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Abstract

In the multidisciplinary field of developmental cognitive neuroscience, statistical associations

between levels of description play an increasingly important role. One example of such associa-

tions is the observation of correlations between relatively common gene variants and individual

differences in behavior. It is perhaps surprising that such associations can be detected despite the

remoteness of these levels of description, and the fact that behavior is the outcome of an extended

developmental process involving interaction of the whole organism with a variable environment.

Given that they have been detected, how do such associations inform cognitive-level theories? To

investigate this question, we employed a multiscale computational model of development, using a

sample domain drawn from the field of language acquisition. The model comprised an artificial

neural network model of past-tense acquisition trained using the backpropagation learning algo-

rithm, extended to incorporate population modeling and genetic algorithms. It included five levels

of description—four internal: genetic, network, neurocomputation, behavior; and one external:

environment. Since the mechanistic assumptions of the model were known and its operation was

relatively transparent, we could evaluate whether cross-level associations gave an accurate picture

of causal processes. We established that associations could be detected between artificial genes

and behavioral variation, even under polygenic assumptions of a many-to-one relationship between

genes and neurocomputational parameters, and when an experience-dependent developmental pro-

cess interceded between the action of genes and the emergence of behavior. We evaluated these

associations with respect to their specificity (to different behaviors, to function vs. structure), to

their developmental stability, and to their replicability, as well as considering issues of missing

heritability and gene–environment interactions. We argue that gene–behavior associations can

inform cognitive theory with respect to effect size, specificity, and timing. The model demonstrates

a means by which researchers can undertake multiscale modeling with respect to cognition and

develop highly specific and complex hypotheses across multiple levels of description.
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1. Introduction

Developmental cognitive neuroscience is an intrinsically multidisciplinary endeavor,

where theoretical findings from multiple levels of description are integrated into an

overall account of the origins of behavior. One source of empirical data that increas-

ingly constrains theories is that of statistical associations between levels of description;

for example, gene variants that correlate with individual differences in behavior, or

structural and functional properties of the brain that correlate with behavior across indi-

viduals or within individuals over time. However, it is a significant challenge to con-

struct causal accounts of development that span levels of description and thereby

unifying the correlations by appeal to explanatory mechanism (Johnston & Lickliter,

2009). This is particularly true for gene–behavior associations, because so many levels

of description can be specified in between, and so many contributory factors interact to

produce high-level behavior. Genetic effects are cellular but must be linked to behavior

via neural circuits and global brain function. Moreover, the contribution of some

genetic activity to individual differences in behavior occurs via an extended develop-

mental process.

One recent response to this challenge is the use of multiscale computational modeling.
This approach originated in systems biology, where the availability of more powerful

computers has enabled the coupling of complex models across multiple spatial and tem-

poral scales and for multiple physical processes (Southern et al., 2008). The aim of multi-

scale models is to integrate relevant information at multiple levels of organization to

recreate dynamic interactions, where the complexity of the underlying interacting non-lin-

ear processes necessitates simulation via computational methods. Within biology, South-

ern et al. (2008, p. 67) define a multiscale model as one “which includes components

from two or more levels of organization (multiple length scales) or if it includes some

processes that occur much faster in time than others (multiple time scales).” The levels

they characterized ranged from the quantum to molecular, macromolecular, subcellular,

tissue, organ, organ system, organism, and environment. Southern et al. (2008) exempli-

fied the approach via research on the dynamics of ion channels and on cardiac modeling.

The work of Karr et al. (2012) represents a more recent example, where the authors con-

structed a multiscale model of a whole cell, including all of its molecular components, to

predict phenotype from genotype.

Dammann and Follett (2011) have argued that multiscale computational models may be

equally applicable to the developmental cognitive neuroscience. In particular, they consid-

ered the use of computational models with respect to developmental disability. They

identified in silico approaches as complementary to in vivo and in vitro studies in teasing

apart the complicated inter-relationships between etiological exposures and pathological
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mechanisms on developmental outcomes. Dammann and Follett reviewed work at the sys-

tems level, where the target outcomes are located at the behavioral level, and the lower lev-

els of description comprise phenomena such as activity-dependent plasticity and the

response of neural networks to neuronal dysfunction.

In this paper, we employed multiscale computational modeling to investigate gene–
behavior associations, and in particular, the extent to which reliable associations from

the low level of genes to the high level of behavior shed light on the causal pro-

cesses that take place at the intervening levels of description. Since the mechanistic

assumptions of the model were known and its operation was relatively transparent, we

could evaluate whether cross-level associations gave an accurate picture of causal pro-

cesses. More specifically, where genes are taken to impinge on learning abilities, we

could explore how the developmental process itself, involving interaction with a struc-

tured learning environment, impacted on the relationship between gene variants and

eventual behavioral outcomes. As a sample domain, we used a well-known cognitive

model drawn from research on language acquisition, which captured the development

of past-tense formation. The architecture we utilized combined artificial neural network

models of development with genetic algorithms and population modeling techniques.

In the following paragraphs, we characterize the way in which association analyses

have been used as a source of constraining data in developmental cognitive neurosci-

ence, before identifying the key phenomena that were the target of our multiscale

model.

1.1. Association studies in developmental cognitive neuroscience

Based on quantitative behavioral genetic methods such as twin studies, individual

differences in behavior, including cognitive skills and personality dimensions, have

been found to be highly heritable (Plomin, DeFries, Knopik, & Neiderhiser, 2012).

Frequently, between a half and three quarters of the phenotypic variability may be

explained by genetic factors in the populations that have been studied. Separately,

indices of brain structure have also been found to be highly heritable—though, nota-

bly, these indices are not always tightly correlated with behavior. For example, in one

study by Posthuma et al. (2003), the heritability of global gray matter volume was

reported to be 82% and the heritability of verbal comprehension was reported to be

84%, while the correlation between these two indices was only 0.06 (see also Wallace

et al., 2010). Given the evidence of high heritability in individual differences at brain

and behavioral levels, we should in theory be able to find gene variants across indi-

viduals that predict such differences.

Two main approaches have been used to uncover gene variants associated with

phenotypic variability (see Ronald, 2011, for discussion). In candidate gene associa-
tion studies, researchers have identified variants in genes that are hypothesized to play

a role in brain development and function. The genes are involved in processes such

as neurotransmitter regulation, synaptic plasticity, or neural migration. Researchers

have then investigated whether the variants show reliable associations with differences
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in high-level behavior, either in explaining normal variation or occurring more fre-

quently in atypical populations. As examples of studies using this approach, genetic

variations have been proposed to modulate attention skills via a pathway that alters

the efficiency of dopamine receptors in the fronto-striatal systems delivering behavioral

control (Posner, Rothbart, & Sheese, 2007). Developmental language impairment and

autism have both been linked to a gene variant (CNTNAP2) that alters production of

a protein sitting in the membranes of neurons. The protein influences interactions

between different cells during the development and wiring up of the nervous system

(Vernes et al., 2008; see Pe~nagarikano & Geschwind, 2012). Developmental dyslexia

has been linked to four gene variants (DYX1C1, KIAA0319, DCDC2, and ROBO1)

associated with neuronal cell adhesion, perhaps pointing towards regional disruptions

of neural migration and axonal guidance in early brain development (Galaburda, LoT-

urco, Ramus, Fitch, & Rosen, 2006).

On the whole, associated gene variants appear to relate to fairly general neurocom-

putational properties. For example, two genes whose variants have been much studied

(COMT: catechol-O-methyl-transferase, and BDNF: brain-derived neurotrophic factor)

have basic neural functions and their effects in the brain are likely to be widespread

in terms of structure and function (Kovas & Plomin, 2006; Plomin & Kovas, 2005).

Where gene–behavior associations have been found, effect sizes are usually small,

each explaining <1% of the behavioral variance. The implication is that multiple gene

variants contribute jointly to variations at the level of behavior (Plomin et al., 2012).

Even though effect sizes are small, they can nevertheless be observed for one

behavior and not for another even in the same domain. For example, in individuals

with specific language impairment, an association was observed between variants of

two genes on chromosome 16 (CMIP and ATP2C2) and non-word repetition perfor-

mance, but no association was observed for recalling sentences or for reading (New-

bury, Winchester, Addis, Paracchini, & Monaco, 2009). Since the contribution of

individual gene variants to predicting behavior is usually so small in association

analyses, even with large populations, there are many false alarms and failures to

replicate across different samples in candidate gene association studies (Posthuma &

de Geus, 2006).

The second main approach used to uncover gene variants associated with pheno-

typic variability is genome-wide association studies (GWAS). In GWAS, researchers

seek associations with markers of genetic variation that span the whole genome. If an

association is found between a particular marker and a high-level trait, researchers

infer that the location of the causal variant is close to the marker (based on the prin-

ciple of linkage disequilibrium, whereby locations that are closer on a chromosome

have a greater probability of being inherited together; see Visscher, Brown, McCarthy,

& Yang, 2012). A large number of markers are used, allowing some localization of

causal variants on the genome, although the actual causal variants must then be iden-

tified. To date, GWAS have been more often used to study genetic variation associ-

ated with complex diseases, often conceptualized as a dichotomous outcome. Visscher

et al. (2012) reported that well over 2,000 locations have now been significantly and
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robustly associated with one or more disease traits, generating novel hypotheses about

causal pathways generating disease. In most cases, multiple loci are associated with a

given trait, implicating the joint contribution of multiple gene variants to variations in

the observed trait (so called polygenic effects).

Visscher et al. (2012) interpreted genetic findings from the study of disease to sup-

port the common disease–common variant hypothesis. This hypothesis states that

disease-causing gene variants are common in the population, with a large number of

variants each conferring a small amount of additional risk of disease. Thus, a given

variant may increase the odds of having a disease 1.1–1.5-fold (Altshuler, Daley, &

Lander, 2008). For an odds ratio of 1.1, the variant will be found in 11 individuals

who have the disease for each 10 controls who do not. Gene variants also appear to

be associated with more than one trait (known as pleiotropy) (Trzaskowski et al.,

2013). However, the total phenotypic variation explained by observed associations

tends not to exceed 10%–20%, less than the heritability implied by twin studies. This

has led to the proposal that there is “missing heritability” (Manolio, Collins, Cox,

Goldstein, & Visscher, 2009). New methods might reduce or eliminate the problem of

missing heritability: Yang et al. (2010) introduced the method of genome-wide com-

plex trait analysis (GCTA). In GCTA, the genetic similarity between individuals is

assessed not by family relatedness but by number of shared single-nucleotide polymor-

phisms (SNPs; these are differences in a single “letter” of the genetic code). This

between-individual genetic similarity is then used to predict phenotypic variance.

Using this approach, Benyamin, Pourcain, Davis, Davies, and Visscher (2013) found

that the similarity between SNPs could explain between 22% and 46% of phenotypic

variation in childhood intelligence in three large cohorts totaling 18,000 individuals

aged between 6 and 18 (see also Plomin, Haworth, Meaburn, Price, & Davis, 2013).

Despite this encouraging result, when it comes to cognitive and behavioral phenotypes

rather than complex diseases, GWAS have generally struggled to find significant asso-

ciations with markers of genetic variation, possibly suggesting a greater problem with

missing heritability for these phenotypes than medical disease (Ronald, 2011). Rietveld

et al. (2013) recently used a GWAS to identify SNPs predicting variation in educa-

tional achievement in a large sample of 120,000 individuals. Together, the identified

markers of genetic variation predicted around 2% of variation in educational achieve-

ment, compared to around 10% in a similar study of height (Speliotes et al., 2010).

This led the authors to propose that the genetic architecture of complex behavioral

traits may be more diffuse than that of complex physical traits.

GWAS are not ideal for detecting the contribution of rare variants to disease, since by

definition these will have low frequency in the population, thereby compromising the sta-

tistical power to detect associations. There is increasing evidence that rare copy number

variations (CNVs) and de novo mutations may also play a role in producing phenotypic

variation. For example, the contribution of rare CNVs and de novo mutations has been

identified in cases of autism (e.g., Levy et al., 2011) and schizophrenia (e.g., Kirov,

Pocklington, Holmans, Ivanov, & Owen, 2012; The International Schizophrenia Consor-

tium, 2008).
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1.2. The puzzle of gene–behavior associations

From one perspective, it is surprising that it is possible to detect any associations

between-individual gene variants and high-level behavior.1 This is for two reasons: the

remoteness of these levels of description, and the fact that behavior is the outcome of an

extended developmental process involving interaction with a variable environment. We

expand on each of these points in turn.

With respect to remoteness, the genetic level of description here pertains to variation

between individuals in the DNA code which codes for the production of proteins in cells,

while behavior pertains to the whole organism as a single system embedded in a physical

and social context. The heritability of individual differences in behavior tells us that there

are genetic effects, but unpacking the causal pathways through which they operate on

behavior is a daunting prospect. Genetic effects on cognition must, presumably, operate

via their effect on neurocomputation and/or network topology. However, two examples

suffice to illustrate the complexity of the problem at hand.

First, a gene codes for a protein; Plomin, DeFries, McClearn, and McGuffin (2008)

pointed out that each synapse is affected by more than a thousand protein components.

Understanding the factors that cause variations in the efficiency of the synapse is still a

long way from understanding even a functional neural circuit, let alone brain networks

generating behavior. There must be many points of convergence of genetic variation as

one ascends levels of description. Moreover, recent research has pointed toward the com-

plexity of the process by which genes contribute to cellular function, identifying their role

as part of a dynamical system that includes multiple points of regulation of gene expres-

sion, such as modification of messenger RNA, DNA methylation, and histone modifica-

tion (Charney, 2012).

Second, Sapolsky (2005) outlined the multiplicity of low-level variations that one

might conservatively expect to contribute to the functioning of neural circuits: At the

level of individual neurons, one might expect variation between individuals in the number

of dendritic spines, the number of axon terminals, the level of resting potentials, the size

of the dendritic wavelet caused by presynaptic activity, the excitability of the axon hill-

ock, and the speed of propagation of the axon potential; at the level of two neurons com-

municating, one might expect individual variations in the amounts of neurotransmitter

released, the numbers of receptors, the efficiency of receptors in binding neurotransmit-

ters, the efficiency of producing neurotransmitters, the efficiency of producing receptors,

and the proportions of different types of receptors; at the level of long-term potentiation,

one might expect variation between individuals in how much glutamate neurotransmitter

is released, the number of glutamate receptors, the ratio of glutamate receptor types, the

level of calcium ion release, and the level of phosphorylation of the receptors. It is possi-

ble that a range of gene variants contribute to each of these neural parameters. It does

not follow that all these variations would necessarily be meaningful, and development

must in some sense be robust to variations in such low-level properties to be success-

ful. Nevertheless, finding significant associations between individual gene variants and

high-level behavior through this conflagration of causal processes is both impressive and
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somewhat unexpected; and perhaps even more so, given that genotyping data and behav-

ioral data are both likely to contain measurement error.

With respect to development, cognitive abilities are the outcome of an extended and

dynamic developmental process involving interaction with the physical and social envi-

ronment, an environment that the individuals themselves play a role in specifying (Flynn,

Laland, Kendal, & Kendal, 2013). The environment also varies, contributing to individual

differences in behavior. The nature of the developmental process itself is considered to

be an important component of the explanation of cognitive variability (Karmiloff-Smith,

1998). This is illustrated by the fact that relationships between genotypes and phenotypes

are not stable across development, even for neurogenetic developmental disorders. For

example, Paterson, Brown, Gsodl, Johnson, and Karmiloff-Smith (1999) found that the

relative pattern of cognitive strengths and weaknesses in Down syndrome and Williams

syndrome altered between infancy and adulthood; that is, the effects of the respective

genetic mutations depended on the stage of development at which the phenotype was

measured. Association studies only give an askew picture of the developmental process

because they rely on differences between individuals of similar ages or at similar devel-

opmental stages. Development can be studied with association studies by examining

whether the associations between gene variants and individual differences in behavior are

stable across development, or whether associations reduce or increase (Ronald, 2011).

Changes in gene expression are expected since they are a key component of development.

However, the actual relationship between individual differences and development as
mechanistic processes (Bechtel, 2001) has yet to be determined, and quite diverse hypoth-

eses are still in play. For example, within the study of cognition, there are competing the-

oretical proposals that range from the idea that individual differences and development

represent variations along orthogonal mechanistic dimensions, to the idea that they are

variations over the same dimensions (see Thomas & Karmiloff-Smith, 2003a, for discus-

sion). For example, under one hypothetical scenario (borrowing proposals from the psy-

chology literature), it might turn out that individual differences are generated by

differences in inhibitory control, while development corresponds to changes in processing
capacity; here, the dimensions would be orthogonal. Under an alternative hypothetical

scenario, both individual differences and development might represent variations in pro-
cessing speed; here, there would be a single common dimension. Now, if the dimensions

are orthogonal, then the study of individual differences will tell us little about the devel-

opmental process; but if they are common, the study of individual differences will pro-

vide a direct window onto the developmental process.

From a computational modeling perspective, development and individual differences

have rarely been considered within the same framework (see Garlick, 2002, for an excep-

tion), so these issues are not typically addressed. Developmental computational models

that specify mechanisms of experience-dependent learning usually attempt to capture the

development of the “average child,” while models of individual differences usually focus

on the intrinsic and extrinsic factors contributing to the variation at a single age, exclud-

ing the developmental origins of behavior. There is a pressing need to begin to consider

development and individual differences within a common computational framework.
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1.3. Using multiscale models to understand the implications of associations between
levels of description

In principle, multiscale modeling can complement genetic association analyses by dem-

onstrating how, in a system where multiple levels of description are implemented, associ-

ations from low to high levels of description reflect the causal mechanisms best

characterized as operating at the intermediate levels. In practice, the contribution of a

given multiscale model depends on the constraints it embodies at different levels, the

interfaces it specifies between levels, and the set of simplifying assumptions.

The notion of “level” here is somewhat tricky, because it combines several distinc-

tions. These include intra-personal versus extra-personal (e.g., brain processes vs. the

environment); levels of a mechanism that characterize the combination of smaller compo-

nents into larger components; and levels of analysis in describing a phenomenon (e.g.,

one might describe a real neural network as performing a computational function) (see,

e.g., Bechtel, 2008; Bechtel & Mundale, 1999; Craver, 2007; Eliasmith, 2002, 2013; Marr

& Poggio, 1976; Potochnik & McGill, 2012). Our modeling framework indexes each of

these ideas, but our main theoretical reference point is the causal modeling approach pro-

posed by Morton (2004) to understand the causes of developmental disorders. In this

approach, the individual is distinguished from the environment; within the individual,

Morton then distinguishes biological, cognitive, and behavioral levels. In our multiscale

model, the biological level is represented by a genetic level, the cognitive level is repre-

sented by neurocomputation, and the behavioral level is represented by the output of the

model (see Fig. 1).

Fig. 1. The architecture of the target developmental system, identifying separate levels according to the cau-

sal modeling framework of Morton (2004).
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To construct the current multiscale model, we began by taking advantage of the fact

that artificial neural networks have been used as models of cognitive development (see,

e.g., Elman et al., 1996; Mareschal et al., 2007). Behavioral change is captured as the

outcome of an experience-dependent developmental process taking place in a structured

learning environment. These models therefore allow us to separately characterize behav-
ior and the structure of the learning environment. Artificial neural network models are

based on the abstractions of neurocomputation, and include parameters that are analogous

to neurocomputational properties. Moreover, the networks encode knowledge by changing

their structure, in terms of their connectivity. We can therefore discern the intra-personal

properties of neurocomputation and network structure. Lastly, using methods from

genetic algorithms within machine learning, the parameters of the artificial neural net-

works can be encoded in an artificial genome. Variations in the genome specify variations

in network parameters, which then influence learning ability. We therefore posit a lowest

level of artificial genome. The artificial genome is part of the biological level whereby

many smaller components produced the operation of the larger component that is the neu-

ral network. This sets the stage to investigate the associations that span levels of descrip-

tion.

In order for us to simulate association studies, two further steps were necessary. First,

such studies take place at a population level. Therefore, we needed to simulate a popula-

tion of artificial neural networks undergoing development (see Thomas, Baughman, et al.,

2012; Thomas, Knowland, & Karmiloff-Smith, 2011). Second, association studies rely on

variability. We created both genetic and environmental sources of variation to produce

variability in acquired behavior. These methods ensured that we could consider associa-

tion analyses within a developmental framework: the associations between individual dif-

ferences in the artificial genome and individual differences in behavior could be assessed

at any point in development, while simultaneously capturing the developmental origins of

behavior via an experience-dependent process. This was the principal innovation of our

model.

The aim of our multiscale model was to investigate the associations between levels of

description, such as genes to behavior, genes to network structure, and neurocomputation-

al parameters to behavior. In particular, because the mechanistic assumptions of the

model were known and its operation was relatively transparent, the model could inform

the extent to which gene–behavior associations gave an accurate picture of neurocompu-

tational causal processes operating at the intermediate level. For example, if we know that

variation in two artificial genes contributes independent influences on the operation of

two neurocomputational parameters, do we observe additive statistical effects of these

genes in their associations to behavior?

Given the assumptions of the model, the simulations addressed the following specific

questions: (a) Can statistically significant associations be observed between artificial gene

variants and individual differences in behavior, given many-to-one gene-to-neurocomputa-

tional parameter mappings and an intervening experience-dependent developmental pro-

cess? (b) Do such associations show specificity to different behaviors generated by the

system or are they general? (c) What is the stability of the associations over developmental
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time—are associations modulated by the developmental process? (d) Do associations rep-

licate across populations? (e) Are associations observed from artificial genome to network

structure and activation levels, and if so, are these the same as the associations observed

from artificial genes to network output (behavior)? (f) Are associations modulated by the

quality of the environment, producing gene x environment interactions? (g) Can interac-

tions between genes be observed in the way that they influence behavior? (h) When all

sources of variability are known, is all the population variance explained or is some

“missing”? We then discuss whether observed cross-level statistical associations accu-

rately reflected the causal operation of the model.

2. Method

The model we utilized to simulate gene–behavior associations was taken from the

domain of language development, and it has been successfully used to simulate socioeco-

nomic status effects on language development (Thomas, Forrester, & Ronald, 2013), as

well as subtypes of language delay (Thomas & Knowland, 2014). The model was

addressed to the domain of English past-tense formation. Here, we employed the model

in an illustrative setting. The model is intended only as an example of a developmental

system applied to the problem of extracting the latent structure of a cognitive domain

through exposure to a variable training environment. Past tense has been used similarly

to study phenomena such as critical periods in development (Marchman, 1993) and devel-

opmental regression in autism (Thomas et al., 2011). The English past tense provides a

useful sample domain because it is quasi-regular. It is characterized by a majority of past

tenses that follow a productive rule (add “ed” to the verb stem) but a minority of excep-

tions to this rule, forming their past tenses in a variety of ways. Performance on regular

verbs and irregular verbs forms two different behaviors that the system must acquire. A

range of empirical research indicates that both children’s and adults’ performance on reg-

ular and irregular verbs differ in their characteristics, sufficiently so that some have

argued that different processing mechanisms are needed to acquire the verb types (e.g.,

Pinker, 1994). The two types of behavior allow us to test the specificity of associations

between artificial genes and behavior.

In the following sections, we first outline the base model. We then consider the imple-

mentation of constraints at each level: Environment, Behavior, Network structure and

activation, Neurocomputation, and Artificial Genome. Finally, we outline the simulation

design. Further implementation details can be found in Data S1.

2.1. Base model

A three-layer, backpropagation network was used to learn to map between a phonolog-

ical representation of verb stems and their past-tense forms.

The results we report come from the simulation of 6,000 artificial neural networks.

Some simplifications of network scale were employed for computational tractability. First,
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an artificial language was used rather than a corpus of real English verbs, per the work of

Plunkett and Marchman (1991, 1993). The training set comprised an artificial language

constructed to reflect many of the important structural features of English past-tense for-

mation. Artificial verbs were monosyllabic and encoded used articulatory feature-based

codes drawn from English phonology. Second, the model employed a simplified architec-

ture in restricting mappings to be between phonological codes. More recent, larger scale

models have included additional information in the input, such as lexical semantic infor-

mation (e.g., Joanisse & Seidenberg, 1999; Woollams, Joanisse, & Patterson, 2009), and

acquire multiple inflectional paradigms rather than just the past tense of verbs (e.g., Kara-

minis & Thomas, 2010). These simplifications are not relevant given the abstract aims of

the model.

The training set was the “phone” vocabulary from Plunkett and Marchman’s past-

tense model (1991, p. 70). There were 508 monosyllabic verbs, constructed using conso-

nant–vowel templates and the phoneme set of English. Phonemes were represented over

19 binary articulatory features (Thomas & Karmiloff-Smith, 2003b), a distributed encod-

ing based on standard linguistic categorizations (Fromkin & Rodman, 1988). Separate

banks of units were used to represent the initial, middle, and final phonemes of each

monosyllable. The output layer incorporated an additional five features to represent the

affix for regular verbs. Networks thus had 57 input units and 62 output units. There were

four types of verbs in the training set: (a) regular verbs that formed their past tense by

adding one of the three allomorphs of the +ed rule, conditioned by the final phoneme of

the verb stem (examples from English: tame-tamed, wrap-wrapped, chat-chatted); (b)

irregular verbs whose past-tense form was identical to the verb stem (e.g., hit-hit); (c)
irregular verbs that formed their past tenses by changing an internal vowel (e.g., write-
wrote); and (d) irregular verbs whose past-tense form bore no relation to its verb stem

(e.g., go-went). There were 410 regular verbs, and 20, 68, and 10, respectively, of each

irregular verb type. A generalization set was also created with 410 novel verbs, each of

which rhymed (shared two phonemes) with an existing regular verb. Generalization was

assessed by the accuracy of outputting the regularized past-tense form. Networks learned

by repeated presentations of the training set, with verbs presented in random order, and

operation of a gradient-descent supervised learning algorithm (backpropagation). One

presentation of the training set is referred to as an “epoch.” All networks were trained

for 1,000 epochs.

2.2. Environment

The environmental level was defined as an extra-personal influence on development.

Each network simulated a child raised in a given family, and families were assumed to

vary in the richness of the language used. The language input was assumed to vary to

some extent according to socioeconomic status (SES) (Hart & Risley, 1995). A training

set was created for the past-tense information available in each family environment. SES

was implemented through generating a family quotient for each simulated child. The

family quotient was a proportion between 0% and 100%. This value was used as a
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probability to determine whether each verb in the full training set would be included in

the family’s vocabulary. The family training set was then fixed throughout development.

Performance was always assessed against the full training set (analogous to a standard-

ized test of past-tense formation applied to all children). The family quotient manipula-

tion corresponded to a reduction in type frequency for both regular and irregular verbs.

Based on the findings of Thomas et al. (2013) on the appropriate range of intrinsic versus

extrinsic variation to capture data on past-tense acquisition (Bishop, 2005), family quo-

tients were sampled from a uniform distribution from 60% to 100% of the full training

set, corresponding to learning environments with reasonably high quality. This translates

to the assumption that there is at least a minimum amount of linguistic information typi-

cally available to a child.

Note that, in reality, the extrapersonal environment may also play a role in influencing

the value of neurocomputational parameters across child development, for example, via

prenatal maternal nutrition, postnatal diet, stress, and other effects on brain development

(see Hackman, Farah, & Meaney, 2010; Thomas et al., 2013, for discussion). Whether

environment primarily affects neurocomputational properties or the subjective information

content of the environment may depend on the absolute level of SES. For the purposes of

the current model, we restricted extrapersonal environmental effects to those operating on

cognitive stimulation and therefore, from the perspective of the learning system, modulat-

ing information.

Environments were determined independently of artificial genomes. That is, we

assumed no gene–environment correlations in our initial simulations.

2.3. Behavioral level

The past tense was an advantageous illustrative domain because the same processing

system acquired both regular verbs and irregular verbs (Rumelhart & McClelland, 1986).

The dimension of regularity permitted consideration of the specificity of simulated gene–
behavior associations: Were observed artificial gene–behavior associations always the

same for regular verb performance as irregular verb performance or could they differ?

Some degree of specificity might be predicted because it is known that in artificial

neural networks, the two verb types are differentially sensitive to variations in the neuro-

computational parameters (Kello, Sibley, & Plaut, 2005; Mareschal et al., 2007; Thomas

& Karmiloff-Smith, 2003b). Results will focus on the contrast between regular verb per-

formance and performance on the most common irregular verb type, vowel-change irreg-

ulars.

2.4. Network structure and activation

When used as cognitive models, artificial neural networks are fairly rudimentary in

terms of neural realism. Nevertheless, they can still offer some suggestive ideas on the

relation of brain to behavior. For example, for the networks we used, two different

network properties showed similar developmental trajectories to those observed in,
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respectively, global gray matter volume and global white matter volume: total number of

connections, and total magnitude of connection strength (both excitatory and inhibitory).

This analogy is of course, simplistic. There is more in both gray and white matter than

connections. However, as well as cell bodies, gray matter does include facilities for local

connectivity (dendrite arbors, synapses); and white matter includes myelin that enhances

axonal conductance, reflecting activity-dependent strengthening of long-range connec-

tions. The analogy between properties of the model and these two types of brain matter

is based on their respective developmental profiles (Gogtay et al., 2004; Shaw et al.,

2008). After the onset of pruning, gray matter and number of connections in the model

both show an exponential decline, while white matter and total connection strength both

show a linear increase. In the model, the number of connections mediates plasticity, such

that the network’s ability to change reduces as pruning takes place, in line with sensitive

periods observed in the cognitive system (Thomas & Johnson, 2006); while increasing

connection magnitude reflects experience-dependent strengthening, in line with white

matter changes that are observed during skills acquisition (Bengtsson et al., 2005; Scholz,

Klein, Behrens, & Johansen-Berg, 2009). These two metrics, total number of network

connections and total connectivity magnitude, served as our indices of network structure,

measured independently of behavior.

In addition, we took a measure of the activation states within the network. Individual

networks varied in the number of hidden units they possessed. The average activity across

the hidden units (i.e., the sum of activation divided by the number of hidden units in that

network) was calculated, either over items in the training set or over items in the general-

ization set.

2.5. Neurocomputation

Artificial neural networks contain a range of parameters that increase or decrease their

ability to learn a given training set. Parameters such as learning rate, momentum, and

number of hidden (internal) processing units feature in most published simulations. In

models of normal/average development, parameters are optimized to achieve best learning

(usually in the presence of the full training set). In the current model, a number of param-

eters were simultaneously varied across individual networks, with learning ability deter-

mined by their cumulative effect. Multiple parameters were varied at the same time to

reflect the expectation articulated by Sapolsky (2005) that many low-level neural proper-

ties are likely to vary between individuals. Variations occurred over 14 computational

parameters, in principle allowing for over 2 trillion unique individuals. Parameters deter-

mined four broad properties of the artificial neural networks: network construction, net-
work dynamics, network adaptation, and network maintenance.

In line with the arguments of Plomin and Kovas (2005), the parameters had general

computational functions, and no specific relation to the problem domain that the system

was acquiring. The parameters were as follows. Network construction: architecture,

number of hidden units, range for initial connection weight randomization, and sparseness

of initial connectivity between layers. Network dynamics: unit threshold function (or
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“temperature”), processing noise, and response accuracy threshold. Network adaptation:
backpropagation error metric used in the learning algorithm, learning rate, and momen-

tum. Network maintenance: weight decay, connectivity pruning onset, pruning probability,

and pruning threshold. These parameters have derivations in neurocomputational theory,

and differences in their settings have been used in models to simulate variations in cogni-

tion, including those found in general intelligence, specific language impairment, dys-

lexia, schizophrenia, autism, and ageing (see Data S1). A range of variation in the

population was established for each parameter (see Data S1 for details of the calibration

procedure, as well as plots of the sensitivity of network performance to variations in each

parameter). Model performance was fairly robust to variations in each parameter: calibra-

tion was carried out to establish extremes.

2.6. Genetic level

An artificial genome was created. Variation in the genome produced variation in the

neurocomputational parameters. We assumed that a full genome would contain three por-

tions, of which we only implemented one. The first portion would be genes not relevant

to the functioning of our modeled system (though if measured in a GWAS, variations in

these genes would be candidates to produce false positive associations). The second por-

tion would be genes that were species universal and did not vary across individuals, and

whose ongoing dynamics of expression and regulation would deliver the functionality of

the network itself, in terms of the existence of processing units, connections, activation

dynamics, the sensorium, the input–output connectivity, and the mechanics of experience-

dependent learning systems. The third portion would be genes that were influential in the

initial growth of the network, and which influenced particularly the effective computa-

tional properties of the system once its experience-dependent properties came online. The

neurocomputational properties were therefore conceived of as the outcome of a growth

process, in the way that the number of neurons in different brain areas is the outcome of

neural proliferation and migration. This portion of the genome was assumed to show vari-

ation across individuals, and it was the only portion we implemented. For simplicity, we

assumed that the relevant genes were the sole source of variance in the growth of neuro-

computational parameters (i.e., that contributing biochemical environmental factors were

constant across individuals) and that the relationship between genes and parameters was

non-stochastic. We stipulated that multiple genes would contribute to the setting of each

parameter (polygenicity) but did not implement pleiotropy, where a single gene could

contribute to the setting of more than one parameter. The values of the neurocomputa-

tional properties for each individual were encoded in the artificial genome.

The idea of encoding the properties of a computer program in the form of an artificial

genome is familiar from the machine-learning technique of genetic algorithms. Genetic
algorithms are a method of optimizing computer programs by breeding generations of pro-

grams and selecting the “fittest” (according to performance on the target problem) to pop-

ulate the next generation (see Mitchell, 1997; for introduction). In principle, genetic

algorithms can be applied to any computer program. The minimal requirement is that the
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parameter settings for the program (here, artificial neural network) must be encodable in a

genome, and every version of the genome created by mechanisms that induce genetic var-

iability (such as breeding) must correspond to a legal computer program, that is, one that

obeys the syntax of the computer language. The combination of artificial neural network

models, genetic algorithms, and population modeling has been used extensively to con-

sider how evolution may serve to optimize properties for learning, for instance, in the

domain of language (e.g., Batali, 1994; Reali & Christianson, 2009).

For the current model, we encoded the values of the 14 neurocomputational parameters

in an artificial genome and then produced a population of 1,000 individuals with ran-

domly created genomes. We did not produce further generations via breeding and selec-

tion, with one exception: In related work, we used breeding alone to create monozygotic

and dizygotic twin pairs from the initial population. This allowed us to simulate twin

study designs and thereby assess the heritability of various properties of the population,

such as behavior and network structure (Thomas, Forrester, & Ronald, unpublished data;

see Kohli, Magoulas, & Thomas, 2012, for further discussion of the technique).

The artificial genome contained several simplifications. Our starting point was to create

conditions that allowed a fair opportunity to observe gene–behavior associations. We

therefore created a population where genetic variation rather than environmental variation

was responsible for the majority of individual differences in behavior (i.e., behavior was

highly heritable); and we allowed gene variants to be common, so that there was no

reduction in statistical power associated with rare variants. Artificial genes were binary

digits, holding the value 1 or 0. Thus, there were only two variants of each gene. We

consider populations where these variants were equally frequent (so the initial population

of random genomes was generated by setting each bit to 1 or 0 with 50% probability of

each); or where one variant was more common than the other (either: 1-valued alleles

had 70% probability and 0-valued alleles 30% probability, or the reverse). Several binary

genes encoded the value of each parameter, with more binary genes employed where a

parameter took up a wider range of values. For example, the unit threshold function was

encoded over 10 binary genes. The binary gene set was converted into a parameter value

using the following method. The number of 1-valued alleles was summed. A look-up

table was then used to convert the sum to a parameter value. Tables were constructed

such that increasing sums corresponded to monotonic changes in the parameter. Interme-

diate valued sums corresponded to the average value of the parameter, and lower or

higher sums corresponded to more extreme settings of the parameter in either direction

from the average. An example of the lookup table for the unit threshold function is

included in Fig. 3. The full set of lookup tables is included in the Data S1.

The polygenic, binary coding of parameters ensured that average values were most

common in the population, and more extreme values less common. Lookup tables were

constructed to ensure that parameter changes above or below the average value corre-

sponded to symmetric improvements or decrements in behavior. This meant that parame-

ter value changes were not always linear. For example, the “average” number of hidden

units, ensuring a mediocre rate and final level of development, was 50 (with all other

parameters at average values). Reducing this value to 30 caused poor development, but
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an equivalent improvement above average required an increase to 200. Such a non-linear

relation from artificial genome to parameter ensured strong genetic effects, and thus the

best chance of observing these effects in single gene–behavior associations (Thomas, For-

rester, & Ronald, unpublished data).

The artificial genome comprised 126 bits (split into two strings or chromosomes of

63). The numbers of binary genes per parameter were as follows: hidden units: 10; unit

threshold function: 10; processing noise: 8; learning rate: 12; momentum: 8; weight vari-

ance: 8; architecture: 6; learning algorithm error metric: 4; response threshold: 10; prun-

ing onset: 10; pruning probability: 8; pruning threshold: 10; weight decay: 10; sparseness:

12. These values were determined during a calibration phase to accommodate different

ranges of variation for the respective parameters in how they influenced behavior (though

in principle, the number of genes per parameter could be held constant).

2.7. Simulation design

Six populations of 1,000 networks were run. In each case, (a) artificial genomes were

generated at random; (b) each genome was converted into an instantiated network; (c) a

family training set was created for the individual; and (d) development was tracked for

1,000 epochs (presentations of the training set). The majority of results are reported from

the first population, where the gene variants at each location on the artificial chromosome

were equally frequent. We then considered five further populations to evaluate the repli-

cability of artificial gene–behavior associations. First, we took the same set of genomes

and exposed the networks to different environments. Second, we resampled the genomes

with random binary values but used the same lookup tables and therefore probabilistic

distribution of the parameter values in the population; and then exposed these networks

to different environments. This was carried out twice to create two resamplings. Fourth,

we resampled the genomes but now changing allele frequencies, with the 1-valued allele

given 70% probability and the 0-valued allele 30%. The same look-up tables were used

to convert artificial genomes to neurocomputational parameter values. Last, we resampled

the genomes, but with the 1-valued allele now given 30% probability and the 0-valued

allele 70%.

3. Results

We first consider the variability present in the behavior of the population. Fig. 2 shows

the population distribution of performance on regular and irregular verbs at three points

in training, which we will refer to as early (50 epochs), mid (100 epochs), and late (750

epochs) in development. These points were chosen to capture different developmental

phases, but before performance had entrenched at its final performance level. Table 1

shows the mean performance level and standard deviation for each past-tense verb type at

each measurement point. These are the data at the behavioral level. At the genetic level,

the artificial genome constituted 126 binary values per individual, for 1,000 individuals.
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For a given point in development and a given behavior, a correlation could be computed

between the value of each artificial gene (1 or 0) and the target behavior. In what fol-

lows, we report the variance explained by the association (that is, the square of the corre-

lation). Associations had to exceed a certain size to be rated greater than chance. This

threshold was determined via bootstrap methods, by repeatedly generating a random gene

(with two possible values, 0 and 1) and associating variations in this gene to the target

measure. One thousand iterations generated a distribution of the association sizes one

might expect by chance. Ninety-five percent and 99% confidence intervals could then be

generated for this distribution to identify the association sizes that would occur by chance

less either than 1 in 20 times or 1 in 100 times. A similar approach was used to compute

how large a difference between two associations had to be before it could be viewed as

significant. For most target measures, the 0.05 criterion corresponded to an effect size of

around 0.5% and the 0.01 criterion to an effect size of around 0.75%. At these levels, for

each 100 other unrelated genes on the (unimplemented wider) genome that one associated

with the behavioral or structural measure, five would be expected give false positive

Table 1

Population mean and standard deviation for verb types at early (50 epochs), mid (100 epochs), and late (750

epochs) of training

Early Mid Late

Regular 75.3 (23.8) 82.3 (19.7) 89.3 (13.9)

Irregular Identity 45.3 (23.3) 57.5 (24.8) 74.6 (22.3)

Vowel change 31.5 (24.0) 47.2 (28.0) 68.6 (26.4)

Arbitrary 51.3 (31.6) 61.3 (29.7) 71.6 (23.8)

Generalization Rule 59.3 (19.7) 63.0 (16.5) 65.9 (12.9)

Note. Generalization was assessed by correct application of the past tense rule to novel verbs that rhymed

with existing regulars in the training set.

(a) Regular verbs (b) Irregular verbs
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Fig. 2. The population distribution of performance on (a) regular and (b) irregular verbs at three points in

training: early (50 epochs), mid (100 epochs), and late (750 epochs) in development.
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associations at the 0.05 level and one would be expected to give a false-positive associa-

tion at the 0.01 level. We could have used more sophisticated methods that corrected for

multiple comparisons but chose not to, first for the sake of simplicity, and second because

the sources of variation in the modeled system were well understood.

Fig. 3 shows the possible associations between different levels of the model, for one

neurocomputational parameter, the unit threshold function or “temperature.” Fig. 3(a)

shows the relationship between the parameter value and behavior on irregular verbs estab-

lished during calibration. Like many neurocomputational properties, the relationship is

non-linear. Fig. 3(b) shows this relationship when plotted from the full population, with

unequal frequencies of parameter values and all other parameters varying, in this case at

the early point of development. Extreme values of the parameter were relatively less fre-

quent than the average value. Fig. 3(c) shows the lookup table that was used to convert

the binary genes to the parameter value. Fig. 3(d) shows the associations that were then

observed between genes and behavior, when behavior was plotted according to genotype.

We now turn to our equivalent of a GWAS, examining effect sizes across the full 126-

bit artificial genome. We report the results relevant to our eight questions.

3.1. Can statistically significant associations be observed between artificial gene variants
and individual differences in behavior, given many-to-one gene-to-neurocomputational
parameter mappings and an intervening experience-dependent developmental process?

Fig. 4 depicts the association size between the neurocomputational parameter values

and behavior, using individual linear regressions. It demonstrates that there are large

effect sizes, which are modulated both by behavior type (regular vs. irregular mappings)

and over development. Were these associations observable at the level of artificial genes?

Fig. 5 shows the associations between genome and behavior, again split by regular and

irregular verb type, and for three points in development. Ninety-five percent confidence

intervals on effect sizes were produced by generating a random binary allele for each

individual and using this to predict the individual’s behavioral score; this procedure was

repeated 1,000 times to generate a distribution of effect sizes; the distribution was used

to derive the effect size value that would be produced by chance <1 time in 20. The sig-

nificance levels were therefore specific to the population size that was simulated.

A number of gene–behavior associations were indeed observable, despite the fact that

the genes acted only on parameters in a many-to-one fashion and that behavior was the

outcome of a variable developmental process. Early in development, for regular verbs

there were 33 reliable associations from artificial genes to behavior at p < .05 and 24 at

p < .01 out of a possible 126. For irregular verbs, there were 40 reliable associations

at p < .05 and 26 at p < .01. By chance, 6 or 7 would be expected at 0.05 and 1 or 2 at

0.01. Across all three stages of development, effect sizes ranged from 0% to 4.4% of the

variance (mean effect size: 0.4% standard deviation: 0.6%); 91 of the effect sizes fell

between 0% and 0.5%, 19 between 0.5% and 1.0%, 8 between 1.0% and 1.5%, and 8

were >1.5%. Larger effect sizes were seen on regions of the artificial chromosome influ-

encing the neurocomputational parameters which themselves showed larger effect sizes
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on behavior in Fig. 4. On the whole, a substantial number of small effect sizes were seen

in the associations between artificial gene variants and behavior, despite the interceding

developmental process.

Artificial gene variants were also assessed by their ability to predict whether an indi-

vidual would fall in the top 10% or bottom 10% of the population by rank (simulating

Temperature parameter value

Number of 1-valued 
alleles

0 1 2 3 4 5 6 7 8 9 10

Population 
probability

0.1% 1% 4% 12% 21% 25% 21% 12% 4% 1% 0.1%

Parameter value 0.0625 0.125 0.25 0.5 0.75 1 1.25 1.5 2 3 4

(a) Parameter-behavior function

(other parameters constant)

(b) Parameter-behavior association

(full population, all parameters varying)

(c) Look-up table for deriving the computational parameter from the artificial genes

(d) Simulated gene-behavior associations

Fig. 3. Example of associations between levels of description for one neurocomputational parameter, the unit

threshold function or “temperature,” for irregular verb behavior early in development. (a) The function link-

ing behavior with the parameter value, with all other parameters held constant. (b) The association between

behavior and parameter in the population, with uneven parameter frequencies and all other parameters vary-

ing. (c) The look-up table used to derive the neurocomputational parameter from the artificial genome. (d)

The association between behavior and the artificial genes, with the 10 alleles split into five genotypes.
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precocious or delayed development). Individual artificial gene variants altered the likeli-

hood of falling in the tails of the population distribution by a maximum of 2.89 times

(M = 1.15, standard deviation: 0.16); 56 of the ratios were between 1 and 1.1, 35

between 1.1 and 1.2, 20 between 1.2 and 1.3, and 15 were >1.3 (recall, an odds ratio of

1.1 means 11 individuals with the variant will show the phenotype, for every 10 with the

variant who will not). Thus, artificial gene variants could predict performance in the tails,

with relatively modest odds ratios.

3.2. Do associations show specificity to different behaviors generated by the system or
are they general?

We compared associations to performance on regular verbs and irregular verbs, early

in development. Once more, bootstrapping methods were used to derive 95% confidence

intervals on the differences between effect sizes. Of the 126 possible associations, there

were 37 that differed significantly in effect size at p < .05 between the two types of

behavior, 10 where effect sizes were larger for regular verbs, and 27 where they were lar-

ger for irregular verbs. Twenty-seven differences were significant at p < .01, 10 where

effect sizes were larger for regulars and 17 where effect sizes were larger for irregulars.

Thus, despite the general nature of the neurocomputational parameters, and the absence

of processing structures specific to the types of behavior, associations from artificial genes

to behavior could demonstrate specificity to behavior type. However, the majority of

associations were not significantly different across the two behaviors, in line with the fact

that these behaviors were generated by the same network structure.

3.3. What is the stability of the associations over developmental time?

Associations changed over development. Focusing on regular verbs, between early

and mid development, there were 12 significant differences in effect size at p < .05

(a) Regular verbs (b) Irregular verbs

Fig. 4. Effect sizes of (linear) associations between neurocomputational parameter values and behavior, for

(a) regular verbs and (b) irregular (vowel-change) verbs.
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out of a possible 126. Seven of these 12 were cases where effect sizes were larger

early in development, five were cases where they were larger in mid development.

Only three developmental changes in associations were reliable at p < .01, all larger

early in development. A comparison between early and late development revealed 33

reliable differences in effect size at p < .05, 14 where effect sizes were larger early

and 19 where they were larger late. There were 20 differences reliable at p < .01, 7

where effect sizes were larger early, 13 where they were larger late. Thus, associa-

tions between artificial genes and behavior could both decrease and increase across

development within the model.

(a) Regular verbs

(b) Irregular vowel change verbs

Fig. 5. Effect sizes of artificial gene–behavior associations. Variation in population performance was pre-

dicted from individual binary allele values (0 or 1), for (a) regular verbs and (b) irregular verbs. Early = 50

epochs of training; Mid = 100 epochs of training; Late = 750 epochs of training. There were 126 binary

alleles, split into regions coding for each computational parameter: hidden units (HU), temperature (TMP),

noise (NS), learning rate (LR), momentum (MO), weight variance (WV), architecture (ARC), learning algo-

rithm (LA), nearest-neighbor threshold (NNT), pruning onset (PO), pruning probability (PP), pruning thresh-

old (PT), weight decay (WD), and sparseness of connectivity (SP).
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Fig. 4 indicates that developmental sensitivity was also apparent in the associations

between neurocomputational parameters and behavior, with some associations strengthen-

ing across development and some weakening. Within a given neurocomputational param-

eter, the rank order of performance between individuals with different settings of the

parameter value was generally stable across development. However, it was possible to

find cases where individuals with one parameter value scored higher than individuals with

another parameter value earlier in development, while later the order was reversed. For

example, after 30 epochs of training, the 212 individuals with the temperature value of

1.25 scored higher on irregular verbs than the 254 individuals with a temperature value

of 1.00 (23.9% vs. 21.6% accuracy), while by epoch 200 the pattern of performance had

reversed (60.6% vs. 63.8%; interaction of epoch 9 parameter value: F(1, 464) = 8.31,

p = .004, effect size gp
2 = 0.018). The behavioral advantage to an individual of possess-

ing a given neurocomputational parameter value could, therefore, be specific to a particu-

lar developmental stage.

3.4. Do associations replicate across populations?

Fig. 6 displays between-level associations when the same set of artificial genomes

was instantiated as a new set of networks, and trained in new randomly sampled envi-

ronments. The figure incorporates the effect sizes between neurocomputational parame-

ters and behavior, and between artificial genes and behavior. We picked one of the

behavior types, irregular verb performance, and one developmental stage, early, for

our comparisons. There was a fairly close replication of associations at both levels.

For artificial gene–behavior associations, there were only eight significant differences

at p < .05 and 3 at p < .01, close to chance levels. Fig. 7 depicts the same plots

when a new set of artificial genomes was sampled, with the same allele frequencies

and parameter frequencies across the population; these new genomes were instantiated

as networks and trained in new environments. Fig. 7 includes two such resamplings.

Here, the replication was fairly good at the neurocomputational-to-behavior level, but

poorer at the artificial gene-to-behavior level. For the first resampling, 39 associations

were significantly different at p < .05, and 17 were significant at p < .01, out of 126.

For the second resampling, 36 associations were significantly different from the origi-

nal at p < .05 and 20 different at p < .01. Fig. 8 depicts the situation where allele

frequencies were changed, either making the 1-valued allele more frequent than the

0-valued (70:30) or less frequent (30:70). Once more, a population of genomes was

generated, instantiated as networks, and trained in new environments. Replication was

now poor for both neurocomputation-to-behavior and gene-to-behavior associations.

For the latter, there were 54 significant differences between the original and the 70:30

population at p < .05 and 33 at p < .01. There were 41 significant differences between

the original and the 30:70 population at p < .05 and 30 at p < .01. In sum, replication

was variable, depending on the details of the resampling, and the levels between

which associations were observed.
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3.5. Are associations observed from artificial genome to network structure and
activation, and if so, are these the same as the associations observed from genes to
behavior (network function)?

Fig. 9 shows the associations between the artificial genome and two indices of network

structure, the total magnitude of network connectivity, and the total number of connection

weights, for early in development. Associations for irregular verb behavior (network func-

tion) are also included for comparison. Large effect sizes were apparent for both magni-

tude and number, with 28 and 15 associations significant at p < .01, respectively. When

these two structural indices were compared with the effect sizes for irregular verb behav-

ior at the same point of development (which had 26 reliable associations at p < .01),

there were 41 and 35 significant differences at p < .01, for magnitude and number,

(a) Replication with re-sampled environment

(b) Equivalent parameter effect sizes

Fig. 6. Replicability of simulated association analyses. (a) Comparison of effect sizes for original population

and for a population trained with the same artificial genomes but resampled environmental variation; (b) com-

parison of computational parameter effect sizes for those populations.
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respectively. In other words, for connection magnitude, 13 associations were shared with

behavior and 41 differed, while for connection number, 6 were shared and 35 differed.

Thus, the majority of the associations between artificial genes and network structure, and

between artificial genes and behavior (network function), were separate—even though it

was the structure of the artificial neural networks that generated their behavior.

This is perhaps not surprising given the correlations between these structural indices

and behavior. Table 2 shows the correlation matrix for structural (number and magnitude

of connections) and functional (regular, irregular performance) indices for early, mid, and

late in development. It reveals a pattern of strong correlations within structural indices

and within functional indices, but weak correlations between structural and function indi-

ces. This pattern has also been observed in empirical studies. For example, data from

Posthuma et al. (2003) are included in Table 3 for comparison. Total gray matter was

(a) Replication with re-sampled environment 

(b) Equivalent parameter effect sizes 

Fig. 7. Replicability of simulated association analyses. (a) Comparison of effect sizes for original population

and for two populations with resampled genomes (same allele frequency) and resampled environments; (b)

comparison of computational parameter effect sizes.
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found to correlate strongly with total white matter, verbal comprehension was found to

correlate strongly with working memory, but the correlation between structural measures

and behavioral measures was modest. In the model, while, to some extent, more total

connections necessarily entail greater total connection strength, the correlation is not

guaranteed. Several factors can modulate the relationship. These include differential loss

of connections through pruning, differential decay of connection strengths, differential

strengthening of connections due to variations in learning environments, and the differen-

tial effect of other parameters that modulate how learning experiences strengthen the con-

nections. Together, these factors can all serve to weaken the initial correlation between

the two structural measures. This is confirmed in Table 2, which demonstrates how their

correlation weakens over development.

(a) Replication with populations with different allele frequencies 

(b) Equivalent parameter effect sizes 

Fig. 8. Replicability of simulated association analyses. (a) Comparison of effect sizes for original population

and for two populations with different allele frequencies. In the 70:30 population, the 1-valued allele had a

frequency of 70% while the 0-valued allele had a frequency of 30%. In the 30:70 population, the 1-valued

allele had a frequency of 30% while the 0-valued allele had a frequency of 70%. (b) Comparison of computa-

tional parameter effect sizes.
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We next assessed the correlation across individuals between measures of network

structure and network activation, where the latter was calculated by the average hidden

unit activation levels produced while generating behavior.2

Hidden unit activation states were very similar when processing items in the training

set and items in the generalization set (a correlation of 1.00), though greater activity was

induced in networks by novel items than by items in the training set (training set:

M = 0.295, standard deviation = 0.159; novel: M = 0.328, SD = 0.179; t(897) = 50.19,

p < .001, Cohen’s d = 0.198). Novel items have also been observed to induce more neu-

ral activity than familiar items in some functional brain-imaging experiments, an effect

which has been ascribed to greater neural efficiency in processing the latter (see, e.g.,

Poldrack, 2014). In the model, more activation represented less certainty about the iden-

tity of the input. Of course, one needs to be cautious in inferring too much from the

(a)

(b)

Fig. 9. Associations between the artificial genome and the structural indices of total magnitude of network

connection strengths, and total number of connection weights, for early in development. Associations for the

functional index of irregular verb behavior are also included. (a) Artificial gene to structural/functional index;

(b) computational parameter to structural/functional index.
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simulation results with respect to brain-imaging data, given the limited neural realism of

the distributed codes acquired in backpropagation networks. Correlations between struc-

tural measures and activation levels were high, 0.89 for connection number and activity,

and 0.63 for connection strength and activity (both p < .01). Fig. 10 shows the associa-

tions from the artificial genome to, respectively, number of connections, activation

induced by processing novel verbs, and the generalization performance on novel verbs.

Associations for activation states more closely tracked differences in the connectivity of

the network rather than behavior. That is, variations in the representational codes across

networks were tied to structural properties of those networks rather than how well the

networks were performing in inflecting novel verbs.

Table 2

Correlations between structural indices (summed magnitude of connection weights, total number of connec-

tion weights) and functional indices (performance on regular verbs, performance on irregular verbs) for the

simulated population, at early, mid, and late points of development

Magnitude Number Regular

Early

Structure Magnitude

Number .623**

Function Regular .007 .086**

Irregular .106** .185** .640**

Magnitude Number Regular

Mid

Structure Magnitude

Number .602**

Function Regular .036 .083**

Irregular .073* .120** .698**

Magnitude Number Regular

Late

Structure Magnitude

Number .583**

Function Regular .149** .160**

Irregular .122** .199** .720**

*Correlation is significant at the 0.05 level (two-tailed).

**Correlation is significant at the 0.01 level (two-tailed).
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3.6. Are associations modulated by the quality of the environment, producing
gene 9 environment interactions?

Our illustrative model was drawn from the study of language development, where in

another context, it has been used to simulate SES effects on past-tense acquisition via

modulation of the information content of the environment (Thomas et al., 2013). Did

variations in this information content affect the associations observed between levels?

SES was modeled by the family quotient factor, which served as a filter on the full

training set, and which varied in value from 0.6 to 1.0. Note, by design, genomes were

randomly assigned to environments. We split the population into high and low SES

groups at a quotient of 0.8, yielding subgroups of N = 502 and N = 498, respectively.

Fig. 11 shows the neurocomputational parameter-to-behavior and artificial gene-to-

behavior associations for irregular verbs early in development. There were modulations

of effect size by SES in both cases. For artificial gene–behavior associations, there were

39 associations out of 126 that significantly differed between high and low SES groups

at p < .05 and 24 at p < .01 (with confidence intervals recalculated to reflect the smal-

ler sample size). An equivalent analysis of SES effects on regular verb associations

yielded 38 at p < .05 and 15 at p < .01, respectively. This result demonstrates evidence

of gene–environment interactions in our model system, at least in the way that SES

modified gene–behavior associations. But did these effects translate into a modification

of the relationship between SES and behavior according to genotype? We took the arti-

ficial gene with largest effect from Fig. 11 (gene no. 68, predicting 6% of the variance

in the high SES group but only 1% in the low SES group). In the group of individuals

with the 1-valued allele, the effect of SES was to modulate behavioral performance by

8.9% (high SES, accuracy = 40.4, N = 230 vs. low SES = 31.5, N = 248); for the 0-

valued allele, the effect of SES was a negligible 0.4% (27.7, N = 272 vs. 27.3,

Table 3

Empirical data from Posthuma et al. (2003, Table 2) for structural indices of white matter volume and gray

matter volume, and functional indices of performance on verbal comprehension and on working memory

tests

White Matter

Volume

Gray Matter

Volume

Verbal Compre-

hension

Working

Memory

Structure White matter

volume

Gray matter

volume

.59**

Function Verbal

comprehension

.01 .06

Working memory .28** .27** .54**

**Correlation is significant at the 0.01 level (two-tailed).

Correlations within structural indices and within functional indices are shown in boxes.
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N = 250). This gene–environment interaction had a small effect size of 0.8% of the

variance, but was statistically significant in our sample size—F(1, 996) = 8.10,

p = .005, gp
2 = 0.008. In sum, the effect of environmental variation depended on the

individual’s genotype in this model system.

3.7. Can interactions between genes be observed in the way that they influence
behavior?

By design, at the level of artificial genome, there were no causal interactions between

the genes in the way that they influenced different neurocomputational parameters. Thus,

for example, the value of the hidden unit parameter depended only on the values of the

relevant artificial genes encoding this parameter, and did not depend, say, on the values

of the artificial genes determining the learning rate parameter.

(a)

(b)

Fig. 10. A comparison of associations between the artificial genome and (1) the structural index of total

number of connection weights, (2) the mean network activation level in processing novel verbs, and (3) the

behavioral performance on novel verbs (correct application of the past tense rule). Associations were com-

puted for the early point of development. (a) Artificial gene to structural/activation/behavioral index; (b) com-

putational parameter to structural/activation/behavioral index.
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However, based on machine-learning principles, we viewed it as likely that computa-

tional parameters in an artificial neural network would interact with each other in their

effect on behavior. We explored whether this phenomenon might then generate statistical

interactions between different gene–behavior associations, for the artificial genes encoding

different computational parameters.

We took two parameters, number of hidden units and learning rate, which we expected

on computational grounds to interact in their effect on behavior. Fig. 12 plots the population

performance for individuals split by whether they had 40 or 50 hidden units (where more

hidden units implies greater computational power), and whether their learning rate was

0.075 or 0.125 (where a higher learning rate indicates a more plastic learning system). We

compared regular and irregular verb performance and contrasted early and late phases in

development. For the networks with 40 hidden units, the less plastic systems scored higher,

while for 50 hidden units, the more plastic systems scored higher. The numerical difference

was present for both verb types and both stages of development but was significant only for

(a)

(b)

Fig. 11. Associations when the population was split by (simulated) socioeconomic status (SES). (a) Effect

sizes for associations between artificial genome and behavior (irregular verb performance early in develop-

ment); (b) effect sizes for associations between neurocomputational parameters and behavior.
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irregular verbs (regular, early: p = .173; late: p = .323; irregular, early: F(1, 111) = 4.14,

p = .044, gp
2 = .036; late: F(1, 111) = 5.53, p = .020, gp

2 = 0.047). As we expected, then,

these two neurocomputational parameters interacted in their effect on behavior.

We explored whether this interaction was visible in artificial gene–behavior associa-

tions. We picked two alleles with significant associations, one from the hidden unit (HU)

region and one from the learning rate (LR) region (effect sizes of 1.39% and 2.37%,

respectively). We compared them with two alleles from these regions that showed non-

significant associations (0.00% and 0.09%). The alleles with significant associations

showed main effects but did not exhibit an interaction—main effect of HU: F(1,
996) = 13.78, p < .001, gp

2 = .014; main effect of LR: F(1, 996) = 24.09, p < .001,

gp
2 = 0.024; HU 9 LR interaction: F(1, 996) = 1.27, p = .261, gp

2 = 0.001. By contrast,

the alleles without individually significant associations showed no main effects but a reli-

able interaction—main effect of HU: F(1, 996) = 0.03, p = .871, gp
2 = 0.000; main

effect of LR: F(1, 996) = 1.21, p = .271, gp
2 = 0.001; HU 9 LR interaction: F(1,

996) = 4.07, p = .044, gp
2 = 0.004. The observed interaction was in the expected direc-

tion given in Fig. 12: for the 1-valued hidden unit allele (contributing to more hidden

units), individuals with the 1-valued learning rate allele (contributing to more plasticity)

scored higher. For the 0-valued hidden unit allele (contributing to fewer hidden units),

(a) Regular verbs 

(b) Irregular verbs 

Fig. 12. Interactions between the effects of neurocomputational parameter values on behavior. Performance

on (a) regular and (b) irregular verbs, for early (50 epochs) and late (750 epochs) in training, split by two

Hidden Unit levels (40 or 50) and by two Learning Rate levels (0.125 or 0.075).

M. S. C. Thomas, N. A. Forrester, A. Ronald / Cognitive Science (2015) 31



individuals with the 0-valued learning rate allele (contributing to less plasticity) scored

higher. Therefore, interactions between neurocomputational parameters were reflected in

statistical gene-behavior associations.

3.8. When all mechanistic sources of variability are known, can all the population
variability in behavior be explained?

Due to the relative range of variation of genetic and environmental factors in the cur-

rent simulation, the majority of the population variability was due to genetic factors.

When the simulations were extended to a twin study design (see Thomas, Forrester, &

Ronald, unpublished data), the monozygotic (MZ) twin correlation for regular verbs early

in development was 0.98 and dizygotic (DZ) was 0.40 (note, behavior was computed

without measurement error). An MZ correlation more than twice DZ implies dominant

genetic effects. An MZ correlation of .98 suggests only a small contribution of stochastic

factors to developmental outcomes. Could the population variability in behavior exhibited

by the simulated population be explained by the associations at each lower level of

description, respectively, at the neurocomputational and genetic levels? If we understand

the mechanisms, can we explain the behavioral variance? Since we knew the contribution

to individual differences in behavior due to the environment (stemming from a single

parameter, the family quotient factor), the remaining variance should be accounted for by

the genetically determined neurocomputational parameters. Together, the family quotient

factor and the neurocomputational parameter values should predict all the population vari-

ance in behavior.

The neurocomputational parameters, along with the measure of environmental quality

(family quotient), were used in independent linear regressions to predict regular verb per-

formance early in development. The summed variance of behavior explained by the

parameter values was 48.1%, less than half the population variability, with the family

quotient factor accounting for 0.7%. Separate regressions inflated the variability explained

due to (in this case, chance) correlations between the neurocomputational parameters,

thereby double-counting some of the variance that the parameters predicted. Simulta-

neously entering the parameters in a multiple linear regression reduced the explained var-

iance to 43.4%. The inflation of independent fits was therefore around 5%. Using linear

methods, then, the neurocomputational parameter values only explained about half of the

behavioral variance.

Linear methods were not entirely appropriate, however. As exemplified in Fig. 3(a), in

most cases the relationship between a neurocomputational parameter and its effect on

behavior was non-linear, with the appropriate function differing depending on the param-

eter. The best non-linear fit was computed for each neurocomputational parameter–behav-
ior relationship from the set {linear, log, inverse, quadratic, cubic, power, logistic,

growth, and exponential}. If only non-linear functions with two regression parameters

were used (the same number as a linear function), the total variance explained now rose

to 70.1% (though this includes the inflation due to independent fitting). If non-linear

functions with 2, 3, or 4 regression parameters were permitted, the explained variance in
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population behavior rose to 77.1%, although the additional 7% explained variance was

gained at the expense of 17 more regression parameters (degrees of freedom). The maxi-

mum explained variance, combining knowledge of neurocomputational parameter values

and environmental quality, was a little under 80%.

One possible source of the additional variance was the presence of higher order inter-

actions between neurocomputational parameters. We saw one such interaction in the pre-

vious section. Given that there were 14 parameters, there were a large number of possible

interactions. To test the principle that interactions might account for missing variation,

we re-ran the linear multiple regression, but now entering several interaction terms. These

terms were educated guesses based on computational theory, and involved interactions

between parameters such as hidden unit number (H), learning rate (LR), temperature (T),

connectivity sparseness (S), architecture (A), response threshold (RT), noise (N), initial

weight variation (W), and family quotient (FQ). (Two examples: a lower activation func-

tion temperature might mitigate the entrenchment caused by large initial weights; a less

representative view of the latent structure of the problem domain caused by a low family

quotient might be mitigated by a more tolerant response threshold). Of the dozen interac-

tion terms we guessed (entered into the regression as products of the parameter values),

five explained statistically reliably amounts of the variance. These included three 2-way,

one 3-way, and one 4-way interaction (H*LR, H*T, T*W, LR*RT*FQ, H*LR*T*S). The
total variance explained in this linear regression model rose from 43.4% to 46.0%, a gain

of 2.6%, thereby confirming that interactions between parameters could account for some

of the missing population variance.

Finally, turning to the artificial gene level, summing all associations plus variance

explained by the environment yielded a total of 79.4%. Again, this method includes infla-

tion due to independent fitting, possibly a greater inflation due to the larger number of

comparisons involved. Simultaneously, entering all alleles plus environment into a multi-

ple linear regression yielded a reduced total of 61.3% variance explained.

In sum, in the absence of measurement error, subtracting the known contribution of

the manipulated environmental factor to population variation in behavior, and the known

contribution of stochastic factors computed from MZ correlations, we expected the other

deterministic mechanistic factors producing variability to explain up to 97% of the vari-

ance. These mechanistic factors represented the genetic contribution to individual differ-

ences. However, only around 80% of the variance could be explained by these factors. In

these simulations, one could say that around 20% of the variance expected to be

explained by genetic factors was “missing.”

4. Discussion

We begin by considering the following specific question: For the preceding analyses,

do observed cross-level statistical associations give an accurate picture of the causal pro-

cesses which, with knowledge of the operation of the model, we know generated the
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behavior? We then turn to consider the broader theoretical issues raised by the multiscale

model, as well as the limitations of the simplified modeling framework.

4.1. Correlation and causality within the model

Small but statistically reliable associations were observed between the artificial genome

and behavior from around a quarter of the alleles on the artificial genome. These were

observable through the filter of the genes’ many-to-one impact on neurocomputational

parameters in a system that engaged in an extended, experience-dependent developmental

process. On the one hand, this is impressive. On the other hand, no artificial genes were

included in the genome that did not influence neurocomputational properties. Therefore,

every artificial gene was causal. For three quarters of the artificial genes, there was cau-

sality without statistically significant correlation. There were two reasons why only a

quarter showed reliable correlations to behavior: the polygenic relationship between the

artificial genes and the neurocomputational parameters, and the differential predictive

power of the neurocomputational parameters that they influenced. For the former, the reli-

able associations corresponded to the genes that happened, by chance, to contribute to

setting the value of the computational parameter for this population. That is, causation
was not fully manifested in correlations because of sampling. The divergence between

correlation and causation was possible because of the many-to-one mapping between arti-

ficial genes and neurocomputational parameters, and the many-to-one relationship

between neurocomputational parameters and behavior.3

Some associations showed specificity to different behaviors. For this model, the speci-

ficity of artificial gene–behavior associations did not imply specificity of computational

mechanisms responsible for processing each behavior type. Regular and irregular past

tenses were generated by the same structure through parallel distributed processing. Spec-

ificity of associations occurred because the two behaviors had differential sensitivity to

variations in different neurocomputational parameters. Therefore, the behaviors were able

to show different associations to genes influencing the setting of those parameters. For

example, irregulars are harder to learn and require more computational power. As a con-

sequence, irregulars are more sensitive than regulars to variations in the architecture of

the network, one of the key determinants of processing power. In turn, variation in irregu-

lar verb performance can then show larger associations to variants of the artificial genes

determining the architecture.

A particular relationship between variation in certain high-level behaviors and variation

in certain low-level neurocomputational properties has been referred to as “domain-rele-

vance.” The concept has been used to explain why uneven cognitive profiles can occur in

developmental disorders in the face of apparent brain-wide genetic effects (Karmiloff-

Smith, 1998). A brain-wide parameter difference may differentially impact on behaviors

for which the parameter is more developmentally relevant. In sum, while specificity of

gene–behavior associations could imply specificity of processing mechanisms, it need not

and did not in our model. Instead, it could also imply domain relevance of processing

properties to problem domains.

34 M. S. C. Thomas, N. A. Forrester, A. Ronald / Cognitive Science (2015)



We observed that some gene-behavior associations changed across development, either

increasing or decreasing in size. In terminology sometimes used in association studies,

the “genetic architecture” of the system altered across development. However, by design,

in the simulations there was no alteration in the genetic influence on variation in the neu-

rocomputational parameters across development; the genes were taken to influence

growth processes that led to a network with certain learning properties. In our simula-

tions, associations changed, either rising or falling, because the computational properties

that they influenced became more or less relevant to behavior at different phases of

development. In the same way as computational parameters can be “domain-relevant,”

they can be “phase-relevant.” For example, the response threshold parameter (indexing

the notional settling of attractor networks at output; see Data S1) determined how “clean”

a response had to be before it could generate a behavioral output. Variations in the

response threshold were more influential early in development when processing was less

accurate; but when accuracy increased later in development, variations in the response

threshold themselves became less relevant. By contrast, variation in the learning algo-

rithm became increasingly relevant because it determined the final representational states

that could be reached by the system by the end of development. In sum, developmental

changes in gene–behavior associations could indeed (and presumably often do) imply

changes in gene expression—after all, in many cases, biological development is defined

by changes in gene expression; but they need not and did not in our model. Instead, they

could imply phase relevance at the computational and genetic levels.

Associations showed poor replication across populations. This was not due to an

intrinsically noisy developmental process—replication of artificial gene–behavior associa-
tions was good if the population set of genomes was re-instantiated in a different set of

randomly assigned environments. Lack of replication arose when the genomes were re-

sampled, even with the same probabilistic distributions of parameter values. This is

because, through polygenic coding, different alleles could be responsible for producing

the same computational value in different populations. Neurocomputation–behavior asso-
ciations were, however, more robust. If a move from a low level to a high level of

description involves a sequence of many-to-one causal relations, associations become

more robust as more causal factors are collapsed into fewer. This is related to the idea

of endophenotypes (De Geus, Wright, Martin, & Boomsma, 2001; Gottesman & Gould,

2003; Kendler & Neale, 2010). Proponents of endophenotypes argue that intermediate

levels of description between the molecular level of genes and the whole system level of

behavior are more likely to show links to the genetic level. For the model, we observed

that measures at the intermediate level showed stronger and more replicable links to

behavior. However, if allele frequencies differed between populations, while associations

were still observed, these differed, even for neurocomputation–behavior mappings. This

was because the computational balance of the systems had changed. For example, the

population in which 1-alleles had 30% frequency and 0-alleles had 70% frequency, the

corresponding computational parameters were less optimal and population performance

was poorer. Networks, therefore, tended to rely on the response threshold far more to

accept “just good enough” output activations as correct answers, exaggerating the predic-
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tive power of variations in the response threshold parameter. Further simulations are

required to consider scenarios where unequal allele frequencies are the norm. The impli-

cation of the current differential allele frequency conditions was as follows. Given there

will be a function linking the set of gene variants to their effect on neurocomputational

properties, the cross-level associations that are observed will be influenced by the fre-

quency of the different variants in a given population. Overall, then, the results point to

the population-specific nature of between-level associations, and that many-to-one causal

relations can lead more distant levels of description to have less replicable associations

than more proximate ones (where distance refers to a hierarchy of larger components

made from smaller components).

Associations were observed between artificial genome and both network structure and

activation states. However, these were different from the associations observed between

artificial genome and network function (behavior). This is consistent with the low correla-

tion found between individual differences in network structure properties and individual

differences in behavior, a divergence that has also been observed empirically (e.g., Post-

huma et al., 2003). To some extent, one might expect weaker correlations between struc-

ture and function within the artificial neural network, at least at a global level, because

the same structure has to produce different behaviors in a distributed processing system.

Perhaps in our model, a more fine-grained analysis of network structure than total con-

nectivity would have produced structural associations closer to those observed for behav-

ior. This is far from guaranteed, because it was the same units and connections that

processed regular and irregular verbs in this system, with specificity only arising via the

different levels of activation propagating along different pathways (Thomas, Purser et al.,

2012). One reason for the lack of overlap between genome-to-structure associations and

genome-to-function associations was that some neurocomputational parameters contrib-

uted much more to structural variation. For example, the number of internal processing

units greatly influenced structural measures based on total connectivity. However, behav-

ior was more dependent on the quality of the processing occurring within that connectiv-

ity; function, therefore, was influenced by many other parameters with subtler effects not

obviously detectable via the structural measures. One might expect a similar effect with

current brain imaging techniques, since measures of gray matter and white matter, or

blood oxygenation, are unlikely to capture all the properties that affect neurocomputation.

Lastly, the degree of activation in the networks was more closely tied to structure than to

function, indicating that alterations in computational capacity led to the adoption of dif-

ferent representational codes. In short, associations from gene-to-structure and gene-to-

function can diverge, even when (as we know for the model) all the genes being mea-

sured influence aspects of neurocomputational processing.

Associations from artificial genes to behavior were reliably modulated by the quality

of the environment (here, taking advantage of the fact that the model was drawn from

work investigating the effects of socioeconomic status on language development; the pop-

ulation could therefore be median-split into those developing in high SES and low SES

families). It was also possible to identify artificial genes where the allele value altered the

relationship between SES and behavior. In the simulated population, gene–environment
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interactions arose because those networks with better computational learning systems

were more able to exploit the information available in better environments. Variation in

performance due to the quality of the environment was therefore more apparent in those

with higher ability than lower ability (Thomas et al., 2013). However, the proportion of

gene–behavior associations showing modulation by SES was surprisingly high. Even

though we expected gene–environment interactions for this model system, the overall

behavioral effect sizes were relatively modest. For example, where intrinsic ability was

taken to be the composite of all neurocomputational settings, for performance early in

development, the gene–environment interaction for regular verbs explained only 1.1% of

behavioral variance—F(1, 996) = 11.0, p = .001; and that for irregular verbs explained

only 0.4% of the behavioral variance—F(1, 996) = 4.0, p = .047; see Thomas et al.,

2013, for the method of calculating these effects. The number of artificial gene–behavior
associations modulated by the environment exceeded the size of the gene–environment

interaction observed in behavior. The explanation is that many of these apparent modula-

tions were a consequence of the between-subjects design—the low SES and high SES

groups were different subpopulations; therefore one would predict the poor replicability

of artificial gene–behavior associations discussed earlier. In short, the model suggests that

although one might expect gene–environment interactions to be observed in gene–behav-
ior associations, evidence of interactions may also be the artefactual/confounded conse-

quence of measuring associations in populations with (stochastically) different genomes.

By design, artificial genes influencing variation in separate neurocomputational param-

eters did not interact with each other. Genes for a given parameter determined the value

of that parameter independently of the genes for other parameters. Nevertheless, it was

possible to detect statistical interactions between artificial genes for separate parameters

in their associations with behavior. This is because the neurocomputational properties,

which the artificial genes influenced, themselves interacted during the developmental pro-

cess. In the example we gave, a system with more resources did better with higher plas-

ticity than with lower plasticity, while a system with fewer resources did better with

lower plasticity than higher. The computational explanation of this interaction is that in

networks with less representational capacity, a more precise combination of connection

weight values must be reached to accommodate the set of mappings demanded by the

training set. During training, this solution must be approached in the smaller iterative

steps provided by a lower learning rate. In a network with more resources, less exact

weight values are necessary, and less care is therefore necessary in the adjustment of

weight values; faster learning is merely developmentally advantageous. The computa-

tional-level explanation therefore accounts for the non-additive effects observed in the

gene-behavior associations.

Finally, we used a system in which most of the population variability in behavior was

caused by intrinsic factors, which we defined as genetic in origin. That is, the system

generated highly heritable behavior. Given we knew all of the causal mechanistic settings

that generated population variability in behavior (albeit via a developmental process), and

given we had an estimate for the contribution of stochastic factors such as randomization

of initial weights, pruning of weights, processing noise and randomization in exposure to
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the training set, could we then explain all of the observed behavioral variance, or was

some of the variance “missing”? It would be comforting if in a relatively simple system

where the causal processes were transparent (even if some of the properties of the model

were emergent), all the behavioral variability could be explained. However, around 20%

of the behavioral variance remained unexplained. We identified two possible sources of

this phenomenon in the simulations. First, there are limitations in the statistical tech-

niques used to assess variance explained based on the predictor variables. In artificial

neural networks, many of the relationships are non-linear. As we saw, use of linear meth-

ods underestimates the variance that can be explained. Nevertheless, while use of non-lin-

ear statistical methods increased the amount of variance explained, it still left a fifth of

the variance unexplained. Second, variance may be left unexplained because there are

complex interactions between the neurocomputational parameters, and between the

parameters and the environment, during development. With many parameters, there are

large numbers of possible interactions. We confirmed this source of unexplained variance

by demonstrating that some sample interaction terms indeed accounted for reliable

amounts of variance, although the few we chose only increased the explained variance by

a small amount. To the extent that neurocomputational factors are genetically influenced,

then, the interactions between them may constitute a source of missing heritability: this is

variance that stems from genetic factors but that is not predicted by the factors in

isolation.

4.2. Wider implications

Gene–behavior associations offer an exciting window onto the mechanisms by which

the brain realizes cognition. Candidate gene association studies have suggested possible

mechanistic pathways by which genetic variation produces individual variation, for

instance, via influences on neurotransmitter regulation, synaptic plasticity, or neural

migration during development. Genome-wide association studies provide the opportunity

for a systematic search for causal variants associated with variations in behavior. How-

ever, candidate gene studies have suffered from problems of replicability, while GWAS

studies have had, as yet, more success in informing the biological pathways of common

diseases than variations in high-level behavior.

Gene–behavior associations span many intermediate levels of description, including the

cognitive level. What can gene–behavior associations tell us about cognition? Three char-

acteristics of associations are able to inform cognitive theories. These are effect size,
specificity, and timing. A large effect size suggests how much of the causal pathway is

being indexed by the genetic (or environmental) measure. Specificity suggests possible

dissociations between mechanisms underlying different behaviors. Relatedly, modulation

of environmental influences by genetic factors may point to mechanisms for resilience in

development. With respect to timing, changes in associations over development may

imply differential involvement of mechanisms at different ages (Ronald, 2011).

However, the use of genetic association findings to constrain cognitive theories is com-

promised by the complexity of the systems under consideration, and the fact that an

38 M. S. C. Thomas, N. A. Forrester, A. Ronald / Cognitive Science (2015)



extended developmental process is necessary before the emergence of high-level behav-

iors whose variation can be linked with genetic variation. We argued here that multiscale

models provide one method to investigate the relationship between associations that cross

levels of description, and causal processes best characterized as operating at intermediate

levels. In this case, we employed a modeling framework drawn from research on lan-

guage development, which incorporated the levels of artificial genes, neurocomputation,

network structure, behavior, and environment. Importantly, the model captured individual

differences within a developmental framework. The results suggested the following.

Statistical associations spanning disparate levels of description will not always offer

strong constraints on theories developed at intermediate levels of description, for a num-

ber of reasons. Specificity in associations may not be reflected in specificity of mecha-

nism. Timing effects in associations may arise for neurocomputational reasons without

changes in genetic effects. Associations between structure and function may differ, even

when genetic effects operate on the structure that realizes the function. Even without

measurement error, non-linear relationships and complex interactions in learning systems

may limit how much behavioral variance can be predicted from known parameters, lead-

ing to “missing” variance. Many-to-one relationships between genes and neurocomputa-

tional parameters suggest inherent problems in replicability due to sampling differences

across populations, and therefore difficulties with between-participants designs.4 Some

results from the model were more encouraging for the utility of cross-level associations.

Measures that are intermediate to genes and behavior, where some of these many-to-one

relationships have resolved, may improve replicability across populations, consistent with

the idea of endophenotypes. Moreover, the presence of associations between artificial

genes and behavior supports the principle that statistical associations can bear on interme-

diate-level mechanism, because in many cases these associations had clear computational

explanations.

Multiscale simulation framework that combines individual differences with development

provide a foundation to consider wider issues, such as the causes of developmental deficits

like autism, and mental health conditions like depression and schizophrenia. In particular,

the specification of genetic and environmental causes of individual variation in high-level

behavior firstly permits investigation of whether a disorder lies on a mechanistic continuum

with normal variation; and secondly, where a distinct pathological effect is identified (of

either genetic or environmental origin), how this effect interacts with protective and risk fac-

tors understood as population-wide causes of individual variation. For example, the current

simulation framework has been applied to study of risk and protective factors for develop-

mental regression in autism (Thomas et al., 2011; Thomas, Davis, Karmiloff-Smith, Know-

land & Charman, in press), and the study of environmental factors contributing to the

resolution of delay in language development (Thomas & Knowland, 2014).

4.3. How transferable are the model behaviors to real biological systems?

How severely do the simplifications of the model limit the generality of its findings to

biological systems? In some senses, the modeling enterprise here is an unusual one. Mostly,
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models seek to capture a specific quantitative pattern of empirical data, or if they are more

abstract (like the current model), seek to capture a wide set of phenomena using as few

parameters as possible to provide a parsimonious causal account. In our model, we instead

added a small degree of the complexity that we know exists in real biological systems. The

aim was not parsimony but to evaluate the consequences of this complexity in drawing

inferences from the kinds of cross-level association data emerging from developmental cog-

nitive neuroscience. We believe that multiscale modeling is an essential tool to address the

complexity of the systems under consideration, but we recognize there is a clear tension in

such models. This concerns simplification at the interface between levels of description. As

Dammann and Follett (2011) put it, “the trade-off between necessary simplification and nec-

essary detail remains a major challenge in all computational modeling of complex pro-

cesses. While the former is needed to achieve a reasonable level of modeling feasibility,

the latter is needed to retain sufficient detail to render the model biologically meaningful.

Moreover, assessment of reasons for model success or failure is difficult due to this tradeoff,

especially in a multi-scale model, where important aspects of overall mechanistic complex-

ity may have been sacrificed for the sake of modeling simplicity.”

One example of a simplification in the current model was the use of backpropagation

networks to represent the neurocomputational level. The neural plausibility of the back-

propagation algorithm has been questioned. At best, it represents a shorthand for a Heb-

bian-based algorithm that uses bidirectional connections to spread error signals

throughout a neural network (Cowell, Bussey, & Saksida, 2012; Thomas & McClelland,

2008; Xie & Seung, 2003). For a multiscale model, contact with lower levels of descrip-

tion is important, and one might ask whether the use of the backpropagation learning

algorithm restricts the generality of the findings. Certainly, it is possible that algorithms

that are closer to those operating in neural systems might involve neurocomputational

parameters with larger effects on behavior; if so, genes that influence their setting would

produce larger associations in gene–behavior association studies. One key distinction is

between error-correction and self-organizing learning algorithms (O’Reilly, 1998). The

former involves associations between codes, such as in the current model, while the latter

involves the development of higher order representations of input information without a

training target. Kan, Ploeger, Raijmakers, Dolan, and van der Maas (2010) suggested that

in self-organizing systems, initial (potentially stochastic) differences in start states could

produce divergent developmental trajectories (see also Oliver, Johnson, Karmiloff-Smith,

& Pennington, 2000). Applied to the current framework, this would serve to reduce the

size of gene–behavior associations. By contrast, the use of supervised, error-correct

algorithms produced convergence between systems as they attempted to learn similar

input-output mappings. The choice of learning algorithm for a multiscale model of devel-

opment, and its implemented parameters, will clearly be important. The plausibility of

the artificial neural network itself rests on a range of properties it shares with biological

systems: its use of an associative network with distributed processing across a set of

simple integrate-and-fire processing units; where behavior is acquired via an experience-

dependent learning process involving interaction with a structured and variable learning

environment; and the developmental trajectory and final representational states are
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constrained by parameters that have analogues in neurocomputation, such as the activa-

tion function of the neurons, the number of neurons, the connection density, the level of

processing noise, and the onset and rate of pruning.

By design, the current modeling framework included significant simplification at the

lower levels of description because it emphasized contact with the behavioral level, and

the specification of a developmental process that was influenced by the information

content of the environment. The gap between gene function—the production of RNA and

proteins—and neurocomputational function remains large. Other models may emphasize

inclusion of more lower level assumptions at the expense of making contact with

high-level behavior. For example, the computational neurogenetics approach advocated

by Kasabov and Benuskova (2004) restricts its focus to integrating the study of dynamic

neuronal models and gene models. The ultimate challenge is to combine both.

Our model included assumptions that the relationship of genes to neurocomputational

parameters is many-to-one, that gene variants relate to fairly general neurocomputational

properties, and that gene variants are reasonably common in the population. These

assumptions were sufficient to simulate a range of empirical effects, including the small

effect sizes observed between gene variants and individual differences in behavior, the

possibility that these associations can be behaviorally specific, the modest odds ratios

when gene variants were used to predict performance in the tails of the population distri-

bution, poor replicability of associations under certain conditions, and the divergence

between structural measures and functional measures of the system despite tight correla-

tions within these measures. We believe these results are likely to be transferrable to real

biological systems.

The model’s simplifications included a highly simplified and deterministic mapping

from artificial genes to neurocomputational properties, a stationary environment, no

gene–environment correlations, no alteration in the influence of genes on variation in

neurocomputational processes during the model’s acquisition of the domain (i.e., no con-

sideration of earlier stages of biological development defined by changes in gene expres-

sion), two variants at each locus, an absence of rare gene variants with large effects, no

pleiotropy (i.e., genes only influenced variation in one parameter), no epistasis (direct

interaction between genes), and no assortative mating. Moreover, since we only consid-

ered a single cognitive system, both the effects of developmental interactions with other

systems, and issues surrounding the generality or specificity of genetic effects across

multiple systems fell beyond the scope of the project. We should be frank, then, that this

model only represents a small step, serving to demonstrate the importance of including

multiple scale and combining development and individual differences in a single frame-

work; serving to draw out the implications for cross-level associations of the set of

assumptions we initially incorporated; and serving to identify the way ahead for future

models.

Gradual expansion of the complexity of the modeled system is necessary to evaluate

how each of these simplifications would alter the main results with respect to effect size,
specificity, and timing of associations. The results of expanding the complexity of the

model are not necessarily anticipatable in advance. For example, pleiotropy might
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enhance gene-behavior associations if the multiple influences of a given gene variant on

neurocomputation all produced behavioral consequences in a similar direction; or pleiot-

ropy might reduce associations if the influences mitigated each other. Gene–environment

correlations might exaggerate associations, if the correlated environment contributes to

the same behavioral characteristic that the gene is influencing (such as children with

ADHD inheriting both genes influencing impulsivity and an unpredictable family environ-

ment); or gene–environment correlations might attenuate associations, if genes and envi-

ronment contribute opposite effects (such as a night-owls “self-medicating” with coffee to

be more alert in the mornings).

5. Conclusion

Associations between levels of description rely on the existence of individual differ-

ences at each level. In this paper, we have emphasized the importance of considering

individual differences within a developmental framework. With respect to cognition, this

implies an experience-dependent process involving interaction with a structured (physical

and social) learning environment. What is the relationship between individual differences

and development? We raised this question in the introduction and referred to theories that

view them either as a single dimension or as different dimensions. The model’s first

important message is that this conceptualization may be incorrect. Individual differences

and development are not two phenomena to be related. Instead, they are two views of the

same thing. In a population, there are simply variations in developmental trajectories,

with diverse genetic and environmental causes.

The model’s second important message is that although one may be able to identify

correlations between genes and behavior, this is only the beginning of the challenge—to

understand these effects, one has to understand mechanisms at many different levels

through which the effects are produced. Some of the model’s findings could be deemed

as skeptical about gene–behavior associations—for instance, as showing how hard it

could be to learn anything from such associations in systems with many-to-one mappings

and highly non-linear processes. The simulation was deliberately constructed in ways to

enhance the possibility of finding gene–behavior associations. In biological organisms,

individual gene variants may have much smaller effects and so be harder to find. Perhaps

one way to put the point is that if one cannot find correlations and interpret them in the

current model, the prospects with real cognitive systems would seem even more remote.

It is therefore notable that even in the model, while all artificial genes contributed to vari-

ation, only some associations with behavior were detected for a given population.

One of the key motivations for constructing multiscale models of complex systems is

because the impact of individual assumptions cannot be anticipated in advance. The com-

plexity of the underlying interacting non-linear processes necessitates simulation via com-

putational methods. To finish, here are some of the main findings that we had not

necessarily anticipated when we set out to build our model.

42 M. S. C. Thomas, N. A. Forrester, A. Ronald / Cognitive Science (2015)



1. Associations between artificial genes and behavior were observable despite an inter-

mediate neurocomputational level of description where many-to-one causal relation-

ships occurred, and despite extended developmental process involving interaction

with a variable environment

2. Larger effect sizes were seen on regions of the artificial chromosome influencing

neurocomputational parameters which themselves showed larger effect sizes on

behavior; but not all artificial genes in these regions showed significant associations.

3. Despite the general nature of the neurocomputational processing properties and the

absence of domain-specific processing structures, associations could be specific to

behaviors, due to the “domain-relevance” of neurocomputational parameters.

4. Associations between artificial genes and behavior could both increase and decrease

across development without changes in gene regulation, due to the “phase-rele-

vance” of neurocomputational parameters.

5. Replication of artificial gene–behavior associations was poor whenever the popula-

tion of genomes was resampled (as in between-participant designs); but replication

was better for associations between neurocomputational parameters and behavior.

6. The majority of associations between artificial genes and network structure, and

between genes and behavior (network function), were separate, even though it was

the network structure that was generating the behavior.

7. The effect of environmental variation depended on an individual’s genotype and,

correspondingly, the environment could modulate the size of gene–behavior associa-
tions.

8. The multiscale model suggested some possible limitations on the inferences that can

be drawn from cross-level associations in the absence of specification of intermedi-

ate level mechanisms.
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Notes

1. Under the hypothesis that common variants contribute to normal variability. It is

less surprising where a rare mutation causes a (large) pathological effect on the

organism.
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2. This calculation could only be performed for networks with hidden layers. The cal-

culations therefore excluded the 102 networks with only a two-layer architecture.

3. Where several genes contribute to the setting of a neurocomputational parameter,

in small samples, it may turn out that statistically, variation in some genes contrib-

utes disproportionately to predicting the value of the parameter (and by extension,

its influence on behavior in that sample). As the population sample size gets larger,

the combined contribution of the set of genes should become more apparent. The

effect sizes of associations should become more evenly distributed across the set.

We verified this with a simple example where 10 binary artificial genes were used

to determine the value of a notional parameter in an additive fashion. In a popula-

tion of N = 1,000, the effect sizes of the associations between individual genes and

the subsequent parameter value were somewhat uneven, with a mean of 11.1% and

a standard deviation of 1.4% across the 10 artificial genes. When the sample was

raised to 3,000, the effect sizes become more even, with a mean of 10.3% and a

reduced standard deviation of 0.8%. With a sample of 10,000, the mean effect size

was 10.1% and the standard deviation was again reduced at 0.6%.

4. To some extent, this result depends on the assumed scale of the model. We stipu-

lated the granularity of the genomic encoding by virtue of our assumption of a

polygenic relationship between genes and neurocomputational parameters. How-

ever, one could take a different view: that the 1s and 0s of the artificial genome

correspond to “base pairs” and the regions for each parameter correspond to the

“genes.” This view would predict much stronger associations between gene variants

and behavior, since each polymorphism would influence a computational parameter

value. And it would predict greater replicability across association studies for

whole genes but potentially lower replicability for associations between single

nucleotide polymorphisms (SNPs) and behavior.
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