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Modeling Socioeconomic Status Effects on Language Development

Michael S. C. Thomas, Neil A. Forrester, and Angelica Ronald
Birkbeck, University of London

Socioeconomic status (SES) is an important environmental predictor of language and cognitive
development, but the causal pathways by which it operates are unclear. We used a computational
model of development to explore the adequacy of manipulations of environmental information to
simulate SES effects in English past-tense acquisition, in a data set provided by Bishop (2005). To
our knowledge, this is the first application of computational models of development to SES. The
simulations addressed 3 new challenges: (a) to combine models of development and individual
differences in a single framework, (b) to expand modeling to the population level, and (c) to
implement both environmental and genetic/intrinsic sources of individual differences. The model
succeeded in capturing the qualitative patterns of regularity effects in both population performance
and the predictive power of SES that were observed in the empirical data. The model suggested that
the empirical data are best captured by relatively wider variation in learning abilities and relatively
narrow variation in (and good quality of) environmental information. There were shortcomings in
the model’s quantitative fit, which are discussed. The model made several novel predictions, with
respect to the influence of SES on delay versus giftedness, the change of SES effects over
development, and the influence of SES on children of different ability levels (gene—environment
interactions). The first of these predictions was that SES should reliably predict gifted performance
in children but not delayed performance, and the prediction was supported by the Bishop data set.
Finally, the model demonstrated limits on the inferences that can be drawn about developmental
mechanisms on the basis of data from individual differences.
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In this article, we use population-level computational modeling
to investigate the mechanisms by which socioeconomic status
(SES) influences language development. SES is a well-known
environmental measure that predicts significant individual differ-
ences in cognitive and language development, and even some
measures of brain function, such as hemispheric specialization (see
Hackman & Farah, 2009, for review). SES is usually assessed via
parental education and income levels, and the measure is thus only
a proxy for the relevant causal mechanisms operating on cognitive
development. The causal pathways by which SES affects devel-
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opment are challenging to identify: Many environmental factors
covary with SES; more than one factor may affect development at
any one time; the factors may be different for different aspects of
cognition; and the relevant factors may change across develop-
ment.

Hackman, Farah, and Meaney (2010) identified three classes
of mechanism by which SES effects on brain and cognition may
operate. The first class is prenatal influences. Low SES is
associated with increased likelihood of premature birth and
impaired fetal growth, higher levels of stress, higher infection
rates, and poor nutrition during pregnancy. These factors may
affect early brain development. The second class is parental
care. Low SES can impact on factors such as discipline, parent—
child verbal communication and parental sensitivity to the
needs of the child. Quality of parenting may also impact on
neurodevelopment. The third class is the level of cognitive
stimulation available in the home environment, including fac-
tors such as the availability of books, computers, trips, and
parental communication.

SES has been found to have a differential impact across
different areas of cognition. In one study with 12-year-olds,
Farah et al. (2006) observed the largest SES effects on language
measures (30% of the variance explained), memory (17%), and
working memory (10%), with smaller, nonsignificant effects
reported on cognitive control (6%), spatial cognition (6%),
visual cognition (3%), and reward processing (0.3%). Longitu-
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dinal data and twin data suggest that environmental effects may
operate on different abilities via separate causal pathways.
Farah et al. (2008) found that parental care predicted later
variability on memory tasks (11% of the variance) but not on
language tasks, whereas cognitive stimulation predicted later
variability on language tasks (50% of the variance) but not on
memory tasks. In a twin design, Stromswold (2006) assessed
the heritability of abilities when the sample was split by dif-
ferent environmental risk factors. For the twin sample, perinatal
environmental risk factors (gestational age) depressed the her-
itability of language, motor, and social skills but not cognitive
skills, whereas postnatal risk factors (mother’s education and
family income) showed the reverse pattern.

Turning to language development, a similar differentiation of
SES effects has been observed within language skills themselves.
Greater effects are observed on vocabulary and phonology, and
lesser effects on syntax. For example, Noble, Norman, and Farah
(2005) found that SES predicted 24% of the variance in receptive
vocabulary skills, 24% of the variance in phonological awareness,
but only 5% of the variance in receptive grammar skills. Within
grammar, one study reported early and persistent SES effects on
the emergence of productive syntax in children between 22 and 42
months of age, but only for complex sentences (explaining around
15% of the variance), not for simple sentences (Vasilyeva, Water-
fall, & Huttenlocher, 2008).

Researchers in language development have tended to focus
on the role of input in modulating SES effects, that is, postnatal
influences linked to environmental stimulation. This focus has
arisen for three reasons. The first reason is that large differences
have been observed in the nature of the language addressed to
children at different levels of SES. For example, Hart and
Risley (1995) followed children in professional/managerial
families, working-class families, and families living on bene-
fits, between the ages of 8 months and 3 years, recording all
language produced by the child or available around the child for
1 hr per month. The most salient difference was the quantity of
language spoken to the child. Professional families addressed
2,100 words to their child in the average hour compared to 600
in the welfare families. Higher SES was also associated with a
greater incidence of affirmative feedback and lower incidence
of prohibitions. Lastly, parents who used more words tended to
use a greater variety of words and use them in longer sentences
(Hart & Risley, 1992).

The second reason for focusing on input is that once differ-
ences in language input have been controlled for, several stud-
ies have reported that the predictive effect of SES disappears.
Huttenlocher, Vasilyeva, Cymerman, and Levine (2002) and
Huttenlocher, Waterfall, Vasilyeva, Vevea, and Hedges (2010)
both reported a number of correlations between measures of
parental language (complexity of sentences, diversity of words
or sentences) and children’s language skills, as well as reliable
effects of SES. The SES effects either disappeared or were
much reduced when differences in parental input were con-
trolled for. The implication was that SES effects were mediated
partially or fully by language input.

In principle, correlations between parental speech and child
language acquisition could be explained by their biological
relatedness. The third reason is that studies have also been able
to implicate language input as playing a causal role. For exam-

ple, Huttenlocher et al. (2002) demonstrated that a measure of
the sentence complexity of (biologically unrelated) classroom
teachers’ language predicted the improvement in their chil-
dren’s sentence comprehension over the school year (explaining
18% of the variance), but not improvement in math skills (for
related work, see also Klibanoff, Levine, Huttenlocher, Vasily-
eva, & Hedges, 2006; Vasilyeva, Huttenlocher, & Waterfall,
2006). Huttenlocher et al. (2010) used longitudinal cross-lagged
analyses to inform the directionality of the relationships they
observed. For syntax, the only reliable relationships were be-
tween the early input from the parent and the later ability of the
child, suggesting a causal flow from parent to child.

Studies of SES have in the main addressed the sources of
individual differences in the trajectories of language development.
However, these data have also been used to draw inferences about
the nature of language development itself. For example, Rice,
Wexler, and Hershberger (1998) compared developmental trajec-
tories of English past-tense acquisition longitudinally in children
with specific language impairment and typically developing chil-
dren over a 3-year period. They found that SES (as measured by
maternal education) was a nonsignificant predictor (less than 1%
of the variance) of differences between children’s trajectories over
time. On the basis of the failure of measured environmental vari-
ables to explain differences between individuals, Rice et al. in-
ferred that the growth in ability (development) was explained by
maturational mechanisms, where changes in behavior over time
are due to the aging process rather than experience-dependent
learning; and that the difference between typically developing
children and those with developmental language impairment lies in
genetic differences in the specification of the timing of linguistic
properties. SES effects, then, are held by some researchers to have
implications for our understanding of how all children acquire
language.

Computational Modeling

One complementary methodology to evaluate causal theories
is computational modeling. Implemented models of the devel-
opmental process can demonstrate the sufficiency of causal
accounts to explain observed data. Computational models have
been extensively applied to investigating the mechanisms of
language development, including simulating early phonological
development, lexical segmentation, vocabulary development,
the acquisition of pronouns, the development of inflectional
morphology, syntax comprehension, syntax production, meta-
phor comprehension, and reading (for reviews, see Chater &
Christiansen, 2008; Mareschal & Thomas, 2007). To our
knowledge, no models have sought to simulate individual dif-
ferences that stem from variations in the SES of the families in
which children are raised. There are several challenges to be
addressed in applying models in this way.

The first challenge is the requirement to stipulate the way or
ways in which SES influences the developmental process. Com-
putational models of development involve the interaction of a
learning system with a training environment. Usually, models are
applied to capturing the developmental profile of the average child,
less frequently to individual differences. Some consideration has
been given to altering the computational properties of the learning
system to explain individual differences in intelligence (e.g., Gar-
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lick, 2002; Richardson, Baughman, Forrester, & Thomas, 2006;
Richardson, Forrester, Baughman, & Thomas, 2006) or the deficits
observed in developmental disorders (e.g., Thomas & Karmiloff-
Smith, 2003a, 2003b). The construction of a computational model
of SES effects necessitates committing to a particular implemen-
tation of environmental variation and then evaluating its adequacy
in capturing observed behavioral data. Indeed, one of the virtues of
modeling is the theoretical clarity required by such commitments.
Two avenues of implementing SES effects are apparent. The first
avenue is to implement SES as a manipulation of the language
information available to the child. SES might alter the quality or
quantity of that information; or it might alter the motivation of the
child to engage with the information available, perhaps through
differences in reward and punishment—in effect, this would mod-
ulate the subjective information that the child actually exploits
from that objectively available in the environment. The second
avenue is to implement SES as a manipulation of the computa-
tional properties of the learning system. This would implement the
idea the environment may operate via biological influences on
brain function, for example, via perinatal effects on neural devel-
opment or via factors such as diet and stress during early child
development. These factors would serve to alter the computational
properties of the learning system. In the following, for the most
part we concentrate on evaluating the adequacy of manipulating
the input as the pathway through which SES influences language
development.

The second challenge in modeling SES effects is that such
effects are not a property of the individual but of a population.
Moreover, it is widely held that individual differences of a genetic
origin are responsible for a significant proportion of individual
differences in behavior, including language development (Plomin,
DeFries, McClearn, & McGuffin, 2008; Smith, 2007; Stromswold,
2006). Therefore it is necessary to simulate a large population of
individuals, and implement both environmental and genetic con-
tributions to individual differences. We expand on these challenges
in the modeling section, where we also establish our criteria for
success or failure of the simulations.

SES Effects and the Acquisition of the English Past
Tense

The simulations we present focus on the target domain of
English past-tense acquisition. Although this domain exhibits rel-
atively smaller SES effects compared to vocabulary and phonol-
ogy, we selected it for four reasons. First, there is an extensive
history of modeling past-tense acquisition, so there is some con-
sensus on what the normal model should look like and the key
assumptions that generate its behavior. Second, past tense is a
theoretically interesting domain because of the dimension of reg-
ularity: English verbs can form their past tense according to a
regular rule, but there exist a set of exceptions. Much theoretical
debate has ensued on how the difference between regularity and
irregularity is reflected in processing structures (if at all) and the
extent to which irregular inflections rely on lexical knowledge.
Third, we had a large data set available to us demonstrating SES
effects on past-tense acquisition, to serve as a target for our
simulations. These data are from 270 six-year-old children, orig-
inally published as part of Bishop (2005; see also Bishop, Adams,
& Norbury, 2006), although the SES effects were not reported in

that work. Notably, as we shall see, SES effects were observed in
inflecting both regular and irregular verbs, but more strongly for
irregular verbs. Fourth, since we understood the developmental
processes operating in the computational model, we were able to
evaluate what legitimate inferences could be made about the
developmental process based on evidence of SES effects. We
begin by describing the target empirical data.

Empirical Data: English Past-Tense Formation

Children’s acquisition of tense formation, along with other
aspects of inflectional morphology, has been the focus of a great
deal of empirical research. In part, this is due to the quasiregular
nature of the domain. Past tense comprises a regular rule (add -ed
to form the past tense; e.g., talk—talked), which is readily extended
to novel forms (wug-wugged), and also a set of irregular past
tenses that are exceptions to the rule (go—went, sing—sang, hit—hit).
Although the regular—irregular dimension is sometimes presented
as a dichotomy, it is better viewed as a continuum, with gradua-
tions of similarity between regular and irregular inflection. The
investigation of the processing structures necessary to acquire a
quasiregular domain has led to an extended debate (Pinker, 1999;
Rumelhart & McClelland, 1986; see Thomas & McClelland, 2008,
for a review). Some of the key data involve children’s greater ease
in acquiring the past tense of regular verbs compared to irregular
verbs, and the presence of overgeneralization errors, where chil-
dren mistakenly apply the regular rule to the exception forms (e.g.,
thinked).

Tense acquisition has been considered more widely within the
theoretical framework of the optional infinitive stage (Wexler,
1994, 1996). Young children pass through a phase where they
sometimes omit grammatical morphemes, such as those marking
tense, in contexts where the morphemes are obligatory for gram-
matical correctness. Where finite inflected forms are expected,
children sometimes produce infinitival forms (in English, un-
marked verb stems; e.g., yesterday I talk to my friend). Wexler
suggested that in this phase of acquisition, children regard the
infinitive as an optional form of the verb. Notably, in children with
specific language impairment, such infinitival forms are observed
at ages where typically developing children have ceased to use
them. This has led to the proposal that in specific language
impairment, there is an extended optional infinitive stage, so that
problems in tense marking might be diagnostic of the disorder
(Rice, Wexler, & Cleave, 1995). In 2001 Rice and Wexler pub-
lished a diagnostic test for early grammatical impairment in which
tense marking was one of the key aspects of the assessment. The
past-tense elicitation subtest assessed accuracy levels in producing
regular and irregular past tenses, as well as the level of overgen-
eralization errors, where the regular rule is mistakenly applied to
irregular verbs. Since such overgeneralization errors still represent
finite forms (just the wrong one), Rice and Wexler used the three
scores to compute a fourth, the proportion of regular and irregular
verbs that were produced in the finite form. The finiteness measure
was equal to the sum of correct regular, correct irregular, and
incorrect overregularized irregular verbs, divided by the total num-
ber of regular and irregular verbs attempted. The performance of a
group of children on the Rice-Wexler past-tense task forms the
target empirical data for the computational simulations.
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Bishop (2005) gave the Rice—Wexler past-tense subtest to a
population of 442 six-year-old children, for whom SES informa-
tion was additionally available (Bishop, 2005; Petrill, Pike, Price,
& Plomin, 2004). These data were originally collected as part of a
twin study and published in composite form (Bishop, 2005). The
author kindly made the raw data available to us, including accu-
racy levels on regular and irregular verbs, overgeneralization error
rates, and the computed finiteness measure, along with the SES
measure. The Bishop data allowed us to assess the predictive
power of SES on two verb types and one error type at one
particular age. To our knowledge, they represent the largest data
set on SES effects on English past-tense acquisition.

Details of the Rice—Wexler past-tense subtest (Rice & Wexler,
2001), the composition of the sample of 270 typically developing
6-year-olds selected from the Bishop (2005) population, and the
SES measure, based on parental education and family income, can
be found in the supplemental materials. The original population
comprised twin pairs and was oversampled for risk of language
delay at age 4. However, children who had a language impairment
at age 6 were excluded from the final sample of 270. The impli-
cations of both these characteristics of the Bishop population are
considered in the supplemental materials.

Table 1 includes the mean and standard deviation for accuracy
of production of regular and irregular verbs, the rate of overgen-
eralization errors, and the composite finiteness measure. An ad-
vantage for regular verbs was observed, whereas performance on
irregular verbs was fairly poor, with high rates of overgeneraliza-
tion (regulars > irregulars), #269) = 35.76, p < .001. Figure 1
displays scatterplots linking past-tense performance with the SES
measure for the four dependent variables. SES predicted regular
verb performance at marginal significance and irregular verb per-
formance more robustly; it predicted irregular performance signif-
icantly more strongly than regular: regular, R* = .013, F(1, 268) =
3.56, p = .060; irregular, R?> = .047, F(1, 268) = 13.13, p < .001;
interaction, F(1, 268) = 7.46, p = .007, n,% = .027." One concern
with this data set is the large number of children at ceiling on
regular verbs, which might account for the reduced predictive
power of SES. Figure 2 displays the data removing all children for
whom regular verbs were at ceiling but irregulars were not (re-
duced sample N = 64; mean performance levels for this subsample
are shown in Table 1). The relationship between SES and verb
performance remained of the same size, although the reduced
participant numbers meant that the relationships were no longer
statistically significant: regular: R* = .013, F(1, 62) = .82, p =
.368; irregular, R?> = .047, F(1, 62) = 3.08, p = .084; interaction,
F(, 62) = 1.79, p = .186, ng = .028. The fact that there was a
consistent relationship when ceiling effects were removed implies
that the difference in the predictive power of SES between regular
and irregular verbs is a real one, and provides more evidence for
the differential effect of SES across parts of language. The low
proportion of variance accounted for by SES in regular past-tense
formation is consistent with the findings of Rice et al. (1998; see
also Pruitt & Oetting, 2009; Pruitt, Oetting, & Hegarty, 2011).

In sum, then, in a large sample of 6-year-old children, SES
effects were observed in English past-tense performance. A regu-
larity effect was present in both mean performance and the pre-
dictive power of SES, with SES picking up between 1% and 5% of
population variance.

Computational Modeling

The computational modeling of SES effects proceeded as fol-
lows. We specified a base or “normal” model of the acquisition of
English past tense. We then designed a manipulation to the training
environment, corresponding to the family in which simulated
children were to be raised. We next designed a manipulation to the
efficiency of the learning system, corresponding to the genetic
contribution to individual differences. Henceforth, we refer to this
as intrinsic rather than genetic variability, because it refers to the
property of the past-tense learning system. The property must be
an outcome of a prior developmental process that constructed the
learning system, a process that will have both genetic and envi-
ronmental contributions (whether cognitive or biological). Finally,
we generated a large population of simulated individuals, each of
whom underwent a developmental process of acquiring the Eng-
lish past tense. Population performance and the predictive power
of environmental variations were then assessed.

We encountered two challenges in pursuing this design, one
practical and one theoretical. First, population modeling by its
nature necessitates the simulation of large numbers of individuals.
Practically, this required simplifications to the base model. (Each
simplified model took 2 hr to train and test, and we report on the
results of 6,000 networks in the following sections.) The simpli-
fication led to limitations in the performance of the base model, but
given the advanced state of past-tense modeling, these were well
understood. The simplifications involved the use of an artificial
language-like training set analogous to English past tense, rather
than English verbs themselves (following Plunkett & Marchman,
1991, 1993, rather than Joanisse & Seidenberg, 1999); and training
solely on the past-tense paradigm for verbs, rather than simulating
a system that learns all inflection types across multiple grammat-
ical classes (see Karaminis & Thomas, 2010). Nevertheless, the
artificial language used in the Plunkett and Marchman (1991,
1993) model was successful in demonstrating how the onset and
developmental course of overgeneralization errors can emerge in a
model trained to map verb stems to past-tense forms. That model
also showed the importance for performance of type and token
frequency of stems in the input set, as well as the degree to which
the phonological shape of the stem is a predictor of mapping
pattern.

The second, theoretical challenge is that we did not know a
priori the relative range of variability of environmental and intrin-
sic factors in our population of real children. Do actual environ-
ments vary just a little bit, with most environments providing
decent information for the children, while intrinsic factors vary
more widely, from very poor to very good learning systems? Or
are all the children’s learning systems reasonably efficient, while
the linguistic environment varies greatly in its quality between
children? Because empirical evidence was not available to con-
strain this aspect of the model, we simulated two levels of envi-

! Three participants had unusually low regular verb performance, falling
below 20% correct. They had SES values of —0.22, —1.39, and 0.44. With
these participants excluded, the remaining 267 children showed a reliable
relationship between SES and regular verb performance at the .05 level,
while the relationship between SES and irregular verb performance, as well
as the interaction of SES and verb type, remained unchanged: regular, R* =
016, F(1,265) = 4.35, p = .038; irregular, R* = .047, F(1, 265) = 13.13,
p < .001; interaction, F(1, 265) = 9.20, p = .003, nlz, = .034.
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Table 1

A Comparison of English Past-Tense Performance of the Bishop (2005) Sample of 270 Six-Year-Old Children on the Rice—Wexler

Test and Simulation Data

Data Simulation condition (N = 1,000 per population)

Measure N = 270 N = 64 IN-EN IN-EW IW-EN IW-EW IW-EN Variant 1 IW-EN Variant 2
Regular verbs 96 (12) 83 (20) 79 (19) 66 (30) 66 (31) 62 (31) 79 (26) 80 (25)
Irregular verbs 42 (25) 39 (32) 42 (25) 42 (28) 42 (30) 40 (29) 42 (24) 42 (29)

OG errors 46 (46) 38 (26) 16 (12) 17 (13) 9 (10) 12 (12) 21 (15) 23 (20)
Finiteness 91 (12) 80 (20) 68 (20) 62 (29) 59 (30) 57 (30) 71 (26) 72 (26)
Note. Empirical data are for the full sample and also a subsample of children excluding those who had regular verb but not irregular verb performance

at ceiling. Simulation data are distinguished by relative range of variation (N = narrow, W = wide) of Intrinsic factors (I) or Environmental information
(E). In addition, data for two variant simulation conditions are shown, where the environmental information for irregular verbs was poorer than that for
regular verbs. Values show mean accuracy and, in parentheses, standard deviation. OG = overgeneralization.

ronmental variation and two of intrinsic variation. One of the goals
of the simulation was to determine which combination gave the
best fit to the past-tense empirical data. In future work, ranges
could be calibrated to give a precise data fit.

The way in which we addressed the two challenges meant that
it was important for us to clearly specify the criteria for success
and failure of the simulations in accounting for SES effects in
past-tense acquisition.

A
g o o " o
- 00 - N o
Q U
c
g 50
o
$ o 40
Q
[-% 30—
O 20
o o
T 0
2 15 1 05 0 0.5 1 15 2
SES Measure
C © @ 100 o
o coooo &o oOOo
_ @ owog @omd 0 000° @ o
S 70
by o am om @0
2 o Cl
©
E
~§ 00 EOO®O
9 |
R ccoamm B © @o @ @®o
il
© @ §>qu@®% 8 ap o
‘OO @ OO OO @O

-2 -1.5 -1 -0.5 0 0.5 1 15 2
SES Measure

Figure 1.

Criteria for Evaluation the Success or Failure of the
Modeling

Because population modeling necessitated the use of a simpli-
fied base model of past-tense acquisition, we evaluated the success
of the model on the qualitative fit to the empirical data rather than
the quantitative fit. Ways to improve the quantitative fit are dis-
cussed later. We evaluated the success of the simulations on three
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Scatter diagrams relating socioeconomic status (SES; Petrill et al., 2004) to past-tense performance

on the Rice—Wexler test (Rice & Wexler, 2001) for 270 six-year-old children (Bishop, 2005). Data show the
accuracy of production of regular past tenses (A) and irregular past tenses (B), the proportion of overgeneral-
ization errors for irregular verbs (C), and the proportion of finite responses (D; N = 270 per plot).
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Figure 2. Data from Figure 1 showing the accuracy of production of regular past tenses (A) and irregular past
tenses (B), the proportion of overgeneralization errors for irregular verbs (C), and the proportion of finite
responses (D), with children removed who were at ceiling on regular but not irregular past-tense production

(N = 64 per plot). SES = socioeconomic.

criteria: (a) the qualitative fit to size of SES effects in predicting
individual variability across each population, and the differential
pattern across regular verbs, irregular verbs, overgeneralization
errors, and proportion of finite responses; (b) the generation of
novel testable predictions (we generated four such predictions, one
of which we were able to test against the Bishop, 2005, data set);
and (c) the generation of insights on candidate inferences from
behavior to mechanism, which is the particular contribution of
computational modeling. The latter involved establishing what
types of modeling condition led to what types of behavioral data
and assessing whether these are the conditions of the cognitive
system that researchers typically infer from these types of behav-
ioral data.

Method

Architecture

Recent computational models of English past-tense acquisition
have used artificial neural networks (connectionist networks) to
learn the association between the phonological form of the verb
stem and the past-tense form. Along with the verb stem, other
sources of information are provided at input, including lexical—
semantic information, and information about the desired output

inflection (Karaminis & Thomas, 2010; Woollams, Joanisse, &
Patterson, 2009). It should be noted some researchers maintain that
symbolic approaches are more appropriate for explaining past-
tense acquisition, at least for regular verbs, where regularity is
viewed as reflecting the operation of a rule-based mechanism
(Pinker, 1999). However, these more linguistically oriented theo-
ries have not typically been realized in computational implemen-
tations of the developmental process. In the current simulations, a
three-layer, backpropagation network was used to learn to output
a phonological representation of the past-tense form of a verb from
an input vector combining a phonological representation of the
verb stem and lexical-semantic information. The architecture is
shown in Figure 3.

Training Set

For our training set, we used the “phone” vocabulary from the
Plunkett and Marchman (1991, p. 70) past-tense model. This
comprised an artificial language set constructed to reflect many of
the important structural features of English past-tense formation.
There were 500 monosyllabic verbs, constructed with consonant—
vowel templates and the phoneme set of English, and split into 410
regular verbs and 90 irregular verbs of three types: no change,
vowel change, and arbitrary. A set of novel verbs was also con-
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Figure 3. Architecture of the past-tense model.

structed to test generalization of the regular past-tense rule. Further
details on the construction of the training set can be found in
supplemental materials.

Implementing Environmental Variation

Our principal goal was to test the viability of the proposal that
SES effects on language acquisition are the result of variations in
the input. More formally, this means that variations in SES result
in a transform applied to the information the child exploits to
acquire a given feature of language. For implementation, the key
question is how the transform alters the quantity versus the quality
of the input. The empirical literature here does not yet give a
definitive answer.

Initial studies investigating vocabulary growth focused on the
quantity of language to which children are exposed (Hoff-Ginsberg,
1991, 1992; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991).
Across a range of language features, Hart and Risley (1995) found
that the most striking differences in input were in amount rather than
richness (e.g., children in professional families were exposed to 36
past tenses per hour on average, whereas those in working-class
families were exposed to 25 past tenses per hour, and those in welfare
families only 8 per hour; p. 243, Figure 11). Nevertheless, Hart and
Risley (1992) reported that in general parents who used more words
tended to use a greater variety of words and in longer sentences.
Studies of vocabulary growth have indicated that children exposed to
more varied vocabulary improved more quickly (Hoff, 2003), and that
this influence could be independent of the quantity of child-directed
speech (Huttenlocher et al., 2010; Pan, Rowe, Singer, & Snow, 2005).
Huttenlocher et al. (2010) found that this effect also held for syntactic
diversity, while quantity influenced the order of emergence of struc-
tures within a child.

On the basis of this literature, we chose to implement the
transform on the past-tense input as a modulation of the type
frequency of verbs. A lower SES family would be modeled as
using fewer past tenses overall, fewer types of regular verbs, and
fewer types of irregular verbs. This implementation captures both
the reduced diversity of vocabulary in lower SES families and the
reduced quantity of past tenses experienced by the child. In ma-
chine learning terms, we operationalized environmental variation
as a (potentially time-varying) function with respect to the training
set. We assumed that there was a “perfect training set,” in this case
comprising all of the verbs available in the language, along with

their accepted past-tense forms. We defined the function for vari-
ations in the training set as follows:

Training set P, T, = f{perfect training set, X, Y, Z}. (1)

The training set for person 7 at time 7 is a function f of the perfect
training set and three parameters: X = proportion of valid training
trials, Y = proportion of invalid training trials, and Z = proportion
of noise trials. Invalid trials have the same input as a training
pattern but a different output. Noise trials have different inputs and
outputs or include partial information consistent with training
patterns. In principle, the function f could be influenced by person
n’s behavior or experiences at r — 1, creating a more complex
dynamical equation. A dynamical equation would accommodate
the possibility of, for instance, a reduced reward leading to reduced
attention and therefore a subsequently smaller proportion of valid
training trials.

We made the following assumptions in our implementation.
First, once instantiated, we gave each network a preconditioning
phase to produce divergent initial connection weights. This com-
prised a version of the training set with X set to 0, ¥ set to 0, and
Z set to 1. The training set was made up of 30 random binary
vectors at input and output, uniquely created for each individual,
and trained for 50 epochs. This phase was intended to simulate the
effect of early subjective experience prior to using the relevant
learning system for (in this case) modulating phonological output
forms via tense information. Next, we created a training set for the
past-tense information available in each family environment. To
do so, we generated a family quotient for each simulated child.
This was our implementation of SES. The family quotient was a
number between 0% and 100%. This value was used as a proba-
bility determining whether each verb in the perfect training set
would be included in the family’s vocabulary. In terms of Equation
1, X = family quotient, ¥ = 0, Z = 0. The family training set was
then fixed throughout development. However, performance was
always assessed against the full perfect training set (analogous to
a standardized test of past-tense formation applied to all children).
The family quotient manipulation corresponds to a reduction in
type frequency for both regular and irregular verbs, while the token
frequency of each verb (3 times greater presentation for high than
low frequency) was retained.

Our final decision was how to sample the family quotient
values. The composite SES measure used for the Bishop (2005)
sample of twins had a normal distribution with large standard
deviation and a negative skew. Another twin study examining SES
effects on cognition with a large sample of 287 school-age children
(Hart et al., 2007) reported maternal education data that were
normally distributed with a large standard deviation and a positive
skew. In the end, we selected a uniform distribution, which slightly
exaggerated the incidence of high and low SES. We selected two
ranges of environmental variation: a narrow range with reasonably
high quality, sampling family quotient values between 60% and
100%, and a wide range that accommodated potentially very poor
quality environments, sampling quotient values between 0% and
100%. These manipulations were applied equally to regular and
irregular verbs.

Due to simulation results with lower rates of overgeneralization
errors than those found in the empirical data, we considered two
further manipulations in which irregular verb information was
poorer than that for regular verbs. These were exploratory condi-
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tions that were not constrained by existing empirical data and
evaluated the hypothesis that the rate of overgeneralization might
in part be driven by impoverished irregular verb information
received from the environment. The rationale was that since irreg-
ular verbs are harder to learn and more prone to errors in produc-
tion, children might experience either lower quality or more vari-
ability in the input they receive for irregular verbs than regular
verbs—especially to the extent that some of the language input to
older children comes from their peers, who are likely to make
overgeneralization errors. In Variant 1, two family quotient values
were independently sampled for each simulated child. Regular
verbs were sampled between 60% and 100% (mean 80%), and
irregular verbs were sampled in the range 40%—80% (mean 60%).
This manipulation had identical range of variation but a lower
absolute level for irregular verbs. In Variant 2, a lower absolute
level for irregulars was achieved by widening the range: Irregular
verbs were sampled between 20% and 100% (mean 60%). These
manipulations were simplified in that they distinguished categor-
ically between regular and irregular verbs (see Discussion).

Implementing Intrinsic Variation

Connectionist networks contain a range of parameters that in-
crease or decrease their ability to learn a given training set.
Parameters such as learning rate, momentum, and number of
hidden units feature in most published simulations. In models of
normal or average development, such parameters are usually op-
timized to achieve best learning (usually in the presence of the
perfect training set). Certain parameters have been proposed as
candidates to explain individual differences, search as the learning
rate (as a proxy for neuroplasticity; Garlick, 2002), or use of
differential processing routes connecting input and output (Harm
& Seidenberg, 2004). However, a given parameter may have
differential effects across the parts of a problem domain. For
example, Thomas (2005) demonstrated how the “temperature” or
steepness of the sigmoid activation function in the artificial neu-
rons had more effect on regular than irregular verbs in past-tense
acquisition. To remain neutral with regard to which parametric
variations were responsible for intrinsic variation in the learning
system, we simultaneously varied a number of parameters across
individuals. As with environmental variation, we considered two
ranges of intrinsic variation, either narrow or wide.

Fourteen computational parameters were allowed to vary be-
tween individuals, serving to alter the learning capacity of each
network. The parameter settings allowed for over 2,000 billion
unique individuals. The parameters, split by their role, were as
follows: (a) network construction: architecture, number of hidden
units, range for initial connection weight randomization, and
sparseness of initial connectivity between layers; (b) network
activation: unit threshold function, processing noise, and response
accuracy threshold; (c) network adaptation: backpropagation error
metric, learning rate, and momentum; (d) network maintenance:
weight decay, pruning onset, pruning probability, and pruning
threshold. The parameter ranges for narrow and wide intrinsic
variation can be found in the supplemental materials (Table S1).%

Design

For each population, 1,000 sets of the 14 computational param-
eter values were generated. These were instantiated as 1,000

connectionist networks, which were then trained as follows. The
individual was trained initially on a unique preconditioning train-
ing set to produce unique and divergent starting weights. A family
quotient value was then generated from the appropriate range and
used to create the family training set. Following preconditioning,
each network was trained for 1,000 epochs on its family training
set. At each epoch, performance was measured on the perfect
training set. Performance was assessed on regular verbs, irregular
verbs, overgeneralization errors, and generalization of the past-
tense rule to novel forms. Performance was measured in nearest-
neighbor accuracy levels (percent correct). Four populations were
run in a 2 X 2 design, of narrow or wide environmental variation
and narrow or wide intrinsic variation, to assess which combina-
tion of variability would best explain the Bishop (2005) data.

Since the Bishop (2005) data comprised twin pairs, this con-
straint was built into the simulations as well. Network parameter
sets were encoded in an artificial genome. Monozygotic (MZ)
twins were created by pairs that had identical genomes, whereas
dizygotic (DZ) twins had genomes that shared 50% of their genes
on average. Twin pairs were assigned the same family training set
(see Footnote 2). Each population comprised 250 MZ and 250 DZ
twin pairs. We address the similarity between twin behavior and its
implication for heritability of past-tense formation in a separate
work (Thomas, Forrester, & Ronald, 2012) and do not consider
twin status further here.

Results

Mean Levels

The Rice—Wexler test (Rice & Wexler, 2001) contains primarily
vowel-change irregular past tenses. The simulated populations
were benchmarked to the point in training where the mean accu-
racy of irregular vowel-change verbs was equivalent to the Bishop
(2005) sample. Results for the four populations in the 2 X 2 design
are included in Table 1. It is immediately obvious that when
matched on irregular verb performance, both regular verb perfor-
mance and the rate of overgeneralization errors were lower in all
populations than in the children. There are four potential reasons
why this disparity occurred. First, it could be due to the simplifi-
cations in our base model. Recent models of past-tense formation
include aspects of their design and training that serve to support
regular past-tense formation, aspects not present in the base model.
These include training on the verb stem at output, which is the
main component of a regular past-tense form, and the provision of
a “past-tense unit” at input, which forms a strong association to the
past-tense inflection at output (Karaminis & Thomas, 2010; Wool-
lams et al., 2009). Second, model performance was tested on the
full training set, including high- and low-frequency items, whereas
the empirical data were for a restricted set of regular and irregular
verbs; as discussed in the supplementary materials, in the Bishop
sample’s performance on the Rice—Wexler test, the influence of
regularity was higher than that found in other past-tense elicitation

2 Technical details of the parameters, the methods for establishing their
range, and generation of the populations can be found in a technical report
available online (http://www.psyc.bbk.ac.uk/research/DNL/techreport/
Thomas_paramtables_TR2011-2.pdf).



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

MODELING SES EFFECTS ON LANGUAGE DEVELOPMENT 9

tasks. Third, because the children in the Bishop study were drawn
from a group oversampled for risk of language disorder, it is
possible that some children had small residual deficits, or the
language of the parents was atypical in a way not modeled here
(early risk of language delay explained a small amount of variance
in the children’s performance at age 6). Finally, it may be that
the greater influence of regularity in the Bishop data represents an
environmental effect, namely, that for the children, irregular verb
information is poorer than regular information. Perhaps some
children are raised in a linguistic environment where parents and
peers make more errors on irregular than regular verbs. For ex-
ample, in some dialects covarying with SES, some irregular forms
may be regularized. If irregular verb performance was lower at a
population level, for a given level of irregular performance, regular
performance would be higher and there would be more overgen-
eralization errors.

We tested this last idea by running two additional conditions
where irregular information was poorer on average than regular
information. In Variant 1 we lowered the absolute level of the
family quotient value for irregular verbs but kept the range the
same. In Variant 2 we lower the absolute level but also widened
the range of family quotient values for irregulars. These were run
for a population with wide intrinsic variation. Table 1 (rightmost
columns) shows that such a manipulation indeed raised the relative
level of regular verb performance compared to irregulars and
increased the rate of overgeneralization errors. However, the pop-
ulation means still demonstrated a shortfall in the influence of
regularity compared to the full sample. We now shift to our main
focus, factors predicting individual differences in the populations.

Predictive Power of SES

The family quotient value was used as a proxy for SES and used
to predict individual differences in past-tense performance for the
2 X 2 design. Table 2 compares simulation results for the four
populations, and Figure 4 demonstrates the scatterplots for com-
parison with Figure 1.

We refer to the populations by whether the intrinsic variation (I)
was narrow (N) or wide (W), and whether the environmental
variation (E) was narrow or wide. For the simulations, the condi-
tions with narrow environmental variation demonstrated a reliable

Table 2

regularity effect, where SES was a stronger predictor of irregular
verb performance than regular verb performance; when the envi-
ronment varied widely in quality, this drove performance on reg-
ular and irregular verbs to a similar extent: interaction of regularity
and environmental variation, F(1, 3992) = 37.53, p < .001. The
regularity effect was not modulated according to whether intrinsic
variation was narrow or wide, F(1, 3992) = 0.00, p = .974. Only
when intrinsic variation was wide did the negligible predictive
power of SES on regular verbs emerge (IW-EN). This condition
therefore represents the best qualitative fit to the empirical data.
The condition did, however, overestimate the predictive power of
SES on overgeneralization errors. Of the two variant conditions,
there was again a strong regularity effect, but Variant 2 (where the
range of variation of irregular information was widened compared
to regular verbs) displayed much higher SES predictive power for
irregulars and overgeneralization errors. Notably, despite this dif-
ference in the influence of the environment, the two variants had
identical mean levels of performance (see Table 1). Taking into
account both predictive power and mean levels of performance
across the measures, the best fit was the wide-intrinsic/narrow-
environmental variation Variant 1 condition, which had the same
range of variation for irregular verbs but at a lower level of quality.

Some caution is necessary in directly mapping between data and
model, because the model contains no measurement error either in
the family quotient or in past-tense performance. In reality, SES is
measured by variables such as parental income and education,
which can only give an estimate of actual causal factors. In
addition, we know that the Rice—Wexler test has some measure-
ment error, indicated by its test-retest reliability of .8 (Rice &
Wexler, 2001). With measurement error added to the simulations,
the predictive power of our SES proxy would be reduced.

Novel Predictions

SES and delay versus giftedness. We used the model to
predict the extent to which variation in the information available in
the environment could predict whether individuals would fall in
the bottom or top 10% of the population, equivalent to develop-
mental delay or giftedness. This analysis was carried out separately
for the four dependent measures, at the point in development when
the models were matched to the performance level of the Bishop

A Comparison of the Predictive Power of Socioeconomic Status on English Past-Tense Performance of the Bishop (2005) Sample of
270 Six-Year-Old Children on the Rice—Wexler Test and Simulation Data

Data Simulation condition (% variance explained)

Measure % variance explained P IN-EN IN-EW IW-EN IW-EW IW-EN Variant 1 IW-EN Variant 2
Regular verbs 1.3 .060 6.2 70.0 0.8 442 2.7 0.0

95% Cl [0.0,4.4] [4.0, 8.8] [67.3,72.5] [0.1,2.0] [40.3, 48.0] [1.3,4.6] [0.0, 0.0]
Irregular verbs 4.7 .000 7.6 69.9 2.6 43.7 6.7 252

95% C1 [1.4,9.6] [5.1,10.4] [67.2,72.4] [1.2,4.5] [39.8,47.5] [4.4,9.4] [21.3,29.1]
OG errors 3.8 .001 12.1 33 11.3 7.0 3.2 32.1

95% C1 [0.9, 8.3] [9.1,15.4] [1.7,5.4] [8.4,14.5] [4.6,9.7] [1.6,5.2] [28.1,36.1]
Finiteness 0.7 170 3.6 65.8 0.5 37.1 2.3 0.4

95% C1 [0.0,3.3] [1.9,5.7] [62.8, 68.6] [0.0, 1.5] [33.1,41.0] [1.0,4.1] [0.0, 1.3]
Note. Simulation data are shown according to relative range of variation (N = narrow, W = wide) of Intrinsic factors (I) or Environmental information

(E). In the variant conditions, where the environmental information for irregular verbs was poorer than that for regular verbs, the mean value of the family
quotient was used to predict performance. Confidence intervals (ClIs) are around the R* value. OG = overgeneralization.
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Intrinsic narrow - Environmental narrow

Intrinsic narrow - Environmental wide

Figure 4. Scatter diagrams relating family quotient values (the socioeconomic status proxy; x-axis) to
past-tense performance for the model (y-axis). Simulated data are for the 2 X 2 design with a narrow or wide
range of intrinsic variation and a narrow or wide range of environmental variation, for regular verbs (R), irregular
verbs (I), overgeneralization errors (OG), and finite responses (F; N = 1,000 per plot).

(2005) sample on irregular verb performance. For overgeneraliza-
tion errors, better performance was scored as fewer errors. The
results are shown in Tables 3 and 4.

From the previous section, the conditions with narrow environ-
mental variation were closer to fitting the predictive power of SES
for all the 6-year-old children. Here these conditions suggested that
SES should be able to predict whether children were gifted but
barely (if at all) able to predict whether children were delayed. To
our knowledge, this novel prediction has not been made by any
other theory of individual differences. Broadly, this pattern arises
because there are many ways to fail but few ways to succeed: In
the bottom tail, the predictive power of any one factor is therefore
diluted. We consider this point in more detail in the Discussion.
The prediction was testable with the Bishop (2005) data set, and
the results are shown in Table 4. The data confirm that SES
reliably predicted whether children would be in the top 10% of the

population for regular verb performance, irregular verb perfor-
mance, and the rate of overgeneralization. SES did not predict
delay for any of the dependent measures. This result provides
powerful support for the model.

SES effects across development. The empirical data set pro-
vides a snapshot of the predictive power of SES at a single point
in time. The simulations allow us to predict where the snapshot
would fall within a developmental trajectory. That is, for our 2 X
2 design, we can assess whether SES effects should rise or fall with
age. Surprisingly, the model predicted that SES effects should rise
across development (see Figure S1 in the supplemental materials
for example data illustrating this effect). The rise was most marked
for the conditions with wide environmental variation. For these
conditions, the environment becomes the limiting factor on the
best performance that an individual can achieve. The pathway to
this endpoint, by contrast, is influenced by the computational
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Table 3
Role of the Environment in Predicting Performance in the Tails
for the Simulations

Narrow Wide
Measure Delayed Gifted Delayed Gifted
Narrow

Regular 1.2 11.1 23.2 21.5
95% CI [0.3, 2.6] [8.2, 14.3] [19.4,27.1] [17.8,25.3]

Irregular 0.6 8.7 15.3 21.9
95% CI [0.1, 1.7] [6.1, 11.7] [12.0, 18.9] [18.1, 25.8]

OG errors 1.6 4.8 1.9 3.9
95% CI [0.6, 3.1] [2.9,7.2] [0.7,3.6] [2.2,6.1]

Finiteness 0.7 5.6 22.3 19.0
95% CI [0.1, 1.8] [3.5, 8.1] [18.5,26.2] [15.4,22.7]

Wide

Regular 0.0 11.5 7.1 19.2
95% CI [0.0, 0.4] [8.5, 14.8] [4.7,9.9] [15.6, 30.0]

Trregular 0.0 11.8 33 19.0
95% CI [0.0, 0.3] [8.8, 15.1] [1.7,5.4] [15.4-22.7]

OG errors 1.3 2.3 3.1 1.2
95% CI [0.3,2.7] [1.0,4.1] [1.6,5.1] [0.3,2.6]

Finiteness 0.0 6.8 7.0 15.6
95% CI [0.0, 0.5] [4.5,9.5] [4.6,9.7] [12.2,19.2]

Note. Environmental index was family quotient value. Values show
percentage of variance explained. Confidence intervals (CIs) are around the
R? value. Delayed = bottom 10% of population; gifted = top 10% of
population; OG = overgeneralization.

properties of the learning system. That is, when environmental
variability is wide, intrinsic factors may alter rate of development,
but environmental factors will be a strong predictor of ceiling
performance. This prediction remains to be tested against longitu-
dinal data for past-tense acquisition.

Generalization to diagnose the locus of environmental influ-
ence on development. Some tests of past-tense acquisition elicit
novel past tenses from children, for words they have not heard
before. The Rice-Wexler test (Rice & Wexler, 2001) did not
include this condition. The inflection of novel verbs necessarily
tests the generalization ability of the system, rather than its storage
of the past-tense forms that it had previously encountered. Gener-
alization sometimes serves as a better index of the computational
properties of a learning system than its ability to memorize knowl-
edge. For the model, we compared the predictive power of the

Table 4

Role of the Environment in Predicting Performance in the Tails
for the Bishop (2005) Sample of 270 Six-Year-Old Children on
the Rice—Wexler Test

family quotient variable on individual performance for information
in the training set (regular and irregular verbs) to generalization
performance on a set of novel verbs. To get a robust view of the
relationship of the verb types, the percentage variance explained
was calculated across a tranche of development, from Epoch 50 to
Epoch 250 in each population. The mean of the 200 R* values for
each verb type are shown in Table 5.

When there was wide variability of information in the environ-
ment, family quotient predicted substantial variability in perfor-
mance both on verbs in the training set and on generalization.
When the computational properties of the learning system were the
more prominent factor, environmental variability predicted less
variance in performance on the training set, but negligible amounts
of variability on generalization (falling to zero when intrinsic
variability was wide and environmental narrow). These interac-
tions were all highly reliable when analyzed with a mixed analysis
of variance.

The relevance of this finding is that, as noted in the introduction,
SES may in principle affect either the information in the environ-
ment or the computational properties of the learning system (via
perinatal or postnatal biological effects on brain function). In the
preceding simulations, we have focused on the former possibility.
Generalization is a closer index of the computation properties of a
learning system than performance on the training set. Therefore, it
may serve to isolate the locus of environmental effects: The
simulations suggest that a comparison of the ability of SES to
predict variability in performance on children’s knowledge (train-
ing set) versus extension of that knowledge to novel forms (gen-
eralization) may be one way to untangle whether a given SES
effect operates via the information content of the environment or
via influencing learning systems themselves.

Interactions between SES and ability: Gene-environment
interactions and resilience. In this section, we assess whether
the model predicts interactions between SES and child internal
factors, such that the influence of SES might differ at different
ability levels. In particular, high SES is sometimes thought of as a
protective factor conferring resilience on child development. To
investigate this idea, we needed to establish the intrinsic “ability
level” of each network. This was calculated based on the contri-

Table 5

Predictive Power of Variation in the Information Available in
the Environment for Learning the Training Set Versus
Generalization for the Simulations

Variability of environmental information

Wide Narrow
Delayed Gifted Variability of intrinsic computational properties
% % Variable Wide Narrow Wide Narrow
Measure  explained  95% CI P explained  95% CI P
Training set
Regular 0.9 [0.0,3.7] .117 35 [0.8,7.9] .002 Regular verbs 343 (4.1) 68.8(3.5) 0.8 (0.1) 11.9 (3.0)
Irregular 0.2 [0.0,2.1] .493 3.6 [0.8,8.1] .002 Irregular verbs 29.3(59) 67.1(10.5) 2.3(0.6) 15.8 (4.8)
OG errors 0.8 [0.0,3.5] .138 2.2 [0.2,6.0] .016 Generalization
Finiteness 0.6 [0.0,3.1] .204 0.1 [0.0, 1.7] .595 Novel verbs 24.7(1.9)  52.2(1.5) 0.0 (0.0) 2.7 (0.0)
Note. Environmental index was socioeconomic status. Values show per- Note. Values show percentage of variance explained by the environmen-

centage of variance explained. Confidence intervals (CIs) are around the R?
value. Delayed = bottom 10% of population; gifted = top 10% of popu-
lation; OG = overgeneralization.

tal index, family quotient value, averaged over Epochs 50-250 for each
modeling condition. Values in parentheses depict the standard deviation of
these 200 R* values.
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bution of each network’s parameter set to predicting its perfor-
mance. We selected a given point in training and then used the
computational parameter sets and the family quotient value in a
multiple regression model to predict population performance. The
subsequent regression coefficients revealed the influence of each
computational parameter in driving an individual’s performance. A
weighted sum of each individual’s computational parameter values
and their regression coefficients then yielded a single number,
which represented the contribution of that network’s learning

A

ability to its performance. This exercise was carried out for the
wide-intrinsic conditions, with either narrow or wide environment,
at a point in training when irregular verb performance was
matched to that of the Bishop (2005) sample. Irregular perfor-
mance was used as the dependent measure, since it provided a
sensitive measure. Using the derived ability index, we split the
population into four levels. We similarly split the family quotient
value into four levels. Figure SA plots the predicted effect of
environmental variation for the intrinsic-wide/environmental-
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Figure 5. Predicted gene—environment interactions across development, where genetic effects are assumed to
operate via variations in intrinsic neurocomputational parameters that affect learning ability, and environmental effects
are assumed to operate via variations in the information available in the input. Results for wide intrinsic variability and
narrow environmental variability (A); results for wide intrinsic variability and wide environmental variability (B).
Early = 50 epochs of training; Mid = 100 epochs of training; Late = 750 epochs of training.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

MODELING SES EFFECTS ON LANGUAGE DEVELOPMENT 13

narrow condition on networks of different ability at three points
across development.

The model predicted a minor interaction between SES variation
and ability level. For this population, ability was a much stronger
predictor of performance than SES (40% vs. 4% of the variance),
although both effects were statistically reliable. For low-ability
networks, the variation produced by differences in the input was
reduced, a pattern that was consistent across development. Figure 5B
shows comparable results for the wide-intrinsic/wide-extrinsic condi-
tion, where the influences of ability and input were more equal (30%
vs. 42%). Here there was a much starker demonstration that input
variations had a greater effect in higher ability networks and, more-
over, particularly for irregular verbs, that this effect became exagger-

B
Regular

ated across development. (These results were all reliable when ana-
lyzed with a mixed-design analysis of variance.) In sum, the model
predicted that under conditions of wide environmental variation, in
high-ability children the influence of SES should become ever more
exaggerated across development.

We were struck by the fact that the model did not predict a
resilience role for either variations in the input or in intrinsic
factors. On the contrary, low ability squashed the variation due to
environmental factors, whereas high ability allowed its expression
(and vice versa: low environment squashed the variation due to
ability, whereas high environment allowed its expression).

Under what conditions could the model exhibit resilience ef-
fects? We have focused on evaluating the idea that SES might
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operate through variations on the input. However, we also allowed
the idea that SES might influence properties of the learning sys-
tem, through perinatal or postnatal effects. It was indeed possible
to identify pairs of computational properties that bore a resilience
relationship to each other, but not all did so. Figure 6 depicts two
situations, comparing the performance of subsets of individuals
from the wide-intrinsic/narrow-environmental condition. In the
first situation, we assumed that genotypic variation operated on the
learning rate inside the network, whereas environmental effects
operated on the number of internal units (assuming, for example,
a perinatal influence on neural proliferation and migration, or a
postnatal influence of chronic stress on the survival of neurons).
Figure 6A shows a similar pattern to that in Figure 5: Low ability
squashes environmental variation, whereas high ability allows its
expression. In the second situation, we assumed that the genotypic
variation operated on the architecture of the network, determining
whether it employed a single pathway or two parallel pathways

A. Genotype exaggerates environmental effects
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Figure 6. Two examples of predicted gene—environment interactions
where genetic and environmental effects are assumed to operate via dif-
ferent neurocomputational parameters affecting learning ability. Environ-
mental effects assumed to operate on number of internal processing units
and genetic effects assumed to operate on learning rate (A); environmental
effects assumed to operate on number of internal units and genetic effects
assumed to operate on architecture (B). (Data are from wide-intrinsic/
narrow-environmental condition, for regular verbs late in development.)
ENV = environment.

from input to output (one with internal units, one with direct
connections). Environment was once more was assumed to operate
on internal units. In Figure 6B a resilience pattern is observed. A
two-pathway network was resilient to variations in internal units,
whereas a single-pathway network was not. This was because
when the number of internal units was reduced, the other (redun-
dant) pathway could take over its function.

The important conclusion is that the model indeed predicted that
the effect of variations in SES may depend on child internal
factors. Under conditions of redundancy, this will manifest as a
resilience effect. Otherwise, this interaction will manifest as a
pattern of greater SES effects emerging in higher ability children,
with these gaps widening across development. If SES operates on
the information available in the language input, one would expect
interactions of the latter sort.

Discussion

To our knowledge, these simulations represent the first attempt
to capture the effects of SES in an implemented computational
model of language development. There were two ways to imple-
ment SES effects within our modeling framework: as an influence
on the language input or as an influence on the properties of the
learning system. Our main focus was on evaluating the first of
these pathways, based on a literature documenting SES effects on
child-directed speech and evidence for the causal role of input
differences on language development (e.g., Hart & Risley, 1995;
Hoff, 2003; Hoff-Ginsberg, 1991, 1992; Huttenlocher et al., 1991,
2002, 2010; Pan et al., 2005). We evaluated the simulation results
against three criteria: (a) qualitative fit to the empirical data, (b)
novel testable predictions, and (c) insight into inferences from
behavior to mechanism. How did the model do?

Qualitative Fit to Data

We evaluated the model on a qualitative rather than quantitative
fit to the empirical data for two reasons. This was a first step in
modeling SES effects on language development. It involved a
number of simplifications to enable population-level simulations.
Second, one key assumption of the model was unconstrained by
the empirical data: the relative range of variation of environmental
versus intrinsic sources of individual differences.

The key characteristics of the target empirical data were
stronger performance on regular verbs than irregular verbs,
small amounts of variance predicted by SES (between 0.7% and
4.7% of variance across the four dependent measures of past-
tense performance assessed), and stronger predictive power of
SES on irregular than regular verbs. Qualitatively, the modeling
condition best able to capture this pattern was one that com-
bined wide intrinsic variation in the power of the computational
learning systems with narrower variation in (and reasonably
high quality of) the information content of the environment to
which those learning systems were exposed. The regularity
effect in population means and in the predictive power of SES
emerged despite no differential treatment of regular and irreg-
ular verbs in either the architecture or the learning environment.
Regular verbs were less sensitive to variation in the environ-
ment solely because of their systematic structure: Learning one
regular past tense helps in producing another, more than learn-
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ing one irregular past tense helps in producing another. To some
extent, systematicity in the structure of a problem domain
serves to liberate the learning system from variations in the
information available in the environment.

There was a quantitative mismatch in the population level of
regular verb performance when irregular verb performance was
matched to the target data. Does the fact that the model cannot
adequately learn regular inflections in a simplified data set
undermine its validity to investigate SES effects? To address
this we need to consider the model simplifications and their
impact on the model’s behavior. There were four main simpli-
fications: (a) in the base model of past-tense formation, (b) in
the nature of the transform that SES applies to the language
input, (¢) in treating the difference between regulars and irreg-
ulars as dichotomous, and (d) in treating intrinsic versus ex-
trinsic sources of variation as independent. With respect to the
base model, recent larger scale models include architectural and
training constraints that improve performance on regular verbs
and generalization, such as additional training on stem outputs
or training on multiple inflection paradigms (e.g., Karaminis &
Thomas, 2010; Woollams et al., 2009). The lower regular
performance in the current model is a likely consequence of its
scale.® Nevertheless, state-of-the-art models of inflectional
morphology are addressed to capturing the development of the
average child. Their parameters, in terms of training set, train-
ing regime, and learning system, are optimized to simulate that
profile. By contrast, the simulation results we report for per-
formance on past-tense production are arithmetic means of a
large population; if there is an average individual, in our
simulations this network will be suboptimal, both in its training
set and in its computational parameters. This distinction reflects
the different focus of the two modeling enterprises: simulating
development alone versus simulating both development and
individual differences at the population level.

In a larger scale model, would the predictions of SES effects
still hold? The relative importance of extrinsic (environmental)
versus intrinsic variation will hold across implementations.
However, the size of the interaction between SES and verb
regularity is likely to be sensitive to the details of implemen-
tation, since the interaction depends on similarity and, in the
case of regular verbs, the greater opportunity for the model to
use information from one learning event to inform other learn-
ing events. Models with a stronger encoding of regularity may
exhibit reduced SES effects for regular compared to irregular
verbs. In pilot simulations, we used a model that considered
past tense solely as a mapping between phonological forms
rather than including lexical-semantic information. Those sim-
ulations replicated all the main results of the current model,
indicating some robustness to variations in the model assump-
tions.

In terms of the other simplifications, we considered a trans-
form on the type frequency of the input. Of course, the theo-
retical claim here is that SES produces some kind of transform
on the input. A preferable implementation would be one in
which the transform is modeled as a modulation of the proba-
bility function that any verb form will appear in the input of a
given child, a function that is constrained by corpus statistics
from child-directed speech in families of different SES levels
(e.g., Hall, Nagy, & Linn, 1984). This would enable much finer

grained predictions to be made about SES influences on indi-
vidual verb types. Our dichotomy into regular and irregular
verbs did not respect the continuum of regularity that charac-
terizes actual verbs, but was appropriate for the target data set
we had available. The aforementioned probability transform
would likely interact with this continuum to predict SES influ-
ences on individual verbs. In terms of intrinsic and extrinsic
sources of variation, we predominantly considered SES effects
as operating on properties of the input, whereas more realisti-
cally SES might simultaneously influence the input and prop-
erties of the learning system. This simplification was justified
by our aim to evaluate the viability of the input hypothesis. It is
worth noting that in artificial neural network models, perfor-
mance on irregular verbs is usually more sensitivity to subop-
timal processing conditions. Environmental influences on com-
putational learning properties might also produce a differential
effect across verb types.

The mismatch between all our initial modeling conditions
and the level of overgeneralization errors observed in the
Bishop (2005) sample motivated us to consider two exploratory
variants of the model. We considered the possibility that knowl-
edge of irregular verbs might be poorer, on the basis that since
irregular verbs are harder to inflect, children may hear more
errors in irregulars from their caregivers and peers. Hart and
Risley (1995) did not distinguish past tenses based on regular-
ity, so data cannot yet directly constrain the possibility of
Regularity X SES interactions on child-directed past-tense in-
formation. When we sought to implement the idea of a Regu-
larity X SES interaction, it became apparent that there is more
than one way to achieve this result. Irregular verb information
may have a lower absolute level of quality but the same range
of variability; or it may have a lower absolute level as well as
a wider range of variability. Our simulations demonstrated that
either was sufficient to increase the level of overgeneralization
errors. Moreover, these variants did not maximize the potential
for such errors, since irregular verbs were only omitted from the
training set, rather than added in their regularized form. It is of
interest that the two variants exhibited equivalent population
mean levels of accuracy (see Table 1) but differed in the extent
to which measures of the variation in environmental quality
could predict individual differences in irregular past-tense per-
formance (see Table 2). This is a demonstration that the char-
acteristics of a population may dissociate with respect to de-
velopment (mean performance) and individual differences
(variation).

Although empirical data cannot yet speak directly to the exis-
tence of a Regularity X SES interaction, there are suggestive data.
Bishop’s original data set comprised 224 MZ and 218 DZ twins
(Bishop, 2005). For that data set, the correlation between regular
past-tense performance of MZ twins and DZ twins was .67 and .12,
respectively; for irregulars, the MZ correlation was .45 and the DZ
correlation .42 (Thomas et al., 2012). A behavioral genetic anal-

3 For example, we trained Karaminis and Thomas’s (2010) multiple
inflection generator model on just the English past tense or simultaneously
on multiple inflections for English verbs, nouns, and adjectives. At a point
in training matched on vowel-change irregular verbs at 40% accuracy, the
multiple-inflection model had regular verb accuracy levels 20% higher
than the past-tense-only model.
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ysis points to a greater contribution of environmental variation to
individual differences in irregular verb performance than regular
verb performance. One way to produce such a difference would be
if the range of variation in the environmental input were wider for
irregular verbs than regular verbs. That said, as we have seen,
systematicity in regular verbs means that environmental variation
has less effect on their development: Systematicity may exaggerate
estimates of heritability.

Novel Predictions

The model produced four predictions. The first was testable
against the Bishop (2005) data set. It was that SES would reliably
predict whether a child was performing in the top 10% of the
population, but not whether a child was performing in the bottom
10% of the population (see below). To our knowledge, this pre-
diction has not been made by any existing theory of individual
differences. The Bishop data set confirmed this prediction, pro-
viding a powerful validation of the model even in its qualitative
form.

Second, the model predicted that where environment is the
limiting factor on performance, SES effects should increase across
development. This remains to be tested against longitudinal past-
tense data. Such data would need to ensure the widest range of
environmental variation possible, and exclude children with heri-
table language disorders, to narrow genetic range. In a recent
longitudinal study, Tucker-Drob, Rhemtulla, Harden, Turkheimer,
and Fask (2011) reported that in a sample of 750 twin pairs, SES
was not related to mental ability at 10 months but was present at
2 years of age. When Petrill et al. (2004) tested expressive vocab-
ulary and grammatical complexity via parental report in children at
age 3 and then again at age 4 in a sample of 6,000—8,000 twins,
SES effects were more consistent, predicting 3.2% and 3.6% of the
variance at the two ages, respectively.

Third, given that SES might either modulate input or act on the
computational properties of the learning system, we addressed
whether these two pathways would generate different markers on
behavioral variability. The model predicted that variation in the
computational properties of the learning system might be more
closely linked to generalization than to performance on the training
set. A comparison of the ability of SES to predict variability in
performance on children’s knowledge (training set) versus exten-
sion of that knowledge to novel forms (generalization) may be one
way to untangle whether the SES effects operate via the informa-
tion content of the environment or via influencing the properties of
the learning system itself.

Fourth, we investigated whether the model predicted that the
effect of SES would operate differently at different levels of
ability. (Where differences in ability stem from genetic factors,
this would correspond to a gene—environment interaction.) We
were particularly interested in whether the model predicted
resilience effects, that is, high SES protecting against the effects
of low ability, or high ability protecting against the effects of
low SES. When we manipulated SES via input, and measured
ability by the contribution of computational learning parameters
to variation in performance, we did not find a resilience rela-
tionship. Low SES compressed variation due to ability, and low
ability compressed the variation due to SES. The model pre-
dicted that SES effects would be highest in high-ability children

and that these differences would increase across development.
This condition gave another perspective on why SES has a
higher predictive power on good performance than on poor
performance, reflected in the divergence of SES trajectories for
the high-ability group.

Was it possible for the model to capture resilience relationships
between SES and ability? If SES and intrinsic influences both
operate on computational learning properties, depending on which
properties are involved, resilience relationships can be observed.
But these have to involve a redundancy relationship, where the
conferred advantage (of SES or ability) offers alternative pathways
to buffer against variations in the other.

Insight Into Inferences From Behavior to Mechanism

Using a sample of 20 children, Rice et al. (1998) reported that
SES (as measured by maternal education) did not reliably
predict past-tense performance, explaining less than 1% of the
variance. They inferred that the development of this aspect of
morphosyntax was best explained in terms of maturational
mechanisms, where changes in behavior over time are due to
the aging process rather than experience dependent learning.
The logic was that if development is not sensitive to variations
in the environment, then developmental mechanisms cannot be
relying on the environment. For the Bishop (2005) data set, SES
similarly predicted only around 1% of the variance in regular
past-tense performance, supporting the Rice et al. result. In our
simulations, the condition that combined narrow variation in the
information content of the environment with wide variation in
the computational properties of the learning system also repro-
duced the result that the SES proxy predicted around 1% of the
variance in past-tense performance. Crucially, however, the
simulations demonstrate that Rice et al.’s inference about de-
velopmental mechanisms is not sound. This is because devel-
opment in the connectionist model was entirely experience
dependent and not at all maturational. Without exposure to the
training set, no network would have learned anything. The
lesson from the model is that caution must be exercised in
drawing inferences about developmental mechanisms based on
data from individual differences. The failure of measures of
environmental variation to predict individual differences does
not legitimize conclusions about the role of the environment in
the developmental process.

As for the predictions, the model predicted that there should
be no statistical relation between SES and whether a child fell
in the bottom 10% of the population on past-tense formation,
and this was confirmed in the empirical data. However, because
the operation of the model is well understood, we can see that
this result is a fairly curious one. We know that for the model,
a poor environment does cause poor acquisition: The same
model exposed to a poorer training set will learn less. We have
here a divergence between statistical relations and causal rela-
tions. Unlike the more familiar case of correlation without
causation, here we have causation without correlation. Poor
environment causes poor development, but poor environment
does not predict poor development. How can this be? The
reason for the divergence is that the relationship of cause to
effect was many to one. In addition to an impoverished envi-
ronment, there were many other possible causes of poor acqui-
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sition, resulting from the settings of computational parameters.
The many-to-one causal relationship diluted the strength of the
statistical association of any one cause. By contrast, both pa-
rameters and environment had to be good for a network to
feature in the top 10%; whether or not the environment was
good then had stronger predictive power. In a population with
largely adequate computational parameters, the nature of the
environment should be a more symmetrical predictor of success
and failure, and this was confirmed by simulation of such a
population (see Table 3, IN-EW condition). The asymmetry was
therefore predicted to be sensitive to the sampling. This is a
further indication that in the actual data, variations in learning
ability were a stronger determinant of individual differences
than environmental variation in information. The model, then,
demonstrates that many-to-one causal relations may compro-
mise the window that statistical associations offer on causal
mechanism.

Future Challenges for Investigating SES Through
Computational Modeling

Our model needs to be extended in two ways: scaling up the
complexity of the model and constraining the transform of the
input due to SES by corpus-based analyses of child-directed
speech. More widely, one key issue for future models to address is
why SES effects should differ across different domains of cogni-
tion; for example, within language, why SES effects should be
larger for vocabulary acquisition and phonological awareness than
for grammar. Computational models exist that have been applied
to the acquisition of phonology, to lexical segmentation, and to the
acquisition of vocabulary (Davis, 2003; Plaut & Kello, 1999).
Scaling these to population-level modeling would allow investi-
gation of this issue. Once again, a central concern is to empirically
constrain the variation in the language input and investigate how
such variation interacts with differences in the computational
properties of learning systems. The current simulations suggest
that the input for phonology and vocabulary must be more variable
than that for grammar; or the population range of computational
properties generally more adequate; or that the problem domains
of phonology and vocabulary are generally less systematic than the
domain of grammar.

In addition to gene—environment interactions, the population-
level modeling framework readily lends itself to considering gene—
environment correlations, where certain genotypes are more often
associated with certain environments. In our framework, this
would be implemented as a correlation between the training set a
system receives and the settings of its computational parameters
(in our simulations, so far these were independent). Some ground-
work has been completed in the field of language acquisition. In an
artificial neural network model of English verb morphology, Hare
and Elman (1995) demonstrated how training sets could become
related to network properties, if what is learned by one generation
is allowed to shape the training set of the next generation. At a
population level, this scheme would allow investigation of the idea
that genetic variations in learning ability could become correlated
within environmental variations.

One complication of studying SES is that causal pathways
through which it operates may alter across development, and
indeed may depend on the range of SES under consideration. For

example, Aikens and Barbarin (2008) found that family character-
istics predicted more of the SES-linked variability in initial reading
ability in kindergarten children, but for older children, school and
neighborhood conditions explained more in subsequent improve-
ments in reading through to third grade. In the developed world,
even in the face of relative poverty, there is some minimal provi-
sion for the healthy upbringing of children. From the point of view
of cognitive development, environmental variation may impact
more on the information available and on the particular schedules
of reward and punishment experienced by a child. However, in the
developing world, the environmental range is much wider. Nutri-
tional deficits during child development can be severe enough to
cause stunting in growth and a statistically associated incidence of
poor cognitive development (Grantham-McGregor et al., 2007). In
this wider range, environmental variation may impact much more
on biological aspects of neural function and therefore its compu-
tational properties.

Finally, we reiterate the focus of this article on the causal
mechanisms by which SES effects operate. Research in this field
is challenged by the many confounded factors associated with
SES. They may all play a causal role, or some may be noncausal
correlations. Computational modeling permits consideration of the
adequacy of specific factors to explain behavioral data, but of
course does not demonstrate that these mechanisms are truly
responsible. For this, intervention studies are required. The poten-
tial reward of understanding causal pathways is that although the
confounded factors may be many, if the causal pathways are few,
then alleviating the effects of poverty on cognitive development
may be easier than the alleviating poverty itself.
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