17 here 

=================== 

Regular verb performance was influenced by the level of hidden unit resources, but 

this influence was independent of environment at both points in training (p>.4). Irregular 

verbs, by contrast, showed interactions between hidden unit resources and environmental 

variation at both points in training (early: F(6,362)=3.05, p=.006, ηp
2
 = .048; late: 

F(6,362)=3.95, p=.001, ηp
2
 = .061). Higher levels of hidden units allowed the 

environment to exert a greater influence on performance, while low levels compressed 

environmental variation. We compared these interactions against the results exhibited by 

the population trained with wide environmental variation. In that case, the interaction of 

hidden unit levels and environment in predicting irregular verb performance showed 

borderline significance early in training but was absent by late in training (early: 

F(6,362)=2.03, p=.061, ηp
2
 = .033; late: F(6,362)=.33, p=.921, ηp

2
 = .005). Overall, this 

illustrative set of data indicates that gene-environment interactions were sensitive to the 

mapping type demanded of the system, the relative variation of intrinsic and 

environmental influences, and the stage of development at which they were measured. 

Moreover, for hidden units at least, in these data we did not see a pattern where a 

parameter setting immunised a system to the disadvantages of an impoverished 

environment. Rather, parameter settings allowed a system to exploit a richer 

environment. 
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Lastly, we examined whether the gene-environment interactions observed when 

intrinsic variation was indexed by parameter values were also visible at the lowest level 

of alleles. We picked an allele in the hidden unit region with a large effect size 

(predicting 1.58% of population variance for irregular verbs at 50 epochs) and compared 

it to another allele in the hidden unit region predicting zero variance in behaviour. We 

contrasted performance in individuals experiencing low-average (family quotient 0.7-0.8) 

and medium-average (0.8-0.9) environmental conditions, depending on whether they 

possessed an allele value of 0 or 1. For the predictive allele, a gene x environment 

interaction was apparent, with a 2.7% performance difference between individuals 

possessing each allele value who were raised in a low-average environment, but a 12.5% 

difference for individuals who were raised in a medium-average environment (main 

effect of allele: F(1, 516)=12.17, p=.001, ηp
2
=.023; main effect of environment: 

F(1,516)=.55, p=.460, ηp
2
=.001; interaction of allele x environment: F(1,516)=5.62, 

p=.018, ηp
2
 =.011). For the non-predictive allele, there was no indication of an interaction 

(main effect of allele: F(1, 516)=.06, p=.814, ηp
2
 =.000; main effect of environment: 

F(1,516)=.61, p=.435, ηp
2
 =.001; interaction of allele x environment: F(1,516)=.33, 

p=.565, ηp
2
 =.001). 

In sum, even when environment was viewed just in terms of as a manipulation on 

the information available, interactions between environmental variation and 

computational parameter variation were apparent. Moreover, traces of these interactions 

were observed at the lower level of the genome.  Notably, verb type and developmental 

stage both influenced the pattern of the interaction, indicating that the effects arise from 
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causal processes involved in the formation of representational states in a non-linear 

learning system. 

 

Mechanisms of resilience II: Pseudo gene x gene interactions 

By definition, the contribution of genetic variation to computational parameters was 

additive. There could be, therefore, no true gene-gene interactions (e.g., of the form of 

dominance or epistasis). However, given that we know computational parameters are 

likely to interact with each other (see Method), we explored whether this phenomenon 

might generate the appearance of gene-gene interactions. We took two parameters, 

hidden units and learning rate, which we expected on computational grounds to interact 

(Thomas et al., submitted). Figure 18 plots the population performance for individuals 

split by whether they had 40 or 50 hidden units, and whether their learning rate was 0.075 

or 0.125 (where a higher learning rate indicates a more plastic system). We looked at 

regular verb and irregular vowel-change verb performance and once more, we contrasted 

early and late phases in development. 

=================== 

Insert Figure 18 here 

=================== 

For the networks with 40 hidden units, the less plastic systems scored higher, while 

for 50 hidden units, the more plastic systems scored higher. The pattern appeared in both 

verb types but was only reliable for irregular verbs (regular, early: p=.173; late: p=.323; 

irregular, early: F(1,111)=4.14, p=.044, ηp
2
 = .036; late: F(1,111)=5.53, p=.020, ηp

2
 = 

.047). Once more, we explored whether this interaction was visible at the level of alleles. 
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We picked two alleles with predictive power on population variability, one from the 

hidden unit (HU) region and one from the learning rate (LR) region (effect sizes of 1.39% 

and 2.37%, respectively), and contrasted them with two alleles from these regions that 

showed no predictive power on behaviour (0.00% and 0.09%). Somewhat to our surprise, 

the alleles with predictive power showed main effects  but no interaction (main effect of 

HU: F(1,996)=13.78, p<.001, ηp
2
 = .014; main effect of LR: F(1,996)=24.09, p<.001, ηp

2
 

= .024; HU x LR interaction: F(1,996)=1.27, p=.261, ηp
2
 = .001), while the alleles 

without individual predictive power showed no main effects but a reliable interaction 

(main effect of HU: F(1,996)=.03, p=.871, ηp
2
 = .000; main effect of LR: F(1,996)=1.21, 

p=.271, ηp
2
 = .001; HU x LR interaction: F(1,996)=4.07, p=.044, ηp

2
 = .004). Moreover, 

the interaction was in the direction we were expecting: for the efficient hidden unit allele, 

individuals with the efficient learning rate allele scored higher; for the inefficient hidden 

unit allele, individuals with the inefficient learning rate allele scored higher. 

The computational explanation of this interaction is that in networks with less 

representational capacity, a more precise combination of connection weight values must 

be reached to accommodate the set of mappings demanded by the training set. This 

solution must be approached during training in small iterative steps provided by a low 

learning rate. In a network with more resources, less exact weight values are necessary, 

and less care is therefore necessary in the adjustment of weight values; faster learning is 

merely developmentally advantageous. This example is illustrative. Many other such 

interactions between parameters are to be expected within an artificial neural network 

learning system. Perhaps most notably, the computational effect was observed as an 

interaction at the level of alleles. However, the statistical effect did not in this case index 
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any underlying causal interaction between the genes themselves; by stipulation, all 

genetic effects were additive. Moreover, the statistical interaction was observed between 

alleles that did not predict reliable amounts of variance individually. If such 

computational interactions exist in real neural systems, the statistical interactions of gene 

variants coding for the relevant parameters would be missed in an association analysis 

that only considered main effects. Of course, testing for interactions risks a combinatorial 

explosion of comparisons; in this case, we looked for the relevant interaction on a priori 

computational grounds. 

In terms of resilience, the simulation framework provided at least one opportunity 

for a true effect, where variation in one dimension eliminates the influence of variation in 

another dimension: networks could have either direct input-output connections or an 

indirect pathway via a layer of hidden units. For those networks specified as two layer, 

genetically controlled variation in the number of units in the hidden layer was simply 

irrelevant for behaviour. (Since the hidden unit pathway was not activated during training 

in two-layer networks, it decayed quickly following the onset of pruning). Genes for 2-

layer networks were therefore resilience genes that could protect against having very low 

hidden unit numbers. However, interactions between computational parameters provided 

other avenues for resilience, where variations in one parameter compensated for 

variations in another. Since these variations were encoded on the genome in the current 

framework, genes indexed individuals with greater or less resilience in this weaker sense. 
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Predicting the entire population variability 

In our final analysis, we assessed how much of the population variability in performance 

could be predicted given that we know all the parameter values that contributed to this 

variation. For the 2x2 design, all computational parameter values along with the family 

quotient value for each individual were entered into a stepwise linear regression. The 

analyses were carried out on the four populations when their mean vowel-change 

irregular verb performance was matched to that of the six-year-old children. Total 

amounts of variance explained are depicted in Table 6. Variance explained ranged from 

40% to 75%. 

Why couldn’t we predict all of the population variance? There were four reasons. 

First, the statistical model used linear relationships. We know that many of the 

parameter-behaviour relationships were in fact non-linear. A statistical model which used 

the appropriate non-linear function for each parameter would be required to explain the 

maximum amount of variance. Second, as we saw in the above sections, there were 

interactions among the computational parameters, and between the computational 

parameters and the training environment. When a single factor became dominant, as in 

the case of wide environmental variation, a greater sum of variance was explained. Third, 

there were stochastic factors in the networks, such as the initial weight values and 

pruning events (see Table 3, rightmost column). Fourth, there were factors that depended 

on the particular behaviour that was being measured. Table 6 indicates different amounts 

totals of explained variance for regular and irregular verbs. These differences likely stem 

from floor and ceiling effects in these measures, as well as subtler factors involving the 

interaction between learning events within the system. 
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 In sum, even when we are in a position to know all the internal and external 

factors generating variation in population performance, there are several reasons why we 

can still fail to explain the observed variation in behaviour using our statistical models. 

 =================== 

Insert Table 6 here 

=================== 
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Discussion 

The modelling framework set out to implement a model of one aspect of language 

development that linked between multiple levels of description: genome, 

neurocomputation, overt behaviour, and environment. The goal was to render explicit 

assumptions linking the three levels of description and to evaluate their consequences via 

implementation in a complex learning system. 

One could debate whether, in using a connectionist model, we have provided the 

right level of analysis for linking variations in language development with lower level 

neurocomputational mechanisms. We might, for instance, have been guided more 

strongly by molecular genetics. Recent findings from the molecular genetics of language 

and literacy disorders have provided new insights about which aspects of brain 

development differ in these disorders. For instance, a considerable amount has been 

learned about the neural mechanisms disrupted by a mutation in the FOXP2 gene 

underlying a rare form of familiar dyspraxia of speech (Fisher, 2006). The expression of 

the CNTNAP2 gene is modulated by FOXP2; CNTNAP2 is involved in cortical 

development, possibly mediating intercellular interactions during neuroblast migration 

and laminar organisation (Vernes et al., 2008); it is expressed during cortical 

development in frontal grey matter regions including the inferior and middle frontal gyri 

(Abrahams et al., 2007); and Vernes et al. found that polymorphisms of the gene showed 

a significant association with behaviourally defined cases of SLI, explaining up to 4% of 

the variance in non-word repetition scores. 

Similarly, recent candidate gene discoveries for dyslexia point towards neuronal 

migration and axon guidance as important neural mechanisms in that disorder, perhaps 
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producing subtle cortical malformations in peri-sylvian language areas that affect 

subsequent phonological development (Galaburda et al., 2006). By using discoveries 

such as these, low-level neurocomputational models of atypical language development 

could be constructed that are based on empirically constrained changes in brain 

development. The marriage of genetics and neurocomputational models should perhaps 

occur at the level of neural mechanisms implicated by actual gene discoveries. 

The importance of such a research avenue is undeniable. The question is whether it 

is premature. We have presented an account at a much higher level of description, with 

neurocomputational properties that are abstracted away from actual neural circuits. The 

reason is threefold. First, our aim was to pursue a top-down approach retaining contact 

with the behavioural data that has motivated claims about the heritability of cognition. 

Second, in our view, models of language function (and development) are not yet 

sufficiently advanced to make it viable to construct detailed models in terms of low-level 

neural circuits. Structural and functional magnetic resonance imaging, connectivity 

analyses, dynamic causal modelling, and electrophysiological studies of brain function 

are making great strides, but their focus has been to identify the brain regions associated 

with various language tasks and the functional connectivity between them (Kuhl & 

Rivera-Gaxiola, 2008; Leff et al., 2008; Vannest et al., 2009; Vigneau et al., 2006). 

Moreover, this research has been hampered by an emerging mismatch in the ontologies of 

cognitive and anatomical models: classical cognitive models are being challenged 

because there is a high degree of overlap among the neural systems activated by tasks 

that share no cognitive components, suggesting a given neuronal structural can perform 

multiple functions that depend on the areas with which it interacts (Price & Friston, 
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2005). Overall, cognition-brain accounts cannot yet strongly constrain our view of how 

low-level differences in neural circuits would affect the high-level behaviour of these 

neural networks in the brain. Third, although association analyses have identified 

candidate genes involved in language disorders, and the function of these genes is fast 

being uncovered, it is another matter to identify how the polymorphisms in these genes 

modulate their function. As Galaburda et al. (2006) pointed out, none of the genetic 

variants consistently linked with dyslexia are mutations in the coding sequences of the 

genes, and it will be a challenge for future studies to identify how the polymorphisms 

lead to the specific changes in function in the developing and mature brain. 

Given our top-down approach, one might ask how much can be read into our 

‘genetic’ level of description. The relation of connectionist models to neurocomputation 

is already a fairly abstract one. In some senses, we view the genetic encoding of 

parameters in the model as notional. The appropriate analogy is to behavioural genetics, 

where genetic constraints are contained within parameters entered into structural equation 

models: the assumed genetic similarity between monozygotic twins (1), the genetic 

similarity between dizygotic twins under an additive model (0.5), and under a dominant 

model (0.25). In our framework, the genotypic level embodied several more detailed 

assumptions: genes exert their causal effect on behaviour via the modulation of general 

neurocomputational parameters; the relationship between genes and neurocomputational 

parameters is polygenic; and the effect of gene variants is mainly additive. Moreover, we 

created artificial chromosomes and simulated sexual reproduction to demonstrate that our 

scheme for encoding the genetic contribution to population level variability in cognitive 
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ability produced a stable distribution of ability across generations in the absence of 

selection (see Appendix A). 

The aim of a top-down approach, however, is to provide hypotheses for the 

interpretation of data generated by bottom-up approaches. In providing explicit 

implementation of genomic, neurocomputational, and behavioural levels of description, 

our concern was to relate the mechanistic operation of the model to the statistical 

relationships observed between various predictor and variation in behaviour, given that 

the primary data used to identify gene-behaviour relations are statistical. This emphasis 

allowed us, for instance, to separate the causal idea that the process of development is an 

interaction between genes (contributing to the working of an experience-dependent 

learning system) and environment, from the statistical idea of a gene-environment 

interaction, where the contribution of genetic measures and environmental measures as 

predictors of population variance may be non-additive. Or more starkly, to distinguish the 

view that interaction with a structured learning environment may be causally essential for 

learning, from the view that variation in the quality of the environment may nevertheless 

statistically predict little of the variation in behaviour (as per Figure 9). As we saw in the 

Introduction, the link between causal models of development and the statistical models 

that employ genetic and environmental predictors of behavioural variation has been a 

source of concern for the Developmentalists (Gottlieb, 1995; Turkheimer, 2004).  

We now turn to the findings of the model. We first consider how it fared in 

simulating our target empirical data. We then summarise the behaviour of the model 

when we moved beyond the target data. Our population data of the past tense formation 

in 442 6-year-old children exhibited three main features (Bishop, 2005). First, past tense 
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formation was more accurate for regular verbs than irregular verbs. Second, performance 

on regular verbs showed a highly skewed distribution with a long lower tail, while 

irregular verbs showed a more normal distribution, with some hint of bimodality. Third, 

variation in SES predicted small amounts of the variation in regular verb acquisition, and 

more in the acquisition of irregular verbs (around 1% and 3%, respectively). We should 

add some minor caveats about these empirical data. The data are not ideal for our 

purposes for three reasons. First, the data are from twins, which although fairly 

representative of a population, do exhibit some mean differences to singletons (Plomin et 

al., 2008). Second, the data only represent a snapshot in time and provide limited 

opportunity to understand how the distribution changes over time (the age range only 

spanned 13 months). Third, the data are over-sampled for children at risk of language 

impairment. Bishop (2005) used this population to investigate whether the heritability of 

variations in grammatical ability was different in normal versus language-impaired 

children. Therefore, the population includes 215 children who had been flagged as at risk 

for language impairment at age 4 on the basis of parental report. Notably, many of these 

children were not subsequently diagnosed with a language impairment at age 6, implying 

that some of the early detections were false positives triggered by individual differences 

in trajectories of early development (see Dale, Price, Bishop, & Plomin, 2003, for a 

similar effect when parental reports of language delay at 2 years of age were used predict 

language difficulties at 4 years). The sample contains 227 children who were not flagged 

as at risk for language impairment at age 4. Nevertheless, the data correspond to a much 

larger population of children than is typically assessed in psycholinguistic studies. 
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The model simulated genetic variation via individual differences in 14 

computational parameters, and SES variation via manipulations to the composition of the 

past tense training set. The model design independently varied the range of genetic versus 

environmental variation in four simulated populations. There was no a priori basis to 

constrain the respective ranges of variation, so we employed a 2x2 design of wide versus 

narrow variation in genetic versus environment factors, thereby granting a view of the 

effects of the range of variation. The population with wide genetic variation and narrow 

environmental variation gave the best fit to the empirical data. The model succeeded in 

simulating all three of the main qualitative effects in the empirical data. In addition, it 

predicted that variation in particular computational parameters could produce sub-

populations in irregular verb ability, some of which would not be observed in regular 

verb acquisition at any stage of development. Lastly, the model generated a novel 

prediction that SES would explain more of the variance in whether a child’s performance 

fell within the top 10% of the population distribution than whether it fell in the bottom 

10%. Numerically, it predicted that 2% of the variance would be explained in high 

performance and 0% in low performance. This novel prediction was tested on the 

empirical data and borne out. For the children, SES predicted 2.5% of the variance in 

high performance and 0% of the variance in low performance. The prediction formed a 

strong test of the model, since the empirical data were not collected with this analysis in 

mind, and the implementation of SES was (to our knowledge) the first of its kind and 

therefore somewhat provisional. 

The model extended beyond the empirical data in two ways, first placing 

population distributions within a developmental context, and second simulating 
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associations between behaviour and, respectively, the computational parameter and the 

genome levels of description. The results indicated the importance of the verb type that 

the model was learning (e.g., the nature of the input-output mapping) for the evolution of 

population distributions across development, as well as the importance of measure 

sensitivity in producing floor and ceiling effects. The individual parameter values in each 

network predicted a reasonable amount of variance in behaviour (up to 20%), and the 

values of low-level alleles much smaller amounts (1-2%). Notably, the association sizes 

were to some extent dependent on the verb type, and also changed across development. 

Somewhat surprisingly, more sensitive measures of performance (RMS error compared 

to accuracy) proved harder to predict from model parameters. We considered the 

computational reasons for the way associations were modulated, respectively in terms of 

the domain-relevance of certain parameters for certain behaviours (Karmiloff-Smith, 

1998), and in terms of the reliance of representations on different computational 

properties at different points in training. 

More provocatively, it was possible to identify gene-behaviour associations in 

terms of ‘genes for regular verbs’ versus ‘genes for irregular verbs’, and in terms of 

‘genes for early development’ versus ‘genes for later development’. A computational 

analysis indicated that such labels would not index actual underlying causal processes in 

the model. Illustrative examples were then given of different types of resilience, where 

certain computational properties made the networks differently sensitive to variations in 

environmental quality (gene-environment interactions) or differently sensitive to 

variations in other computational properties (pseudo gene-gene interactions). In both 

cases, traces of these statistic effects were observable in direct links between gene 
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variants and high-level population behaviour. Lastly, we attempted to predict population 

variability using our complete knowledge of each individual’s computational parameters 

and training environment, and found that at most 75% of the variance could be explained 

and sometimes as little 40%. Unexplained variance arose in part due to statistical 

limitations (use of linear methods), measurement methods (floor and ceiling effects), and 

causal processes (interactions between predictors). 

Our goal of distinguishing statistical from causal relations in simulated gene-

behaviour relations produced several interesting results. First, both empirical data and 

model indicated that there was no statistical relation between SES and whether a child 

fell in the bottom 10% of the population distribution on past tense formation. However, 

from the model, we know that a poor environment did cause poor acquisition. The reason 

for the absence of a statistical relation when a causal relation existed is that the 

relationship of cause to effect was many-to-one. In addition to an impoverished 

environment, there were many other possible causes of poor acquisition, resulting from 

the settings of computational parameters. The many-to-one causal relationship diluted the 

strength of the statistical association of any one cause. In a population with largely 

adequate computational parameters, environmental quality should be a more symmetrical 

predictor of success and failure, and this was confirmed by simulation of such a 

population (see Table 5 for the G-narrow-E-wide population). The asymmetry was 

therefore predicted to be sensitive to the sampling. Note our empirical data set, with its 

over-representation of children with language impairments may have corresponded to a 

sample that exaggerated genetic variance over environmental variance, thereby making 

the asymmetry more likely. More widely, if internal factors are more predictive of low 
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performance than mid-range performance, the implication is that manipulation of 

environment (in terms of early intervention) may be more effective for middle 

functioning children than low functioning children. 

Second, our simulated association analyses found that only some of the alleles 

predicted reliable amounts of population variability in behaviour. However, we know 

from the model that all alleles were causal in determining the parameter value that led to 

behavioural variation. The gene variants, assigned binary values to represent efficient or 

inefficient alleles, were simply added together to derive the parameter value from a look-

up table. The reason that some alleles produced reliable associations is that, in a given 

particular population, these alleles happened to contribute to a high total sum and a more 

beneficial parameter value, or to a low total sum and a less beneficial parameter value. In 

another population, other alleles for the same parameter might end up playing this role. 

Once more, there is absence of a statistical relation when a causal relation actually exists, 

and once more, it is because with polygenic encoding of parameter values at the genetic 

level, there is a many-to-one causal relationship. The simulations demonstrated that 

across re-sampling of populations with the same allele frequencies, one would not expect 

individual gene-behaviour associations to straightforwardly replicate, even in the absence 

of measurement error. Only the sum of associations within the alleles that coded for a 

given parameter was predicted to replicate. However, re-sampling of the populations did 

preserve the behavioural associations at the level of computational parameters. In reality, 

the replicability of association analyses in complex brain functioning has proved a 

problem (Posthuma & de Geus, 2006). This may be for quite other reasons – the methods 

are technically challenging, participant sampling is difficult, and real data are noisy. 
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Nevertheless, the simulations suggest that the strongest predictive power is via 

understanding the computational parameter values in a neural system, and that replication 

of associations will be improved by unifying gene variants around the 

neurocomputational parameter to whose variance those alleles contribute.
10

 

Third, interactions between computational parameters produced apparent 

interactions between gene variants. However, we know these statistical interactions were 

not causal, because gene contributions were stipulated to be additive. The behavioural 

associations had been inherited by the alleles from the computational parameters whose 

variance they coded for. In this case, there was a statistical relationship without a causal 

link, via a common causal factor at a higher level of description. While we know in 

reality many genes do interact via the use of protein products to modulate expression 

(amongst other mechanisms), the current results indicate that statistical evidence for their 

interaction can also be produced without any causal interaction at the level of the 

genome. 

The advantage of computational implementations is that they render assumptions 

explicit. The disadvantage is that by definition they involve simplifications. It is 

necessary, therefore, to be clear about which aspects of the modelling framework are 

                                                 
10

 We have stipulated the granularity of the genomic encoding by virtue of our assumption of a polygenic 

relationship between genes and computational parameters. However, one could take a different view: that 

the 1s and 0s of the genome correspond to ‘base pairs’ and the regions for each parameter correspond to the 

‘genes’. This view would predict much stronger associations between gene variants and behaviour, since 

each polymorphism would code for a computational parameter value. And it would predict greater 

replicability across association studies for whole genes but potentially lower replicability for associations 

between single nucleotide polymorphism (SNPs) and behaviour. 
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central to its functioning and which are merely simplifications necessary for 

implementation. We have already summarised the genome level assumptions. Here is a 

summary of the simplifications: no pleiotropy between genes and parameters, no 

epigenetic effects, no dominant or recessive genes, no epistasis, no gender effects, no 

linkage disequilibrium, no assortative mating, and no gene-environment correlations. The 

impact of each simplification must form the target for future work. 

At the cognitive level, we view the following as key assumptions. Past tense 

represents a mapping problem between (at least) codes for phonological information 

corresponding to different forms of the verb. It is learned by an associative system using 

distributed computation among a network of simple processing units. These units are 

generic but gain domain-specificity via the architecture of which they are a part. A 

child’s experience of past tense involves learning associations between uninflected and 

inflected forms of the verb, although these need not be simultaneously available in the 

environment. The English past tense is defined by particular patterns of similarity, type 

frequency, and token frequency. We believe that a variety of different implementations of 

past tense models that embodied these assumptions would produce the same simulation 

results. (Indeed our preferred model of this system is somewhat more complex, involving 

the convergence of more codes that simply phonological; Karaminis & Thomas, 2009). 

However, we are more provisional about our assumptions regarding sources of 

environmental variation. We reviewed existing literature on the role of environmental 

variation in past tense acquisition, including an argument that it plays no role and 

acquisition simply reflects maturation (Rice et al., 1998). Research considered both the 

specific availability of past tense information in the environment in families of different 
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social status (e.g., Hart & Risley, 1995), and recent research on the widespread impact of 

SES on brain development. Implementation forces us to make a decision about how 

environment will affect acquisition. We chose to simulate the effects of SES on language 

acquisition only via a modulation of the information content available to the network, and 

via type rather than token manipulations to the training set with respect to verb 

frequency. The family training set was fixed and its composition was not dependent on 

the activity of the simulated child. Any of these assumptions might be revisited. 

Importantly, we did not allow environment to alter the computational parameters of the 

network. This simplification is certainly debatable, given what is now known about the 

effect of stress on brain function, and the possible contribution of dietary differences 

experienced in poverty (Hackman & Farah, 2009). We suspect that whether the 

environment impacts primarily on information content or on biological (non-cognitive) 

aspects of brain function will depend on the range of environmental variation involved. In 

the first world, even in the face of relative poverty, there is some minimal provision for 

the healthy upbringing of children. From the point of view of cognitive development, 

environmental variation may impact more on the information available, and on the 

particular schedules of reward and punishment experienced by a child. However, in the 

third world, the environmental range is much wider. Nutritional deficits during child 

development can be severe enough to cause stunting in growth and a statistically 

associated incidence of poor cognitive development (Grantham-McGregor et al., 2007). 

In this wider range, environmental variation may impact much more on biological aspects 

of neural function and therefore its computational properties. More work is needed to 

advance our understanding of how environmental variation impacts on cognitive 
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development at a neurocomputational level, and how specifically it affects the content 

and reward-based information available to the child. 

Apart from the importance of implemented causal models, the modelling 

framework emphasised two ideas in particular. The first is the possibility of accounting 

for developmental processes and intelligence within a single framework. Variability 

across the normal range and at the tails was explained by continuous sources of variation, 

in implemented learning systems. Given the causally homogeneous source of variability 

across the range, the simulations still gave rise to different patterns in the tails, for 

example, the stronger predictive power of the environment in high performing 

individuals, consonant with emergenic theories of giftedness (e.g., Lykken, 1982, 2006; 

Simonton, 2005).
11

 In the emergenic theory, everything has to be good for giftedness to 

result. If the environment is not good, then there will be no giftedness. Hence, 

environment has more unique predictive statistical power. This framework is also 

consistent with the view that, in the absence of overt environmental incidents or genetic 

mutations, the ‘abnormal is normal’ in terms of causal process (Kovas et al., 2007; 

Plomin et al., 2008). However, in principle, the modelling framework allows us to 

contrast the distributions generated by polygenic assumptions with those produced by 

single gene mutations producing large effects, and to explore how the frequency of such 

mutations might affect population distribution. Notably, with respect to intelligence 

research, the polygenic view of ‘ability’ in the current framework translates to the idea 

                                                 
11

 For reasons of space, we did not report on the power of intrinsic factors to predict membership of the 

tails. The patterns of asymmetry were more mixed and depended on the population and particular 

computational parameter involved. 
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that what a network can learn is the summation (and interaction) of the simultaneous 

variation of many computational parameters. Together, these alter the effective capacity 

and plasticity of each system with respect to learning. No single factor is responsible for 

variation in ability at a computational level. However, this conception of ability is 

entirely neutral to the specificity or generality of the effects. We have taken no view as to 

whether the genetic effects on parameters are specific to a particular neurocomputational 

system or are wide ranging; that is, whether the Hidden Unit genes, for example, would 

determine variation in computational resources just in the inflectional system or in other 

systems as well (Anderson & Nelson, 2005, for a consideration of general vs. specific 

intelligence in computational terms). We have made the assumption that genetic factors 

are at least general to all parts of the network we are studying, but that assumption too 

may be challenged. It is possible that genes code more specifically for neurons in 

different parts of the same network, for instance, in different layers. 

The second issue highlighted by the current framework is the importance of taking 

a developmental perspective in considering the link between genes and behaviour. 

Simulation results suggested that each of the following effects was modulated by 

development: the population distribution, the predictive power of the environment, the 

relation between computational parameters and behaviour, associations between gene 

variants and behaviour, and gene-environment interactions. This should be informative 

for future empirical research into individual differences in the development of behaviour. 

Moreover, the effects of development were comprehensible in terms of the changing 

computational states of the learning system. 
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As we have seen, the modelling of causal systems urges caution in simple 

interpretations of statistical associations. In the current context, when gene-behaviour 

associations increased in strength across development, this did not reflect an increase in 

gene expression per se but a greater reliance on a given computation property whose 

variance the gene variant coded for. Nevertheless, the simulation framework did include 

genetic effects that were time sensitive, in the form of connection pruning parameters 

with late onset. These parameters, by contrast, showed relatively modest changes in their 

power to predict behavioural variance over developmental time. 

It is a challenging goal to formulate accounts of variation in human behaviour that 

span multiple levels of description, from genome through neurocomputation, via 

cognition, to behaviour; yet more challenging to construe this variation in the context of 

the development of behaviour in children embedded in a rich environmental context. The 

current simulations take but a small step in this direction but, we think, indicate there is 

much to be gained in using implemented computational models to understand the 

interaction of genes and the environment in the development of behaviour. 

 

 

 



101 

 

Acknowledgements 

We thank Dorothy Bishop for allowing access to her data set, and for her help and 

encouragement throughout this project. We would also like to thank Eddy Davelaar, 

Emma Hayiou-Thomas, Mark Johnson, Annette Karmiloff-Smith, Denis Mareschal, 

Robert Plomin, Mabel Rice, and Essi Viding, for helpful discussions and ideas. This 

research was supported by MRC Career Establishment Grant G0300188, British 

Academy grants LRG-35369 and SG-040400, and EC grant 0209088 (NEST). 



102 

 

Appendix A 

The stability of genetic variation across generations 

It may be self-evident to population geneticists that under the conditions we 

implemented, the genetic variability across generations must be stable in the absence of 

selection. However, it is perhaps less obvious to developmental psychologists. This is 

because psychologists are familiar with the idea of regression to the mean when 

measuring behavioural variability. When outlier behavioural scores are re-sampled, they 

are statistically more likely to fall closer to the mean. One might then reason as follows. 

Assume a normal distribution of cognitive ability encoded by genes and random mating 

between individuals at each generation. In terms of ability, it is statistically more likely 

that an individual with above average ability will breed with an individual who is less 

able, thereby producing more average children. Similarly, statistically, a below average 

individual will be more likely to breed with an individual who is more able, again 

producing more average children. Over generations, one might therefore expect the 

genetic contribution to population variability to narrow around the mean. We ran a brief 

set of simulations to demonstrate that such regression to the mean does not occur, and 

that our proposed mechanisms of encoding and breeding retained a stable range of 

genetic variation across generations. 

First, let us demonstrate what happens to the population variability when there is a 

measure of fitness and when selection operates. Each individual had a genome of 126 

bits. The genes came in two versions, more (1) or less (0) efficient. Let us assume that 

there is a direct mapping between the number of 1s in the genome and the fitness of the 

individual. We initially generated a population of 1000 individuals whose genomes were 
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set at random, so that for each gene, each allele had a 50% chance of being present (i.e., 

the gene was set to 1 or 0 with a probability of 0.5). Individuals then mated at random, 

using the mechanism outlined in the previous section. The first generation mated without 

selection. Thereafter, to generate each subsequent generation, the 100 fittest individuals 

in the current population (i.e., with the most 1s), were then designated as the breeding 

population. Reproduction occurred with uniform crossover and initially no mutation. The 

breeding population mated at random, each pair producing two offspring, in five 

iterations to produce 1000 individuals for the next generation. The whole process was 

iterated across 25 generations. Figure 3a depicts the distribution of the number of 1s in 

the genome in the original population and over 25 generations with selection in operation. 

It is evident that variability reduced, in particular as it approached the ceiling value of 

126 1s. However, the reduction in variability under selective pressure occurred even 

before ceiling was reached. 

Next, we repeated this exercise, now including a high mutation rate of 10%: in 

each gamete, each allele was stochastically flipped into the alternate state with a 

probability of 0.1. Figure 3b shows the same narrowing of population variability across 

generations. However, the population no longer tended towards the ceiling value of 126 

1s. Instead, it asymptoted at a level where the fine-scale changes required to improve 

performance (by weeding out individuals with the remaining few 0s) were countered by 

mutations during reproduction (flipping 1s back to 0s). As it were, the ‘signal’ of 

selective fitness was transmitted across generations until a point at which further 

enhancements fell below the threshold of ‘noise’ caused by mutation during reproduction. 
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In this condition, then, some variability was retained in the population because a 

mechanism (mutation) replenished it even as selection reduced it. 

Next, we re-ran the first mutation-free simulation but now removing selection. 

Breeding took place between all individuals in the population irrespective of fitness: 500 

random pairs, two offspring per pair. Figure 3c demonstrates the resulting population 

distributions of allele frequencies over the 25 generations. Two results are evident from 

this figure. In the absence of selection, the distribution of variability remained constant 

across generations. Second, there was nevertheless some sampling noise between 

generations (technically referred to as ‘genetic drift’). Regression to the mean did not 

occur because at the population level, subsequent generations merely represented 

reshuffling of the same set of gene variants between different individuals, with some 

sampling noise during breeding. Any regression to the mean was balanced by progression 

from the mean to retain the distribution. 

================== 

Insert Figure A1 here 

================== 
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Table 1. Research questions 

 

Population distribution: 

- For performance on a cognitive task, how does the distribution of a population 

change across development? 

- How does the population distribution depend on the problem type / specific 

behaviour within the cognitive domain under study (e.g., regular verbs versus 

irregular verbs), and the type of measure being used to assess performance (e.g., 

accuracy versus error)? 

Predicting variance from internal factors (genetic variants and neurocomputational 

parameters): 

- How much behavioural variation is explained by particular neurocomputational 

parameters? 

- Do parameters symmetrically predict high performance and low performance? 

- How much behavioural variation is explained by particular genetic variants? 

- Are some genetic variants more closely associated with some parts of the problem 

domain than others (e.g., regular verbs vs. irregular verbs) in an otherwise 

undifferentiated learning system?  

- Do the above effect sizes change across development? That is, to what extent 

should be expect association analyses to be developmentally sensitive?  

Predicting variance from the environment: 

- What proportion of behavioural variability is predicted by the quality of the 

environment? 
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- Does the environment play a symmetrical role in predicting the tails of the 

distribution, for example in producing giftedness versus delay? 

Interactions: 

- What is the role of the environment in permitting the expression of genetic 

variability (gene x environment interactions)?  

- Do gene-environment interactions depend on problem type (e.g., regular verbs 

versus irregular verbs)? 

- Are gene-environment interactions stable across development? 

- Since genes code for variability at the neurocomputational level, do interactions 

between neurocomputational parameters during development create the 

appearance of gene-gene interactions? 

General: 

- What is the relationship between average development, individual differences, 

developmental disorders, and giftedness at a mechanistic level? 
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Table 2. Example look-up table for deriving a computational parameter from the number 

of efficient alleles in the gene set determining variation. In this example, 5 genes (two 

alleles per gene) specify the temperature parameter, for the condition of wide genetic 

variation. 

 

 Temperature parameter value 

            
Number of efficient 

alleles 

0 1 2 3 4 5 6 7 8 9 10 

Population 

probability 

0.1% 1% 4% 12% 21% 25% 21% 12% 4% 1% 0.1% 

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4 
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Table 3. Implemented sources of variation 

 

Non-varying 

factors 

Varying Factors 

    

 Genetically determined 

parameters 

Shared environmental 

factors 
a
 

Unique environmental 

factors 
a
 

    

Processing units Network architecture Family quotient value  Initial weight values 

Connections Resources (internal units)   (determines family training 

set) 

Initial weight connectivity 

Activation dynamics Sparseness of connectivity Initial unit thresholds 

Adaptive processes 

 

Range of initial weight 

variance 

     Order of learning experiences  

On-line processing noise 

Phonological input and 

output 

representations 

Rate of weight decay 

Unit discriminability 

(activation function) 

 Probabilistic connection 

pruning 

Exposure to relevant 

training patterns 

(past tense) 

Pruning onset  

Pruning threshold  

Pruning probability 

 Initial pre-conditioning 

training set (subjective 

experiences) 

Composition of 

‘perfect’ training set 

   

 Learning algorithm  Measurement error    

 Learning rate   

 Learning momentum     

 Level of processing noise   

 Response threshold   

a
 According to the standard definitions of behavioural genetics, shared environmental factors are those 

(environmental) factors that serve to make individuals raised in the same environment (e.g., family) similar. 

Unique environmental factors are those that serve to make individuals raised in the same environment 

(family) different. 
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Table 4. Main simulation design. Percentages indicate range of family quotient values 

sampled (see text for details). 

 

  Environmental variation 

  Narrow 

(60% - 100%) 

Wide 

(0% - 100%) 

Genetic variation Narrow 1000 

individuals 

1000 

individuals 

 Wide 1000 

individuals 

1000 

individuals 
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Table 5. Role of the environment in predicting giftedness or delay. Figures show 

proportion of variance explained by SES (empirical data) or family quotient value 

(simulation data) in whether an individual’s performance falls in the top 10% or bottom 

10% of the population (simulation: G-wide-E-narrow condition, irregular vowel-change 

verbs, matched for 6-year-old performance level). 

 

  
 

Environmental variation 

  Narrow Wide 

  Delayed Gifted Delayed Gifted 

      

Simulation 

Genetic 

variation 

 

Narrow 

 

0.0% 

 

5.2% 

 

16.1% 

 

15.0% 

 Wide 0.0% 2.0% 5.0% 20.4% 

      

Empirical data  0.0%+ 2.5%*   

+ F(1,440)=.546, p=.460  * F(1,440)=11.508, p=.001 
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Table 6. The proportion of population variability explained by all neurocomputational 

parameter values and the family environment quotient, for the 2x2 design. Step-wise 

linear regressions were carried out for the four populations, at the point in training when 

irregular vowel-change verbs were most closely matched to the performance of the 6-

year-old children. Analyses were run separately for regular verbs and vowel-change 

irregular verbs. 

 

  
 

Environmental variation 

  Narrow Wide 

  Regular  

verbs 

Irregular 

verbs 

Regular 

verbs 

Irregular 

verbs 

      

Simulation 

Genetic 

variation 

 

Narrow 

 

39.7% 

 

60.1% 

 

74.0% 

 

75.1% 

 Wide 43.4% 49.9% 67.8% 65.1% 
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Figure captions 

 

Figure 1. Architecture of the connectionist model of English past tense acquisition, 

showing the internal parameters that varied in the population. 

 

Figure 2. Parameter values (x-axis) and their predicted frequency in the population (y-

axis) for the wide-genetic (black) and narrow-genetic (grey) variation conditions, for each 

of the 14 computational parameters. Each gene had two alleles, coded as binary values. 

Several genes coded for each parameter value. Sets of binary values were summed and a 

look-up table used to derive each parameter value. The numbers of binary alleles for each 

parameter were as follows. G-Wide = hidden units: 10; temperature: 10; noise: 8; learning 

rate: 12; momentum: 8; weight variance: 8; architecture: 6; learning algorithm: 4; nearest 

neighbour threshold: 10; pruning onset epoch: 10; pruning probability: 8; pruning 

threshold: 10; weight decay: 10; sparseness: 12 (total 126 bits). G-Narrow = hidden units: 

4; temperature: 6; noise: 6; learning rate: 4; momentum: 2; weight variance: 6; 

architecture: 2; learning algorithm: 4; nearest neighbour threshold: 4; pruning onset 

epoch: 4; pruning probability: 4; pruning threshold: 6; weight decay: 4; sparseness: 4 

(total 60 bits). 

 

Figure 3. Population means and standard deviations for accuracy of past tense production 

(a) Empirical data for 442 6-year-old children (from Bishop, 2005); (b) Population 

simulations for conditions with different ranges of variation: G = genetic variation, E = 

environmental variation, W = wide, N = narrow. 
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Figure 4. Population distributions for performance on regular and irregular past tense 

production. Empirical data are from Bishop (2005); simulation data are from a population 

with wide genetic variation and narrow environmental variation. 

 

Figure 5. Contributions to the population distribution of sub-populations, distinguished 

by whether a network has 3-layer architecture or a 2-layer architecture (+/ or /-) and 

whether the network is trained using cross entropy or not (/+ or /-). (a) and (b) show 

performance at a point in training when irregulars exhibited a wide range, while (c) and 

(d) show performance at an earlier point in training when regulars show a wide 

distribution. +/- afflicts both regulars and irregular, while -/+ particularly afflicts 

irregulars. N per sub-group: +/+ 841, +/– 57, –/+ 95, –/– 7.  

 

Figure 6. Population distributions of performance across development for five measures 

of past tense performance, for the condition using wide genetic variation and narrow 

environmental variation. 

 

Figure 7. Population distributions of performance across development for five measures 

of past tense performance, now using RMS error as the performance metric (data are the 

negative of the log of the error, so that larger numbers correspond to better performance). 

 

Figure 8. Population distributions for regular verbs and irregular vowel-change verbs, at 

two points in development (early = 50 epochs; late = 750 epochs). Plots compare 
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distributions for different conditions of genetic and environmental variation. G = genetic 

variation, E = environmental variation, W = wide, N = narrow. 

 

Figure 9. The predictive power of the environment in explaining variability in behaviour 

in past tense formation, for 6-year-old children (Bishop, 2005) and the simulation (G-

wide-E-narrow condition). For the empirical data, the predictor is an SES composite 

measure (Petrill et al., 2004). For the simulation data, the predictor is the family quotient 

parameter. 

 

Figure 10. Simulated changes in the predictive power of the environment across 

development for the past tense verb types, for differing ranges of genetic and 

environmental variation. Note the different scales. 

 

Figure 11. Different methods to carry out simulated association analyses depending on 

availability of system information. Accuracy data are for irregular vowel-change verbs 

from the G-wide-E-narrow condition at 63 epochs (matched to the children’s empirical 

data), and depict population performance relating to variability in the temperature 

parameter: (a) calibration data showing the function relating temperature and 

performance, with other parameters held constant; (b) population performance split by 

values of the parameter; (c) performance split by genotypes for the parameter, in rank 

order; (d) performance for each genotype, per gene influencing temperature. 
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Figure 12. Variance in behaviour predicted by each internal computational parameter for 

the G-wide-E-narrow condition. Early = 50 epochs of training; Mid = 100 epochs of 

training; Late = 750 epochs of training. Effect sizes indicate R
2
 values for independent 

linear regressions. 

 

Figure 13. Simulate gene-behaviour association analyses. Effect sizes in predicting 

variation in population performance from individual binary allele values (0 or 1), for (a) 

regular verbs and (b) irregular vowel-change verbs. Early = 50 epochs of training; Mid = 

100 epochs of training; Late = 750 epochs of training. There were 126 binary alleles, split 

into regions coding for each computational parameter: Hidden units (HU), temperature 

(TMP), noise (NS), learning rate (LR), momentum (MO), weight variance (WV), 

architecture (ARC), learning algorithm (LA), nearest-neighbour threshold (NNT), 

pruning onset (PO), pruning probability (PP), pruning threshold (PT), weight decay 

(WD), sparseness of connectivity (SP). 

 

Figure 14. Replicability of simulation association analyses. (a) Comparison of effect sizes 

for original G-wide-E-narrow population and for a population trained with the same 

genomes but re-sampled environmental variation; (b) comparison of computational 

parameter effect sizes for those populations. 

 

Figure 15. Replicability of simulation association analyses. (a) Comparison of effect sizes 

for original G-wide-E-narrow population and for two populations with re-sampled 
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genomes (same allele frequency) and re-sampled environments; (b) comparison of 

computational parameter effect sizes. 

 

Figure 16. Replicability of simulation association analyses. (a) Comparison of effect sizes 

for original G-wide-E-narrow population and for highskew and lowskew populations with 

different allele frequencies; (b) comparison of computational parameter effect sizes. 

 

Figure 17. Gene-environment interactions. Performance on (a) regular verbs and (b) 

vowel-change irregular verbs at early (50 epochs) and late (750 epochs) points in 

training, split by whether Hidden unit levels were low (30), Medium (50), or High (100), 

and by whether the family quotient was poor (0.6-0.7), low-average (0.7-0.8), medium-

average (0.8-0.9), or high (0.9-1). 

 

Figure 18. Pseudo gene-gene interactions. Performance on (a) regular and (b) vowel-

change irregular verbs, for early (50 epochs) and late (750 epochs) of training, split by 

two Hidden Unit levels (40 or 50) and by two Learning Rate levels (0.125 or 0.075). 

 

Figure A1. Changes in the population frequency of alleles across generations with and 

without selection. Dark grey line = first generation. Light grey line = 25
th

 generation. The 

ceiling number of more efficient alleles is 126, the total number of genes on the genome. 
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Figures 
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Figure 1 
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Figure 2 
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Figure 3 

 

(a) Empirical data (Bishop, 2005) 

 

 

 

 

 

 

 

(b) Simulation data 
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Figure 4 

 

(a) Empirical data: Regular verbs   (b) Empirical data: Irregular verbs 

 

 

 

 

 

 

(c) Simulation data: Regular verbs   (d) Simulation data: Irregular verbs 
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Figure 5 

 

(a) Simulations: Regular verbs  (b) Simulations: Irregular verbs 

 

 

 

 

 

 

(c) Simulations: Regular verbs (early) (d) Simulations: Irregular verbs (early) 
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Figure 6 

 (a) Regular verbs    (b) Rule generalisation for novel verbs 

 

 

 

 

 

 

(c) No-change irregular verbs (hit-hit) (d) Vowel-change irregular verbs (hide-hid) 

 

 

 

 

 

 

 

(c) Arbitrary irregular verbs (go-went) 
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Figure 7 

 (a) Regular verbs    (b) Rule generalisation for novel verbs 

 

 

 

 

 

 

(c) No-change irregular verbs (hit-hit) (d) Vowel-change irregular verbs (hide-hid) 

 

 

 

 

 

 

 

(c) Arbitrary irregular verbs (go-went) 
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Figure 8 

 

(a) Regular verbs at 50 epochs  (b) Irregular VC verbs at 50 epochs 

 

 

 

 

 

 

(c) Regular verbs at 750 epochs  (b) Irregular VC verbs at 750 epochs 
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Figure 9 

 

 (a) Empirical data: Regular verbs   (b) Empirical data: Irregular verbs 

 

 

 

 

 

 

 

(c) Simulation: Regular verbs    (d) Simulation: Irregular verbs 
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Figure 10 

 

(a) Narrow genetic / Narrow environment (b) Narrow genetic / Wide environment 

 

 

 

 

 

 

(c) Wide genetic / Narrow environment (d) Wide genetic / Wide environment 
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Figure 11 

(a) Parameter-behaviour function (other parameters constant) 

 

 

 

 

 

 

 

(b) Parameter-behaviour association   (c) Genotype-behaviour association 

 

 

 

 

 

 

 

(d) Simulated gene associations 
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Figure 12 

 (a) Regular verbs    (b) Rule generalisation for novel verbs 

 

 

 

 

 

 

(c) No-change irregular verbs (hit-hit) (d) Vowel-change irregular verbs (hide-hid) 

 

 

 

 

 

 

(c) Arbitrary irregular verbs (go-went) 
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Figure 13 

(a) Regular verbs 

 

 

 

 

 

 

 

 

(b) Irregular vowel change verbs 
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Figure 14 

(a) Replication with re-sampled environment 

 

 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 15 

(a) Replication with re-sampled genomes and environment 

 

 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 16 

(a) Replication with populations with different allele frequencies 

 

 

 

 

 

 

 

 

(b) Equivalent parameter effect sizes 
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Figure 17 

 

(a) Regular verbs 
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(b) Irregular vowel-change verbs 
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Figure 18 

 

(a) Regular verbs 

 

 

 

 

 

 

 

(b) Irregular vowel-change verbs 
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Figure A1 

 

(a) Selection without mutation 

 

 

 

 

 

 

(b) Selection with 10% mutation per generation 

 

 

 

 

 

 

(c) Breeding without selection 
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