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Abstract	

	
This	chapter	proposes	the	utility	of	one	tool	within	cognitive	neuroscience	–	
neurocomputational	modelling	–	for	understanding	the	mechanisms	that	
underlie	the	effects	of	low	socio-economic	status	(SES)	on	cognitive	and	brain	
development.	The	large	empirical	literature	in	this	field	mainly	comprises	
correlational	data	linking	metrics	of	SES	to	cognitive	outcomes,	educational	
outcomes,	and	measures	of	brain	function	and	structure.	Mechanistic	models	are	
required	to	unify	these	data	and	provide	a	foundation	for	effective	intervention.	
A	multi-level	artificial	neural	network	model	of	cognitive	development	is	
described	that	simulates	effects	of	SES	in	terms	of	differences	in	cognitive	
stimulation,	against	a	background	of	genetic	variation	in	cognitive	ability	across	
a	population.	Five	empirical	effects	are	simultaneously	captured	by	the	model:	
gaps	in	IQ	across	SES	that	widen	with	development	(von	Stumm	&	Plomin,	
2015),	increasing	restrictive	effects	of	low	SES	on	children	with	early	high	
cognitive	ability	(Feinstein,	2003),	high	heritability	of	cognitive	ability	(Plomin	et	
al.,	2016),	genetic	effects	on	social	mobility	(Ayorech	et	al.,	2017),	and	non-linear	
effects	of	SES	on	measures	of	brain	structure,	such	as	cortical	surface	area	(Noble	
et	al.,	2015).	Implications	and	limitations	of	the	model	are	discussed.	
Computational	models	are	a	valuable	tool	to	complement	other	cognitive	
neuroscience	methods	for	understanding	causal	pathways	of	poverty	on	
cognitive	and	brain	development.	
	
	
Keywords:	socio-economic	status;	computational	modelling;	artificial	neural	
networks;	cognitive	development;	behavioural	genetics;	brain	imaging	
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Poverty	is	about	people’s	lives.	Inequality,	one	of	its	major	drivers,	is	a	social	
issue.	Cognitive	neuroscientists	have	become	increasingly	interested	in	how	
being	raised	in	poverty	impacts	children’s	brain	and	cognitive	development.	But	
how	can	it	be	useful	to	reduce	people	to	instances	of	individual	brain	function?	
Poverty	is	the	result	of	social	structures	and	therefore	a	focus	on	neuroscience	
would	appear	to	be	a	distraction	(Farah,	2017).	

There	are	at	least	three	reasons	why	a	cognitive	neuroscience	approach	
may	be	useful.	First,	as	we	shall	see,	socioeconomic	status	(SES)	–	typically	
measured	by	a	combination	of	family	income,	parental	occupation,	and	parental	
education	–	has	been	found	to	correlate	with	differences	in	brain	structure,	brain	
function,	cognitive	ability,	and	educational	achievement.	However,	many	factors	
co-occur	with	low	SES	(see,	e.g.,	Hackman	et	al.,	2015).	Mothers	may	be	more	
stressed,	have	poorer	diets,	and	more	drug	exposure	while	pregnant;	children	
may	be	raised	in	less	nurturing,	more	polluted,	and	more	dangerous	
environments;	there	may	be	less	social	or	neighbourhood	support,	poorer	
schools,	and	less	supportive	attitudes	to	education;	children	may	have	fewer	
resources	and	opportunities	for	cognitive	stimulation	and	learning.	This	array	of	
factors	may	not	all	be	equally	responsible	for	producing	health,	cognitive,	and	
educational	outcomes.	If	the	biological	causal	pathways	of	SES	effects	are	
identified,	this	can	help	to	target	the	most	efficient	interventions	to	alleviate	the	
downstream	effects	of	poverty.	Such	interventions	offer	short-term	measures,	
while	the	longer-term	social	goal	of	reducing	poverty	can	be	pursued.	

Second,	there	is	a	straightforward	sense	in	which	evidence	that	poverty	
affects	the	brain	in	measurable	ways	is	a	powerful	message	to	policymakers.	A	
brain	image	is	worth	a	thousand	words.	Brain	data,	however,	represent	a	double-
edged	sword,	because	policymakers	may	be	liable	to	think	that	effects	observed	
on	brain	structure	and	function	are	then	immutable.	They	are	not,	because	we	
know	that	the	brain	is	plastic,	and	behavioural	interventions	can	improve	
outcomes.	A	study	of	brain	mechanisms	must	also,	therefore,	emphasise	this	
message	and	seek	to	identify	pathways	to	remediate	observed	deficits.	

Third,	work	in	education,	the	social	sciences,	and	the	cognitive	sciences	
has	generated	a	large	body	of	empirical	data	on	outcomes	that	are	correlated	
with	SES.	But	these	correlational	data	are	open	to	misunderstanding	and	
misinterpretation	if	the	underlying	mechanisms	are	not	understood.	Here	are	
three	examples	of	empirical	data	and	three	respective	possible	interpretations.		
	

(1) Gaps	in	children’s	IQs	(cognitive	ability)	across	levels	of	SES	are	evident	
from	infancy	and	these	gaps	widen	through	childhood	and	adolescence	
(von	Stumm	&	Plomin,	2015).	Some	process	must	be	getting	worse	across	
childhood	to	make	the	gaps	widen.		
	

(2) When	children	are	split	into	brighter	and	less	bright	groups	around	two	
years	of	age	and	then	followed	up,	over	time	brighter	children	from	
poorer	backgrounds	fall	back	compared	to	their	peers,	and	by	age	10,	
they	have	been	overtaken	by	less	bright	classmates	from	richer	families	
(Feinstein,	2003).	With	age,	children’s	rank	in	their	class	is	increasingly	
constrained	by	environmental	factors	such	as	SES.	From	data	like	these,	
policymakers	have	concluded	that	early	potential	is	lost	through	
environmental	factors	such	as	poor	childcare,	poor	early	years	education,	
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poor	schooling	and	lack	of	access	to	health	services	(HM	Government,	
2003).	

	
(3) One	way	to	measure	social	mobility	is	to	assess	whether	children	reach	a	

higher	level	of	educational	attainment	than	their	parents.	On	this	
measure,	however,	at	least	half	the	variability	can	be	linked	to	genes	
(Ayorech	et	al.,	2017).	Genetics	would	seem	to	place	limits	on	how	much	
social	mobility	can	be	influenced	by	interventions.	Do	genes	restrict	
whether	children	can	escape	poverty	through	education?	

	
This	chapter	outlines	one	methodology	within	cognitive	neuroscience	to	
investigate	the	mechanisms	underlying	SES	effects	on	brain	and	cognition:	multi-
level	neurocomputational	models	of	cognitive	development.	The	model	
presented	here	was	applied	to	each	of	the	above	empirical	effects.	It	generated	
alternative	interpretations	of	each	set	of	empirical	data	(Thomas,	Forrester	&	
Ronald,	2013;	Thomas	et	al.,	2018;	Thomas	&	Meaburn,	2018).	
	
SES	effects	on	brain	and	cognitive	development	
	
We	begin	with	a	(very)	brief	overview	of	the	existing	empirical	literature.	We	
know	that	differences	in	SES	have	marked	effects	on	cognitive	development	
(Farah	et	al.,	2006).	These	effects	are	not	uniform	across	all	areas	of	cognition,	
but	are	particularly	marked	in	the	development	of	language	and	cognitive	
control	(often	referred	to	as	‘executive	functions’).	Hackman	and	Farah	(2009)	
considered	these	differential	effects	in	terms	of	relatively	independent,	
anatomically	defined	neurocognitive	systems	in	the	brain.	Strongest	effects	of	
SES	were	observed	for	the	language	system	(left	perisylvian	regions)	and	the	
executive	system	(prefrontal	regions,	decomposed	into	working	memory	system	
[lateral	prefrontal],	cognitive	control	[anterior	cingulate]	and	reward	processing	
[ventromedial	prefrontal]).	SES	explained	32%	of	the	variance	in	the	language	
composite	behavioural	measure,	6%	in	cognitive	control,	and	6%	in	working	
memory.	

Effects	of	SES	have	been	observed	on	measures	of	brain	structure	using	
magnetic	resonance	imaging.	For	example,	Noble	et	al.	(2015)	reported	effects	of	
family	income	levels	on	cortical	surface	area	in	a	cross-sectional	sample	of	1099	
children	in	the	USA	aged	3-20	years.	The	relationship	was	non-linear,	with	the	
strongest	effects	observed	in	the	lowest	income	families;	differences	in	income	at	
higher	levels	were	associated	with	smaller	changes	in	cortical	surface	area.	
However,	SES	only	explained	a	few	percentage	points	of	the	variance;	there	was	
a	great	deal	of	variation	in	brain	structure	measures	not	explained	by	SES.	
Notably,	the	strongest	effects	of	SES	on	brain	structure	were	found	in	regions	
supporting	language,	reading,	executive	functions	and	spatial	skills,	consistent	
with	behavioural	evidence.	

SES	has	also	been	found	to	impact	on	neural	development	at	much	earlier	
ages.	Betancourt	et	al.	(2016)	examined	the	relationship	between	SES	measures	
(income-to-needs	ratio	and	maternal	education)	in	a	sample	of	African-American	
female	infants	aged	5	weeks.	They	observed	that	lower	SES	was	associated	with	
smaller	cortical	grey	and	deep	grey	matter	volumes,	pointing	to	the	biological	
embedding	of	adversity	very	early	in	development.	
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The	link	between	brain	structure	and	function	is	indirect	and	not	well	
understood.	Nevertheless,	researchers	have	observed	differences	in	brain	
function	associated	with	SES	both	with	functional	magnetic	resonance	imaging	
(regional	oxygenated	blood	flow	differences)	and	with	electrophysiology	
(measurement	of	voltage	potentials	on	the	scalp	associated	with	neural	activity).	
For	example,	using	functional	magnetic	resonance	imaging,	Raizada	et	al.	(2008)	
found	that	the	weaker	language	skills	observed	in	5-year-old	children	from	
lower	SES	backgrounds	were	associated	with	reduced	hemispheric	functional	
specialisation	in	left	inferior	frontal	gyrus.	Specialisation	to	the	left	hemisphere	
is	a	marker	of	the	functional	maturation	of	language	systems.	Using	
electrophysiology	with	a	sample	of	3-8	year	olds,	Stevens,	Lauinger	and	Neville	
(2009)	demonstrated	reduced	neural	signatures	of	selective	attention	in	children	
from	low-SES	families	(indexed	by	maternal	education).	In	an	auditory	
processing	task	where	the	children	had	to	attend	selectively	to	one	of	two	
simultaneously	presented	narrative	stories,	the	neural	processing	differences	
that	characterised	the	low-SES	children	were	related	specifically	to	a	reduced	
ability	to	filter	out	irrelevant	information.		

These	few	examples	illustrate	the	general	methods	from	a	fast	growing	
neuroscience	literature	(for	wider	reviews	of	structural	and	functional	brain	
imaging	and	SES	see	Farah,	2017;	Pavlakis	et	al.,	2015).	Importantly,	cognitive	
neuroscientists	do	not	yet	understand	the	causal	pathways	of	these	cognitive	and	
brain	effects,	not	least	because	the	SES	measure	represents	a	distal	cause	and	
does	not	isolate	the	proximal	causes	that	influence	cognitive	and	brain	
development.	Some	differences	associated	with	low	SES	may	represent	deficits	
(e.g.,	poorer	brain	development	caused	prenatally	by	poor	maternal	nutrition	or	
postnatally	by	chronic	stress).	Others	may	represent	adaptations	(e.g.,	apparent	
poorer	selective	attention	may	reflect	higher	vigilance	appropriate	to	a	more	
dangerous	environment;	apparently	impulsivity	may	reflect	maximising	short-
term	rewards	because	long-term	rewards	have	proved	unreliable).	

Hackman,	Farah	and	Meaney	(2010)	classed	potential	causal	mechanisms	
into	three	types,	based	on	research	naturalistic	research	with	humans	and	
experimental	research	with	animal	models:	(1)	those	operating	prenatally	on	
foetal	development,	(2)	those	affecting	postnatal	parental	nurturing,	and	(3)	
those	affecting	postnatal	cognitive	stimulation.	Explanatory	models	tend	to	
distinguish	what	is	lost	from	low-SES	families	(resources,	good	nutrition,	
learning	opportunities)	from	what	is	added	(stress,	toxins,	childhood	adversity	
experiences)	(Sheridan	&	McLaughlin,	2016).	Causal	explanations	are	likely	to	be	
complex:	all	three	classes	of	factors	could	be	responsible;	or	combinations	could	
differ	per	brain	system.	The	combination	of	factors	may	depend	on	details	of	the	
specific	population	and	local	factors,	in	terms	of	absolute	levels	of	
resources/poverty,	where	the	economic	and	environmental	restrictions	lie	in	a	
particular	society,	and	the	relative	levels	of	poverty	(inequality).	

Against	this	background	of	(hopefully)	remediable	environmental	effects,	
we	also	know	that	in	Western	societies,	a	fair	proportion	of	children’s	variability	
in	cognitive	and	educational	outcomes,	and	indeed	brain	structure,	can	be	
predicted	by	their	genotypes	–	that	is,	abilities	are	‘heritable’	(Plomin	et	al.,	
2016).	The	term	heritable	is	often	misunderstood	to	relate	to	necessary	
outcomes	(because	children’s	genes	aren’t	changeable)	but	this	interpretation	is	
incorrect.	In	different	environments,	genetic	effects	may	be	increased	or	
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decreased:	observed	genetic	effects	are	not	inevitable	or	deterministic.	They	
show	what	is,	not	what	can	be.	Nevertheless,	we	can	take	measures	of	
heritability	as	current	summary	statistics:	given	the	current	range	of	family	and	
educational	environments	that	children	are	raised	in,	and	which	shape	the	world	
they	can	explore,	heritability	is	a	statistic	that	capture	how	much	variance	is	
currently	being	predicted	by	genetic	similarity.	

There	has	been	a	flurry	of	new	findings	with	respect	to	life	outcomes,	SES	
and	behavioural	genetics.	For	example,	researchers	have	reported	that	
educational	achievement	is	‘highly’	heritable,	with	as	much	as	60%	of	the	
variance	in	examination	results	in	16	year	olds	explained	by	genetic	similarity	
(Krapohl	et	al.,	2014).	These	genetic	effects	appear	general	across	topics	rather	
than	specific	to	different	academic	subjects	(Rimfeld	et	al.,	2015).	Direct	
measures	of	DNA	variation	have	pointed	to	regions	of	the	genome	associated	
with	academic	achievement,	albeit	with	coarse	educational	measures	as	the	
outcome	(years	of	schooling	completed)	and	smaller	amounts	of	variance	
explained	(e.g.,	11-13%	variance;	Lee	et	al.,	2018).	Notably,	variations	in	SES	
have	been	reported	to	partly	align	with	genetic	variation	(e.g.,	Trzaskowski	et	al.,	
2014).	Moreover,	social	mobility	–	where	an	individual’s	SES	differs	from	that	of	
their	parents,	such	as	in	educational	attainment	–	has	itself	been	reported	as	
partly	heritable,	with	one	study	observing	that	just	under	half	of	the	variance	in	
social	mobility	was	linked	to	genetic	variation	(Ayorech	et	al.,	2017),	and	another	
reporting	that	direct	measures	of	DNA	variation	could	explain	around	3%	of	the	
variance	in	upward	educational	mobility	(Belsky	et	al.,	2018).	

Evidence	of	the	role	of	genetic	variation	in	influencing	cognitive,	
educational	and	life	outcomes,	and	of	the	possible	correlations	between	the	
genetic	variation	and	SES	gradients,	drives	the	debate	between	social	causation	
and	social	selection	accounts	(Farah,	2017).	Under	a	social	causation	account,	SES	
effects	and	their	persistence	across	generations	are	driven	by	the	environments	
in	which	children	are	raised.	Under	a	social	selection	account,	SES-related	
differences	in	brain	and	cognition	are	under	genetic	control,	with	population	
stratification	of	genotypes	according	to	SES.	

Our	concern	here	is	not	the	competing	merits	of	these	accounts,	but	
merely	the	challenge	posed	by	respective	data	on	the	roles	of	environmental	
factors	and	genetic	factors	on	brain	and	cognitive	development.	How	can	these	
bodies	of	empirical	data	be	reconciled	into	a	coherent	causal	account?	Given	the	
complexity	and	multi-faceted	nature	of	both	brain	development	and	cognitive	
development,	how	can	we	begin	to	formulate	and	test	competing	explanations	
for	the	pathways	by	which	SES	effects	operate	–	and	their	implications	for	
intervention?	Even	under	a	social	causation	account,	one	must	accept	the	role	of	
genetic	variation	in	contributing	to	differences	in	outcomes.	Even	under	a	social	
selection	account,	one	must	accept	that	differences	in	experiences	will	influence	
development.	
	
Neurocomputational	modelling	
	
One	method	used	in	cognitive	neuroscience	to	formulate	and	test	causal	
accounts	is	computational	modelling.	Models	can	be	formulated	at	different	
levels	of	description:	of	individual	neurons,	of	circuits	of	neurons,	or	of	whole	
brain	systems.	In	each	of	these	cases,	models	seek	to	capture	empirical	evidence	
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on	patterns	of	brain	activation	or	anatomical	structure.	Models	can	also	be	
formulated	at	a	cognitive	level:	although	certain	constraints	may	be	included	
from	neuroscience	about	the	nature	of	computation,	the	target	is	then	to	capture	
empirical	data	on	high-level	behaviour.	Multi-level	models	include	constraints	
from	several	levels	of	description	and	seek	to	capture	data	both	at	the	level	of	
brain	and	behaviour	(Thomas,	Forrester	&	Ronald,	2016).	Models	may	be	
constructed	to	simulate	the	characteristics	of	the	static	properties	of	a	system	at	
a	given	point	in	time,	or	they	may	be	constructed	to	capture	developmental	
change,	where	trajectories	of	behaviour	are	simulated	as	they	alter	over	time	
(Elman	et	al.,	1996;	Mareschal	&	Thomas,	2007).	

How	might	we	construct	a	multi-level	computational	model	to	explain	SES	
effects	on	brain	and	cognitive	development?	Minimally,	we	need	to	stipulate	a	
neutrally	constrained	developmental	mechanism	which	acquires	a	target	
behaviour	through	interaction	with	a	structured	learning	environment;	we	need	
to	stipulate	how	growth	of	that	developmental	mechanism	and	interactions	with	
the	structured	learning	environment	might	alter	as	a	consequence	of	variations	
in	SES;	and	we	need	to	stipulate	separately	how	genetic	variation	might	alter	the	
properties	of	the	developmental	mechanism,	for	example	in	terms	of	how	it	
grows,	operates,	and	responds	to	stimulation.	Thomas,	Forrester	and	Ronald	
(2013)	began	this	line	of	research	by	constructing	an	artificial	neural	network	
model	of	the	effects	of	variation	in	SES	on	language	acquisition,	focusing	on	the	
specific	domain	of	inflectional	morphology	(that	is,	altering	the	sounds	of	words	
to	change	their	meaning,	such	as	in	forming	the	past	tense	of	a	verb).	The	model	
was	able	to	simulate	how	children’s	language	skills	altered	across	the	SES	
gradient,	as	well	as	generating	testable	predictions	about	children’s	language	
outcomes	(see	also,	Thomas	&	Knowland,	2014;	Thomas,	2018,	for	the	model’s	
extension	to	considering	delay	and	giftedness).	Thomas,	Forrester	and	Ronald	
(2016)	and	Thomas	(2016)	showed	how	the	same	model,	treated	more	
abstractly,	could	be	extended	into	a	multi-level	format,	to	incorporate	a	genetic	
level	of	description	and	indices	of	brain	structure	as	well	as	behaviour.	In	the	
following	sections,	we	demonstrate	how	the	model	can	be	applied	to	considering	
SES	effects	on	brain	and	cognitive	development	(Thomas	et	al.,	2018;	Thomas	&	
Meaburn,	2018).	
	
Model	assumptions	and	simplifications	
	
A	schematic	of	the	model	is	shown	in	Figure	1.	In	the	model,	cognitive	
development	occurs	through	the	interaction	of	an	experience-dependent	
mechanism	with	a	structured	learning	environment.	The	mechanism	is	an	
artificial	neural	network,	which	embodies	computational	constraints	from	neural	
processing	(Elman	et	al.,	1996).	These	constraints	are,	respectively,	a	network	of	
simple	non-linear	integrate-and-fire	processing	units,	distributed	
representations	of	knowledge,	associative	error-driven	learning	altering	
network	connectivity	strengths	and	unit	thresholds,	and	network	development	
including	phases	of	growth	and	pruning.	The	structured	learning	environment	is	
drawn	from	the	field	of	language	development.	The	single	processing	structure	is	
assumed	to	lie	within	a	larger	cognitive	architecture	but	is	not	intended	in	this	
model	to	correspond	to	any	specific	brain	region.	
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The	mechanism	learns	input-output	mappings	that	drive	behaviour	
relevant	to	its	domain.	Accuracy	of	input-output	mappings	is	used	as	a	measure	
of	behavioural	performance.	Structural	properties	of	the	artificial	neural	
network,	including	the	total	number	of	connections	and	the	total	strength	of	
excitatory	and	inhibitory	connections,	are	used	as	analogues	of	brain	structure	
measures	such	as	cortical	thickness,	cortical	surface	area,	grey	matter	volume,	
and	white	matter	volume	(Thomas,	2016).	

Individual	differences	factors,	such	as	SES	and	genetic	variation	are	not	
considered	in	isolation	but	in	terms	of	how	they	modulate	the	above	species-
universal	mechanisms	that	underpin	development	across	all	children.	In	this	
sense,	the	model	construes	individual	differences	as	operating	within	a	
developmental	framework	(Karmiloff-Smith,	1998).	Various	options	are	
available	to	implement	the	effect	of	SES:	as	a	modulation	of	the	level	of	
stimulation	available	in	the	learning	environment	(see	Thomas,	Forrester	&	
Ronald,	2013);	as	a	modulation	of	the	growth	of	the	network	and	its	processing	
properties;	or	both	of	these	effects	operating	in	a	correlated	fashion	(see	Thomas	
et	al.,	2018).	Each	network	represents	a	simulated	child	undergoing	
development	in	a	family	environment.	Each	family	is	assigned	a	value,	between	0	
and	1,	to	represent	its	SES,	which	is	then	used	to	modulate	the	learning	
environment	or	the	network	structure.	

Genetic	variation	is	assumed	to	operate	by	influencing	the	
neurocomputational	properties	of	the	processing	mechanism,	in	terms	of	its	
capacity,	plasticity,	and	noisiness	of	processing	(these	are	broad	
characterisations	of	the	role	of	a	larger	set	of	parameters,	show	in	Table	1).	Since	
behavioural	genetic	research	on	cognition	has	indicated	that	common	genetic	
variation	amounts	to	large	numbers	of	small	genetic	effects	on	a	wide	range	of	
neural	properties,	genetic	variation	is	implemented	via	a	polygenic	coding	
scheme:	an	artificial	genome	contains	sets	of	genes	which	each	influence	
variation	on	a	neurocomputational	property	(14	properties,	each	influenced	by	
8-10	genes);	the	combination	of	small	variations	across	a	large	set	of	properties	
produces	networks	with	a	normal	distribution	of	learning	properties	(Thomas,	
Forrester	&	Ronald,	2016,	for	details).	The	combination	of	simulated	children	
with	different	learning	abilities,	interacting	with	environments	with	different	
levels	of	stimulation,	produces	a	population	of	children	with	different	
developmental	trajectories	in	both	behaviour	and	brain	structure.	At	any	point	in	
development,	cross-sections	can	be	taken	of	behaviour	or	structure	across	the	
population,	and	correlations	derived	to	SES	or	genetic	variation.		
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Figure	1.	Structure	of	neurocomputational	model	simulating	SES	effects	on	
cognitive	and	brain	development.	An	experience-dependent	developmental	
mechanism	(artificial	neural	network)	interacts	with	a	structured	learning	
environment	to	acquire	a	cognitive	behaviour.	The	multi-level	model	embodies	
constraints	at	the	level	of	genes,	brain	structure	(connections,	units),	behaviour,	
and	environment.	Individual	differences	factors	(SES,	genetic	variation)	are	
considered	with	respect	to	how	they	modulate	species	universal	mechanisms	
supporting	cognitive	development.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Simulation	design	
	
A	single	network	was	trained	on	its	family-specific	set	of	input-output	mappings.	
Per	its	source	cognitive	domain,	in	this	case	the	inputs	were	phonological	
representations	of	verb	stems	and	the	outputs	were	inflected	forms	of	English	
verbs.	Lifespan	development	corresponded	to	1000	exposures	(or	‘epochs’)	of	
the	network	to	the	training	set.	The	training	set	comprised	a	maximum	of	500	
input-output	mappings.	The	development	of	1000	individual	children	was	
simulated.	Genomes	were	randomly	initialised	to	produce	genetic	variation	in	
learning	ability	across	the	population.	Pairs	of	‘twin’	networks	were	created	
which	either	shared	the	same	genome	(identical)	or	shared	50%	of	genes	on	
average	(fraternal)	and	twin	pairs	raised	in	the	same	family.	This	design	enabled	
the	use	of	twin	correlations	to	compute	heritability	levels.	SES	was	allowed	to	
vary	widely	across	families	to	capture	the	potential	effects	of	poverty.	In	the	
simulations	described	here,	SES	was	implemented	as	modulation	of	the	level	of	
stimulation	in	the	learning	environment,	and	was	allowed	to	vary	between	0	and	
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1.	A	family	with	a	value	of	0.6	would	generate	a	training	set	that	only	contained	a	
(randomly	sampled)	subset	of	60%	of	the	full	training	set	(see	Thomas,	2016,	for	
further	details,	including	specification	of	neurocomputational	properties	and	
calibration	of	their	range;	results	are	reported	for	the	G-wide	E-wide	condition	in	
that	paper).	
	
Simulation	1:	SES	effects	on	IQ	change	across	development	
	
Thomas	et	al.	(2018)	first	considered	developmental	trajectories	of	behaviour.	
The	population	was	split	into	three	groups,	those	in	the	upper	quartile	of	SES	
(training	sets	with	>75%	of	available	experiences),	those	in	the	middle	two	
quartiles,	and	those	in	the	lowest	quartile	(<25%	of	available	experiences).	
Figure	2(a)	shows	the	latent	growth	trajectories	of	IQ	for	children	from	low,	
middle,	and	high	SES	groups	in	the	empirical	data	of	von	Stumm	and	Plomin	
(2015),	for	around	fifteen	thousand	UK	children	followed	from	infancy	to	
adolescence.	It	shows	diverging	trajectories	with	age.	The	SES	gap	widens.	Figure	
2(b)	shows	simulated	data	of	IQ	scores	in	the	model,	where	IQ	was	computed	
according	to	the	population	distribution	at	each	measurement	point	[IQ	score	=	
((individual	performance	–	population	mean)/population	standard	deviation	X	
15)	+	100].	Figure	2(c)	shows	the	developmental	trajectories	of	performance	
without	the	transformation	to	IQ	scores.	The	simulation	is	able	to	catch	the	lower	
initial	levels	of	performance	at	the	youngest	age,	as	well	as	the	divergence	of	the	
trajectories	across	developmental	time.	

One	might	conclude	from	the	empirical	data	that	the	conditions	producing	
SES	differences	in	cognitive	development	must	worsen	over	time	to	produce	the	
divergence.	The	simulations	reproduced	the	diverging	pattern	with	a	consistent	
SES	effect	over	time.	In	the	model,	divergence	occurred	due	to	non-linear	
trajectories	of	development.	Increasing	gaps	between	SES	groups	do	not,	then,	
necessarily	imply	worsening	SES	causal	factors.	
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Figure	2.	(a)	Empirical	longitudinal	data	from	a	UK	sample	of	twins	(N=	14,853	
children)	plotting	IQ	change	over	development	from	infancy	to	adolescence,	split	
by	socioeconomic	status	and	shown	separately	by	gender	(reproduced	with	
permission	from	von	Stumm	&	Plomin,	2015).	High	SES	=	>	1	standard	deviation	
(SD)	above	SES	mean;	low	=	<	1	SD	below	SES	mean;	middle	=	<	1	SD	above	SES	
mean	and	>	1	SD	below	SES	mean.	(b)	Simulation	data	plotting	IQ	change	across	
children’s	development	where	SES	is	captured	by	differences	in	cognitive	
stimulation.	High	SES	=	upper	quartile,	Middle	SES	=	middle	two	quartiles,	Low	
SES	=	lower	quartile.	(c)	Equivalent	mean	performance	on	task	(proportion	
correct)	for	simulated	SES	groups.	
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Simulation	2:	SES	and	developmental	effects	on	population	rank	order	
	
Thomas	and	Meaburn	(2018)	used	the	same	model	to	simulate	the	analysis	
reported	by	Feinstein	(2003).	The	empirical	data	from	the	1970	Birth	Cohort	
Survey	are	re-plotted	in	Figure	3.	Around	1,300	UK	children	were	classified	into	
high	(upper	quartile)	and	low	(lower	quartile)	cognitive	ability	at	22	months	and	
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then	followed	longitudinally	to	10	years	of	age,	with	high	SES	(top	24%)	and	low	
SES	(bottom	13%)	subgroups	tracked	separately.	Children	are	depicted	by	the	
mean	population	rank	order	of	their	group,	where	100	is	high	performance	and	1	
is	low	performance.	Somewhere	between	5	and	10	years	of	age,	initially	high-
ability/low-SES	children	fell	below	the	rank	of	low-ability/high-SES	children.	
Following	publication	of	these	data,	the	findings	were	criticised	on	two	grounds.	
First,	that	they	do	not	represent	a	real	effect	but	instead	regression	to	the	mean	
of	initially	extreme	scores	through	measurement	error	(Jerrim	&	Vignoles,	
2013).	Second,	that	the	most	emotive	finding,	of	the	cross-over	of	high-
ability/low-SES	and	low-ability/high-SES	groups	between	5	and	10,	was	hard	to	
replicate	and	depended	on	cut-offs	used	to	define	groups;	for	example,	crossing-
over	was	more	likely	under	less	extreme	definitions	of	high	and	low	cognitive	
ability	(Washbrook	&	Lee,	2015;	e.g.,	Figure	1).	
	
	
Figure	3.	Longitudinal	empirical	data	from	the	1970	Birth	Cohort	Survey	
following	the	population	rank	of	children	on	cognitive	ability	tasks,	split	by	
ability	(high,	low)	at	22	months,	and	family	socio-economic	status	(re-plotted	
from	Feinstein,	2003).	Y-axis	shows	mean	population	rank	of	each	group,	where	
a	higher	rank	marks	better	performance	on	age-appropriate	cognitive	tests.			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure	4	depicts	the	computational	simulation	of	these	data	(Thomas	&	

Meaburn,	2018).	Early	in	training	(25	epochs	out	of	1000	epochs),	simulated	
children	were	split	into	high	and	low	‘ability’	groups	based	on	behaviour	
(accuracy	of	input-output	mappings).	High	ability	was	defined	as	population	
rank	>650	(where	1000	is	good,	1	is	poor),	low	ability	as	population	rank	<350.	
These	groups	were	subdivided	by	SES,	as	a	mean	split	(simulated	SES	varied	0	to	
1;	high	SES>.5,	low	SES<.5).	Performance	of	the	groups	was	then	followed	over	
development.	Figure	4(a)	depicts	the	mean	population	rank	of	each	group.	As	in	
the	Feinstein	(2003)	data,	high-ability/high-SES	and	low-ability/low-SES	groups	
broadly	held	their	mean	rank.	High-ability/low-SES	showed	declining	rank	and	
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low-ability/high-SES	show	ascending	rank,	such	that	the	groups	converged.	
Notably,	they	did	not	crossover.	Figure	4(b)	shows	the	same	data	but	for	
performance.	It	is	included	to	emphasise	that	we	are	observing	modulations	in	
developmental	trajectories,	and	that	changes	in	relative	rank	positions	may	
exaggerate	small	differences	in	individuals	who	are	nevertheless	all	showing	
developmental	improvements	with	age.	

Crucially	here,	there	was	no	noise	in	the	measurement	of	performance	in	
the	groups.	The	convergence	of	the	trajectories,	at	least	in	the	simulation,	cannot	
have	risen	from	regression	to	the	mean	following	measurement	error	(Jerrim	&	
Vignoles,	2013).	It	is	a	real	reflection	of	the	operation	of	constraints	on	
development.	Figure	4(c)	takes	the	same	population	of	children	but	now	alters	
the	definition	of	high	and	low	ability	to	be	less	extreme	(high	ability:	population	
rank	>500;	low	ability:	population	rank	<500)	and	the	definition	of	SES	more	
extreme	(high:	SES	>.75;	low:	SES	<.25).	Now	the	trajectories	of	high-ability/low-
SES	and	low-ability/high-SES	did	cross	over.	The	simulations	captured	the	
empirical	observation	that	the	crossover	pattern	is	sensitive	to	group	definitions	
(Washbrook	&	Lee,	2015).	

One	simple	interpretation	of	the	Feinstein	data	is	that	changes	in	
children’s	population	rank	performance	in	cognitive	ability	tests	stem	from	
environmental	causes.	For	the	simulation,	we	have	available	to	us	the	full	set	of	
parameters	that	influences	each	simulated	child’s	developmental	trajectory:	both	
the	stipulated	environmental	effect,	in	terms	of	the	level	of	cognitive	stimulation,	
and	the	stipulated	genetic	individual	differences,	in	terms	of	the	
neurocomputational	patterns	of	each	artificial	neural	network.	We	can	then	use	
these	parameters	in	a	multiple	regression	analysis	to	see	which	predicted	
population	rank	change	across	development.	

Was	all	the	rank	change	due	to	the	environmental	manipulation?	Table	1	
shows	the	results	of	this	multiple	regression,	with	the	environmental	parameter	
marked	in	bold,	and	the	respective	influence	of	each	neurocomputational	
parameter	below.	First,	it	is	worth	noting	that	in	the	simulation,	since	
environmental	differences	acted	throughout	development,	they	influenced	
measures	of	ability	even	at	the	early	stage	of	development,	here	explaining	
22.7%	of	the	variance	at	the	first	time	point.	Early	measurement	does	not	give	an	
unbiased	measure	of	‘genetic’	ability	free	from	SES	influences.	Second,	as	
expected,	environmental	differences	did	account	for	a	significant	amount	of	
variance	in	children’s	change	in	rank	across	development,	up	to	10%	at	the	final	
time	point.	But	notably,	a	number	of	neurocomputational	parameters	also	
contributed	to	change	in	rank.	These	included	parameters	influencing	the	
capacity	and	plasticity	of	the	mechanism,	and	consequently	the	shape	of	the	
developmental	trajectory.	

In	other	words,	the	model	highlights	that	children	develop	at	different	
rates.	Some	children	are	late	bloomers,	others	slow	later	in	development.	This	
will	cause	changes	in	population	rank	order	that	are	not	solely	related	to	
variations	in	environmental	stimulation.	It	is	not	necessary,	therefore,	to	
conclude	from	the	Feinstein	plot	that	the	only	cause	of	changes	in	children’s	
population	rank	is	due	to	environmental	causes	such	as	SES.	In	turn,	this	implies	
that	not	all	the	change	in	rank	would	be	removed	by	reducing	SES	disparities.	
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Figure	4.	Simulations	of	longitudinal	change	in	rank	and	change	in	performance	
across	development	in	the	computer	model.	Rank	1000	=	best,	rank	1	=	worst.	
SES	parameter	varies	between	1	(highest)	and	0	(lowest).	(a)	Mean	change	in	
rank	for	high	and	low	ability	groups	defined	at	time	1	(epoch	25),	where	high	is	
rank	>650	and	low	is	rank	<350,	split	by	SES,	where	high	>.5	and	low	<.5.	(b)	
Equivalent	performance	on	task	(proportion	correct).	(c)	Mean	change	in	rank	
where	high	ability	is	time	1	rank	>500	and	low	ability	is	rank	<500,	and	where	
high	SES	>.75	and	low	SES	<.25.	(d)	Equivalent	performance	on	task	for	these	
group	criteria.	
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Table	1.	Level	of	environmental	stimulation	and	neurocomputational	
parameters	as	predictors	of	developmental	change	in	the	model,	measured	by	
individual’s	change	in	population	rank	performance	across	development	(scores	
show	standardised	beta	coefficients	from	a	linear	regression	model).	
Neurocomputational	parameters	are	labelled	according	to	their	approximate	
processing	role.	Both	environmental	stimulation	and	network	parameters	
explain	variance	in	rank	change	(environment	is	marked	by	bold).	The	rightmost	
column	indicates	predictors	of	whether	an	individual’s	performance	(rank)	as	an	
adult	exceeds	the	rank	of	the	quality	of	their	environment,	as	an	indicator	of	
social	mobility.	Time	1	=	25	epochs	of	training,	Time	2	=	50,	Time	3	=	100,	Time	4	
=	250,	Time	5	=	500,	Time	6	=	1000.	
	
	
	 	 Predictors	of	developmental	change	in	Population	

rank	against	Time	1	

Final	rank	

vs.	SES	rank	

Parameter	 Neural	network	

processing	role	

Time	2	 Time	3	 Time	4	 Time	5	 Time	6	 	

Model	fit	(R2)	 	 0.181* 0.312* 0.368* 0.379* 0.384* 0.466* 

SES Environment 0.158* 0.274* 0.332* 0.337* 0.333* -0.361* 

Hidden Units Capacity -0.069+ -0.089* -0.079* -0.07* -0.053+ 0.356* 

Architecture Capacity -0.185* -0.212* -0.171* -0.142* -0.129* 0.297* 

Sparseness Capacity 0.028 0.037 0.036 0.032 0.036 0.016 

Pruning Onset Capacity 0.044 0.074* 0.077* 0.074* 0.067* 0.061* 

Pruning  

   probability Capacity 0.021 0.017 0.004 -0.002 -0.006 -0.007 

Pruning 

Threshold Capacity 0.033 0.013 0.006 0.023 0.025 -0.002 

Learning    

   algorithm 

Capacity / 

  plasticity -0.064+ -0.074* -0.107* -0.119* -0.138* 0.172* 

Learning Rate Plasticity -0.148* -0.159* -0.177* -0.186* -0.199* -0.004 

Momentum Plasticity -0.077* -0.091* -0.109* -0.108* -0.105* -0.089* 

Weight variance Plasticity 0.006 0.004 0.033 0.043 0.052+ -0.1* 

Unit activation  

   function 

Plasticity / 

  signal -0.107* -0.147* -0.178* -0.184* -0.188* -0.053+ 

Noise Signal 0.019 0.036 0.069* 0.101* 0.116* -0.143* 

Response  

   threshold Signal -0.223* -0.292* -0.304* -0.308* -0.309* 0.11* 

Weight Decay Signal -0.004 -0.015 -0.011 -0.003 -0.003 -0.015 

+ p < 0.05  * p < .01 
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Simulation	3:	Genetic	constraints	on	social	mobility	
	
The	model	considered	SES	effects	against	the	background	of	genetically	
influenced	variations	in	learning	ability.	Thus,	these	simulations	were	able	to	
capture	the	high	heritability	of	behaviour.	For	example,	heritability	of	behaviour	
shown	in	Figure	4(a)	at	the	final	measurement	point	was	51%	under	an	additive	
model,	computed	from	the	twin	design.	The	genetic	component	also	allows	the	
simulation	to	address	data	on	social	mobility.	In	the	model,	social	mobility	is	
defined	as	a	developmental	outcome	that	is	greater	or	lesser	than	the	SES	of	the	
family	in	which	the	child	is	raised	(Thomas	&	Meaburn,	2018).	This	can	be	
measured	as	the	difference	in	population	rank	order	of	a	family’s	SES	compared	
to	the	simulated	child’s	population	rank	order	ability	at	the	end	of	training.	For	
example,	if	the	SES	rank	was	500	and	the	ability	rank	was	600,	this	would	qualify	
as	upwards	social	mobility;	if	the	SES	rank	was	500	and	the	final	ability	rank	was	
400,	this	would	qualify	as	downwards	social	mobility.	Table	1,	rightmost	column,	
shows	the	results	of	a	multiple	linear	regression	predicting	the	rank	disparity	
measure	of	social	mobility	from	each	simulated	child’s	parameters.	Notably,	SES	
itself	predicted	a	reliable	amount	of	the	disparity	measure.	Much	of	this	
relationship	was	driven	by	networks	that	fell	below	expected	levels	in	high	SES	
environments,	less	by	networks	that	finished	above	expected	levels	in	low	SES	
environments.	Several	of	the	neurocomputational	parameters	relating	to	the	
network’s	capacity	were	reliable	predictors	of	the	disparity	measure.	These	
indexed	whether	the	network	had	the	capacity	to	best	take	advantage	of	the	
information	that	was	available	in	the	environment.	

To	the	extent	that	the	capacity	of	learning	mechanisms	is	genetically	
influenced,	this	simulation	therefore	captured	genetic	influences	on	performance	
and	on	social	mobility.	It	is	the	same	simulation	that	captured	empirical	data	on	
widening	IQ	gaps	from	SES	across	development.	The	same	simulation	that	
captured	the	restrictive	effects	of	SES	on	children	deemed	high-ability	early	in	
development.	These	diverse	behavioural	effects	were	captured	in	a	single	
mechanistic	framework.	
	
Simulation	4:	SES	effects	on	brain	structure	
Can	the	model	also	capture	data	on	brain	structure?	The	links	between	model	
and	brain	can	only	be	weak,	because	the	model	has	a	very	limited	degree	of	
biological	realism,	necessitated	by	the	requirement	to	make	contact	with	high-
level	behaviour.	Moreover,	there	is	still	controversy	how	the	physical	properties	
that	structural	brain	imaging	measures	relate	to	cognitive	function.	Despite	the	
fact	that	cognitive	ability	shows	broadly	a	monotonically	increasing	function	
with	age,	some	of	the	brain	structure	measures	reduce	from	middle	childhood	
onwards	(grey	matter	volume,	cortical	thickness),	while	others	increase	(white	
matter	volume,	cortical	surface	area);	and	the	underlying	biological	mechanisms	
are	still	a	matter	of	debate	(Natu	et	al.,	2018;	Noble	et	al.,	2015).	

The	model	did	not	simulate	the	growth	of	each	network,	rather	capturing	
variability	in	the	outcome	of	the	growth	amongst	its	parameters	in	terms	of	
network	architecture	(pathways	linking	input	and	output),	number	of	processing	
units,	and	denseness	of	connectivity.	It	did,	however,	simulate	a	reduction	in	
connectivity	from	mid-childhood	onwards,	in	terms	of	a	pruning	process	with	
variably	timed	onset	that	removed	unused	connections	(see	Thomas,	Knowland	
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&	Karmiloff-Smith,	2011).	For	the	artificial	neural	network,	two	structural	
measures	offered	possible	analogues	to	brain	measures:	the	total	strength	of	
connections	in	the	network	and	the	total	number	of	connections.	During	training,	
the	total	strength	increases	as	those	useful	in	driving	behaviour	are	
strengthened,	while	the	number	of	connections	reduces	as	those	not	useful	for	
driving	behaviour	are	removed.	These	two	network	measures	provide	possible	
analogues	to	cortical	surface	area	/	white	matter	density	and	cortical	thickness	/	
grey	matter	density,	respectively,	by	virtue	of	their	similar	developmental	
trajectories.	

Figure	5	takes	a	mid-point	in	development	for	the	simulated	population	
considered	in	the	previous	sections.	Figure	5(a)	re-plots	data	from	a	sample	of	
over	1000	US	children	aged	3-20	linking	cortical	surface	area	to	family	income	
(Noble	et	al.,	2015).	A	small	amount	of	variance	is	explained,	with	a	non-linear	
function	that	exhibits	stronger	effects	on	brain	structure	at	the	lowest	income	
levels.	Figure	5(b)	plots	total	connection	strength	for	the	simulated	population	
against	level	of	stimulation.	Again,	small	amounts	of	variance	are	explained,	and	
a	non-linear	function	gives	a	best	fit.	Thus,	the	same	simulated	population	that	
captures	cross-sectional	empirical	data	on	SES	effects	on	behaviour	can	also	
capture	cross-sectional	patterns	observed	in	brain	structure	data.	

The	model	offers	two	benefits	at	this	level.	First,	it	provides	a	candidate	
hypothesis	about	the	functional	relevance	of	the	brain	structure	measures	–	that	
they	represent	changes	of	connectivity	arising	from	experience-dependent	
developmental	change.	Second,	because	the	functioning	of	an	artificial	neural	
network	is	well	understood	–	in	terms	of	activations	of	networks	of	integrate-
and-fire	neurons,	and	learning	algorithms	that	update	connectivity	and	
thresholds	–	it	then	demonstrates	how	indices	of	network	structure	only	serve	as	
an	indirect	measure	of	function,	and	how	function	modulates	structure	as	a	
consequence	of	(variable)	experience.	
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Figure	5.	Empirical	data	re-plotted	from	Noble	et	al.	(2015)	showing	the	
relationship	between	annual	family	income	($)	and	cortical	surface	area	(mm2)	
in	a	sample	of	1099	US	children	between	the	age	of	3	and	20.	(b)	Computer	
simulation	data	showing	the	relationship	between	level	of	cognitive	stimulation	
in	the	environment	in	which	children	are	raised,	and	the	total	magnitude	of	
connection	strengths	in	each	artificial	neural	network,	assessed	at	a	mid-point	in	
development	(500	epochs	of	training).	Both	plots	show	a	non-linear	(log)	
relationship	between	the	environmental	measure	and	the	structural	measure,	as	
well	as	much	unexplained	variability	(linear	and	non-linear	fits	are	shown,	along	
with	respective	R2	values).	
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Discussion	
	
A	multi-level	neurocomputational	model	was	able	to	capture	both	behavioural	
data	and	brain	structure	data	on	the	effects	of	differences	in	socioeconomic	
status	on	development.	It	did	so	while	also	incorporating	the	contribution	of	
genetic	variation	to	cognitive	development,	leading	to	high	heritability	of	
behaviour;	and	by	assuming	that	SES	operates	via	differences	in	levels	of	
cognitive	stimulation.	Variation	between	individuals	was	conceived	as	the	
modulation	of	trajectories	of	development,	driven	by	species	universal	
mechanisms.	

In	the	simulation	data	presented,	SES	was	implemented	as	variations	in	
the	level	of	cognitive	stimulation.	However,	a	modelling	framework	provides	the	
opportunity	to	implement	and	compare	alternative	hypotheses,	for	example	in	
how	well	they	capture	the	effect	size	and	shape	(linear,	log)	of	SES	effects	on	
particular	measures	of	behaviour	and	brain	structure.	Thomas	et	al.	(2018)	
compared	two	alternative	hypotheses:	that	SES	may	instead	influence	the	
growth	of	the	networks	themselves	(per	the	findings	of	Betancourt	et	al.,	2016),	
and	therefore	processing	capacity;	or	that	SES	may	influence	both	network	
growth	and	cognitive	stimulation,	in	a	correlated	manner.	The	computational	
model	therefore	provides	a	foundation	to	hypothesis	test	different	causal	
accounts	of	empirical	data.	

Thomas	et	al.	(submitted)	have	argued	that	once	a	basic	developmental	
model	of	cognitive	variation	exists,	it	provides	the	basis	to	explore	interventions,	
for	example,	by	altering	the	quantity	and	quality	of	cognitive	stimulation	that	
individuals	experience.	The	next	step	for	the	model,	then,	is	to	explore	whether	
the	gaps	between	individuals	at	difference	SES	levels	can	be	closed	or	eliminated	
by	interventions	that	equalise	environments,	for	instance	by	supplementing	the	
stimulation	received	by	children	from	low-SES	families.	Thomas	and	Meaburn	
(2018)	carried	out	these	simulations,	considering	the	extent	to	which	
opportunities	to	close	gaps	depended	on	the	origin	of	individual	differences	(e.g.,	
how	heritable	they	were)	and	whether	interventions	were	modulated	by	
changes	in	plasticity	with	age	(Thomas	&	Johnson,	2006).	The	broad	pattern	was	
that	equalised	and	enriched	environments	improved	population	means	under	all	
conditions;	when	heritability	was	higher,	improvements	were	smaller	and	gaps	
reduced	less;	but	earlier	interventions	served	to	reduce	gaps	more	than	late	
interventions.	

The	research	described	here	is	presented	to	argue	for	the	utility	of	
neurocomputational	modelling	as	one	research	tool	to	further	the	neuroscience	
of	poverty.	One	should	be	cautious,	however,	to	see	such	models	in	context.	
Models	do	not	demonstrate	what	is	actually	the	case:	they	demonstrate	the	
sufficiency	of	particular	mechanistic	accounts	to	explain	the	observed	empirical	
data;	and	therefore,	indirectly,	what	any	given	pattern	of	empirical	data	must	
imply	about	causal	mechanisms.	By	demonstrating	the	possible	causal	
explanations	of	data,	they	do	at	least	encourage	the	avoidance	of	
misinterpretation	of	those	data.	For	example,	the	pattern	of	widening	IQ	gaps	
across	SES	groups	across	development	might	be	interpreted	to	mean	that	the	
action	of	SES	differences	worsens;	the	model	showed	the	pattern	would	emerge	
even	static	causal	SES	factors.	The	decline	of	population	rank	for	early	high	
ability	children	from	low	SES	backgrounds	could	be	interpreted	to	mean	that	
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population	ranks	are	entirely	dependent	on	environmental	factors;	the	model	
showed	that	the	empirical	data	are	consistent	with	a	limited	role	of	environment	
in	children’s	respective	abilities.	The	influential	role	of	SES	on	cognitive	
development	and	educational	attainment	might	be	taken	as	supporting	a	social	
causation	account	of	SES	differences,	and	of	the	primary	role	of	environment	in	
children’s	outcome.	The	model	displayed	realistic	SES	effects	both	on	behaviour	
and	network	structure	whilst	displaying	high	heritability	of	individual	
differences,	even	indeed	the	heritability	of	differences	in	social	mobility.	

Clearly,	the	model	presented	here	is	highly	simplified.	While	it	shared	
some	principles	of	neural	processing,	it	is	not	a	model	of	brain	function.	It	is	
essentially	a	machine-learning	mechanism	that	acquires	a	small	set	of	input-
output	mappings,	representing	at	best	a	single	component	of	a	larger	system.	A	
more	realistic	model	of	SES	effects	on	development	would	need	to	depict	a	goal-
oriented,	adaptive,	autonomous	agent,	with	a	repertoire	of	behaviours	that	can	
alter	its	subjective	environment;	to	include	separate	cognitive,	affective	and	
reward-based	aspects;	and	provide	a	pathway	for	non-cognitive	dimensions	
(diet,	chronic	stress,	fitness)	to	alter	its	processing	properties.	And	clearly,	there	
is	a	great	deal	more	to	phenomena	such	as	social	mobility	(and	the	societal	
structures	that	support	or	hinder	it)	than	notions	of	cognitive	stimulation	and	
properties	of	developmental	mechanisms.	

Nevertheless,	the	key	motivation	for	constructing	a	model	of	the	current	
level	of	simplicity	is	to	emphasise	the	importance	of	deriving	causal,	mechanistic	
accounts	to	explain	the	large	body	of	correlational	evidence	that	has	
accumulated	on	how	SES	is	associated	with	differences	in	cognitive,	educational,	
and	life	outcomes.	Computational	modelling	is	but	one	amongst	several	
neuroscience	methods	that	can	shed	light	on	mechanism,	methods	such	as	brain	
imaging,	anatomy,	animal	models,	and	genetics.	Mechanistic	insights	ultimately	
provide	the	basis	to	derive	targeted	interventions	that	can	ameliorate	the	
consequences	of	differences	in	SES,	and	especially	poverty	(Thomas,	2017).	The	
potential	of	mechanistic	insights	to	inform	intervention	is	the	motivating	factor	
behind	the	involvement	of	neuroscience	in	a	social	issue	such	as	poverty	–	even	if	
the	wider	ambition	is	to	alter	societal	structures	that	contribute	to	poverty	in	the	
first	place.	
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