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Introduction

Empirica studies of cognitive development usudly report the abilities that children display a
different ages. The cognitive mechanisms that dlow the child to move from one sat of abilitiesto a
more complex set remain shrouded in mystery and have given rise to much controversy.

To take afamous example, Piaget characterised cognitive development as a process of
acquiring mental representations of increasing complexity. He proposed that the mechanism of
change involved a combination of three processes. assmilation, accommodation and equilibration.
One process interprets new experience according to existing knowledge (assmilation) whilea
second adjugts existing knowledge to fit with new experience (accommodation). Thesefirst two are
local processes, whereas athird (equilibration) is the attempt of the whole system to find global
equilibrium after multiple local changes. In this theory, successive stages of cognitive development
have greater complexity and representationa power than the previous stages (Piaget, 1954).
However, Fodor (1980) argued that, in principle, increases in representational power could not be
the consequence of alearning mechanism. This s because the achievement of such increases would
require the learning mechanism to evaluate information it did not have the power to represent. Put
another way, the mechanism would have to determine the truth of theories that it did not have the
ability to understand. Fodor concluded that any increases in complexity during cognitive
development are necessarily maturational and that learning is merely a process that uses experience
to select among subsets of representationd primitives aready available to the cognitive system at
that point in development.

These two theories place radicdly different amounts of weight on the role of learning in
driving cognitive development. Which is the right account? Part of the difficulty in evauating the
relative merits of these kinds of proposas about mechanisms of changeis that verbaly expressed
theories are often vague and ill-defined. What exactly are equilibration or representationa power?
What do red learning mechanisms look like and what factors affect the way they learn?
Computational modelling offers one method to explore questions like these with far more precision.
Modds provide the opportunity to establish what types of learning system can be successful in
acquiring certain competencies, what congtraints such systems should include to best make use of
the knowledge available to them in the learning environment, and what stages of performance such
systems go through before achieving mastery. Computationa models provide candidate systems for
the mechanisms of change that drive cognitive devel opment.

In this chapter, we examine the use of computational models for studying development from
one main perspective. Thisis the gpproach that employs connectionist models, aso known as
atificid neurd networks. Although we relate these modelsto other types of computationa
modelling, much of the chapter is taken up with congdering the range of cognitive devel opmental
phenomena to which connectionist models have so far been gpplied, both in typical and atypica
populations. We start with avery brief introduction to the basic concepts of connectionist modelling
and then consder asingle model in some detail, that of children’s performance in reasoning about
bal ance scale problems. Subsequently we look at models proposed to account for the devel opment
of other agpects of reasoning in children, development in infancy, and the acquisition of language.
We then pause to examine some of the theoretica issues raised by these models. In the second hdlf,
we consider arecent extenson of connectionist networks to capture behavioura deficitsin
developmental disorders.

An introduction to connectionist networks
Connectionist models are computationa systems loosdly based on principles of neurd information

processing. It isimportant to stress that in the current context, they are not intended to be model's of
neura circuits, but to sit a ahigher level of description. Their am is to incorporate concepts at the
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cognitive level so that their performance can be evaluated againgt behavioura data. Connectionist
modds are relevant to cognitive development for two main reasons. Thefird reates to biologica
plausibility. Although there is controversy over whether current connectionist moddls have
abgtracted the correct computationd primitives from neura circuits, it nevertheless seems likely
that computationd solutions achieved in these moddswill be readily implementablein red neurd
circuits (O’ Rellly, 1998). Computationd modelling of any sort can be useful in darifying theories,
however, the attempt hereisto build models which employ the same style of computation asthe
brain.

The second reason that connectionist models are relevant to cognitive development is that
they are essentidly learning systems. A typicd modd will comprise an initid network structure and
atraining environment representing the domain to be mastered. With the gpplication of alearning
agorithm, the network dtersits structure to achieve competency in the domain. In particular,
through interacting with the training environment, connectionist networks develop internd
representations or knowledge states that permit them to perform the relevant computations. Given
that cognition is characterised as the progressive congtruction and manipulation of menta
representations in the brain, together these characteristics make connectionist networks attractive
systems to model processes of cognitive development (Elman, Bates, Johnson, Karmiloff- Smith,
Parig, & Plunkett, 1996; Karmiloff- Smith, 1992; Plunkett & Sinha, 1992).

A brief overview of the components of a connectionist mode follows. More detailed
introductions can be found in Elman et a. (1996), McLeod, Plunkett and Rolls (1998) and
Rumdhart and McCldland (1986). Software is aso available with these volumes enabling the
reader to build and explore his or her own computationa models.

Connectionist systems comprise smple processing units connected together into networks.
Each processing unit has associated with it an activation level, andogous to the firing rate of a
neuron. Units influence the activity of their neighbours depending on the strength of the connection
between the units. Thus, activity on one unit may facilitate or inhibit the activity of neighbouring
units. A given unit determines its activation depending on the sum of fadilitation or inhibition it
recaives from adjacent units and on the unit’ s decison function (functions can vary, but they
usudly take the form of non-linear threshold). Networks are generaly organised into layers of units,
the particular configuration of which is referred to as the network architecture. Figure 1 shows a
typica network architecture, with three such layers. an input layer, alayer of internal processing
units (usudly caled ‘hidden’ units), and an output layer. This particular network uses a feedforward
design, in that activation only propagates in one direction up through the network, from input to
output. The training environment for such a network amounts to a set of pairs of input patterns
(defined in terms of the activation levels to be gpplied to the input units) and the corresponding
desired output patterns.

Knowledge is stored in the network in terms of the strengths of the connections between the
units. The strength of a connection is often referred to asits ‘weight’. We will not use thisterm
here to avoid confusion when we come to examine the baance scde model. Learning amounts to
iteratively atering the connection strengths by tiny amounts so that ultimatdly, for each input
pattern, the network produces the correct output pattern. A variety of learning algorithms are
available, but many take the form of gradient descent; that is, for agiveninput, an ‘error’ termis
derived which gives an measure of how close the actua outpuit is to the desired output. The
connection strengths are then changed in away that reduces the size of this disparity (or movesthe
network ‘downhill’ in error space). The most common such dgorithm is called backpropagation
(Rumelhart, Hinton, & Williams, 1986).

Although each processing unit is computationaly very smple, networks of units can
compute complex functions. Indeed, in theory athree-layer network such asthat shownin Figure 1
caninlearn any arbitrarily complex relation between a set of input-output pairs o long asit is given
aufficient “hidden’ units over which to develop itsinterna representations (Cybenko, 1989).
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Besides the feedforward network, there is arange of other architectures. For instance, some include
loops of connections so that activation can cycle round within the network. In such attractor
networks, for a given input the network must gradudly settle into a stable State that forms the

output, such that further cycling produces no change in output activations. Cycling activation can be
used to provide the network with amemory of previous inputs. This enablesit to process sequences
of inputs, in so-caled recurrent systems. Findly, networks can be used merely to form concise
representations of a given set of input patterns. Here, thereis no desired output supplied in during
training. Instead, the network sdif-organises its representations to form a concise description of the
Input set across asmall set of abstract features.

Figure 1. A three-layer feedforward network.
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Connectionist models of normal development
An example model: the balance scale task

Toilludrate the use of connectionist mode s for exploring cognitive development, we begin by
looking a one model in some detail. The mode attempts to capture the development of children’s
problem solving abilities in balance scale problems. The balance scale was one of a set of problems
which Piaget’ s collaborator, Inhelder, put forward as demonstrating the stages of development
through which children pass, each stage representing a more complex understanding (Inhelder &
Piaget, 1958). Siegler (1981) demondtrated that children’s performance on thistask at different
stages of development could be characterised by four rules. In the first rule, 4 to 5-year-oldsonly
consdered the number of weights on each side of the scae: the side with the greater number will go
down. In the second rule, focusis till on the number of weights, but when the weights are equdl,
the child will then take into account their distance from the fulcrum — the side with the weights
further away will drop. Thethird rule is more sophisticated, aways taking weight and distance into
account; but if one Sde has more weight while the other has its weights farther away, the child
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smply guesses. By age 8, children were generadly using rule 2 or 3, and by 12, most children had
sttled on rule 3. The fourth rule establishes the torque on each sde of the scale, with the Sde with
the greater torque predicted to descend. This ruleis not reached by everyone: in Segler’s sample,
most 20-year-olds continued to use rule 3, athough 30% were now using rule 4.

Figure 2a). Structure of McCldland's (1989) baance scale model, with separate channels
for processng weight and distance information. Left Sde of scale: 4 weights on second peg
out. Right side of scale: 2 weights on fourth peg out. Scae should baance (both output units
half-activated).

Decision mechanism
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Figure 2b). ‘Uninterpreted’ structure of the balance scae model — a three-layer network
with restricted connectivity between input and hidden layers.

Output Layer (2 units)

Input Layer (20 units)
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McClelland (1989) proposed a connectionist mode of the development of problem solving
in the balance scae task (see dso McCldland & Jenkins, 1991). The Structure of thismode is
shown in Figure 2a The input layer is split into two channds, one representing informeation about
the number of weights on each sde of the scale, the other representing information about their
distance from the fulcrum. Particular configurations can be presented to the modd as a pattern of
activation over the input units, with 4 units active and 16 unitsinactive. For each input pattern, the
mode must determine the side which will drop by turning on one of the two output units and
turning off the other. If the scale baances, both output units should be haf-activated (asin Fig. 2a).
Notice, then, that this domain has been converted into pairs of input-output activation patterns. Note
aso that the network is oblivious to any information about weights and distances per se. While
Figure 2aincludes information to help us understand the modd’ s tructure in relation to the task,
Figure 2b provides a better idea of the modd in its uninterpreted form: thisis smply athree-layer
feedforward network with arestriction on which input units are connected to which hidden units.

Prior to training, the strengths of the connections between the units are randomised within
some smdl range around zero. In this sate, the network will perform badly on the balance scale
problem because, prior to training, it has no knowledge. However, we will later argue that it does
have a sort of knowledge even a thisinitid stage. For the moment, suffice it to say thet it has no
knowledge of the content of the problem it isfacing (Elman et d., 1996). The modd isnow
exposed to the training set. For each configuration of weights and distances, the network produces
an output. Thisis compared to the correct response, and the connection strengths are atered to bring
the network’ s response closer to the correct output. Connection strengths are dtered by only asmall
amount for each individua problem, and the network is exposed to the set of balance scde
problems many times. The consequenceisthat it converges on a solution where its performance is
optimised on the full task. However, in reaching this solution, it goes through phases where it
performs well only on subsets of the individud problems. Indeed, McCldland (1989) demongtrated
that it passes through the same four stages of performance that the children exhibited and that
Segler characterised with his rules. Importantly, athough the four stages appear to be qudlitatively
different types of behaviour, the modd moved between these sages via a single mechanism of
continuous and gradual changes to its set of connection strengths.

How does the modd simulate this stage-wise pattern of behaviour during development? We
have dready seen one built-in assumption of the modd, that weight and distance information is
processed separately. However, a second assumption was built into the modd, thistimein terms of
the training set. The training set was congructed to reflect the supposition that children have abias
to focus more on weight rather than distance. This was achieved by giving the network more
training trids where the distance of the weights elther Sde of the fulcrum was equd; only the
number of weights varied. As aresult of these extraitems, the network initialy cameto rly more
on weight than distance as areliable predictor of the outcome.

Once these two biases are built in, the emergence of the four stages can be explained as
follows. Because of the biased training s, the weight channd of the network initialy develops
more quickly than the distance channd (rule 1). With additiond training, the distance channd dso
beginsto develop, but isinitidly only sufficient to drive the network response when the weight
channd does not overrule it (rule 2). With yet more training, the distance channd now sarts
actively to contribute to the solution, but when weight and distance conflict, the network produces
erroneous reponses (rule 3). Findly the network finds the appropriate way to combine weight and
distance information, effectively discovering the law of torque (rule 4). McLeod, Plunkett, and
Roalls (1998) provide a detailed analysis of the connection strengths at each stage within the
network. Asin the human case, performance of rule 4 is ungtable within the modd. For the
McCldland mode, this is because the law of torque requires a precise cdibration of the connection
srengths. By contrast, Shultz, Marescha and Schmidt (1994) have shown that adightly different
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model can learn stable rule 4 behaviour, aswell as accounting for other empirica effects. Theirs
was a generative modd, an idea that we will encounter shortly.

In sum, McCldland’smode delivers a concrete example of a sngle mechanism of change
in which there is an accumulation of very gradud increasesin connection strengthsingde the
network, but which neverthel ess produces behaviour that shifts through stages of quditatively
different performance corresponding to developmental data from children.

Connectionist models of logical development

Seriation is another Piagetian task taken to illudtrate distinct stages of trangitive reasoning
development (Piaget, 1965). Children areinitially presented with arandom array of sticks of
different length, and asked to sort the sticks in increasing length. Four stages of performance have
been identified during development: random sorting, sorting of smal subgroups, sorting of the
entire array but by tria and error, and findly efficient sorting, e.g., by dways choosing the smalest
dick in the remaining to-be-sorted array.

Mareschal and Shultz (1999) demonstrated how a connectionist network, which once again
gradudly fine-tuned the strength of its connections, could exhibit a progression of behaviour
according to these four stages. Like the baance scde modd, Mareschd and Shultz built inan
assumption congtraining the way in which the model could process the information. They built two
sub-networks into the model, one of which was given feedback about which stick to sdect for
moving, while the second was given feedback about where to move the stick. The combination of
the development of the ‘which’ and ‘where sub-networks eventudly led to success on the seriation
task. Moreover the modd predicted that performance would be better when the array was further
from its correctly ordered state. The novel prediction was subsequently confirmed by Marescha and
Schultz in tegting with young children.

Thismode differed from the baance beam model in one key respect: during training, the
seriation modd changed not just the strength of its connections but also its architecture. The
seriation mode sought to capture the process of development not only by adjusting connection
srengths, but aso by adding further hidden units when learning fatered. Using an agorithm called
cascade correlation (Fahlman & Lebiere, 1990), new hidden units were added not a random but
specificdly to advance learning when it platear ed. Such an approach is referred to as generdive
connectionism

Shultz (1998) aso used a genertive connectionist approach to mode children’s
performance on conservation tasks. These tasks represent awidely used technique for examining
children’s knowledge of those physicd attributes that remain invariant under various sorts of
transformation, such as number, weight, and volume (Piaget, 1954, 1965). Shultz constructed a
network model of number conservation that was presented with information about two rows of
items. The network wastold the length and density of each row, with vaues coded as the activation
level of agngle input unit for eech dimenson. This information was presented twice, once
describing the rows before a transformation had been performed, and a second time after the
transformation had been performed. In addition, the network was given information about which of
the two rows had been transformed and about the type of transformation carried out. Two
transformations preserved the attribute of number in arow (elongation, compression) while two
others dtered it (addition, subtraction). The network was trained to indicate whether the rows had
the same number of items or if not, which row had the greater number.

Asthe modd dtered its connection strengths and added hidden units during training, it
smulated anumber of the effects exhibited by children. At firg, the network failed to conserve
number. However, midway through training, the system showed an aorupt shift to conserving
number across the relevant transformations. The model aso captured the fact that in children,
correct conservation judgements emerge for smal quantities before they emerge for larger
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quantities (the problem size effect). Lastly, when the network failed to conserve number
gopropriately, it tended to choose the longer of the two rows as having more items, just as children
do (the length bias effect). The network exhibits the length bias because, in the training set, length
tends to be a better predictor of number than density does. Length varies across €l ongation,
compression, subtraction, and addition, while dendity varies only across e ongation and
compression (since item spacing is kept congtant for subtraction and addition). When the network
falsto conserve, it is erroneoudy employing this ‘perceptud’ information. The problem size effect
in the network is ascribed to the use of continuoudy vaued representations of length and dengty.
With continuous representations, small Szes are easer to discriminate since differences are
proportiondly larger (e.g. 3 is greater than 2 by 50% but 8 is greeter than 7 by only 14%). The
continuous coding scheme contrasts with the use of discrete units to code weight and distance
vauesin the baance scale modd. In a continuous scheme, 3 (out of amaximum 5) might be
represented by turning on asingle a unit which normaly variesfrom O to 1 to aleve of 0.6; ina
discrete scheme, 3 might be represented by fully activating the third unit in arow of 5. This contrast
illustrates how modellers make different decisons in converting a cognitive domain into a set of
activations to be presented to a network.

Lastly, why does the modd exhibit an abrupt change from failure to success at this
conservation task? Shultz characterises the performance of the network as undergoing a shift from
solutions that initidly rely on ‘ perceptud’ information, to an increasing focus on the identity of the
transformation (* cognitive’ information), and findly to afocus on the impact of particular
transformations. Shultz attributes the abrupt shift in performance not to incrementa changesin
connection strengths, but specificaly to the addition of extra hidden units. Indeed, some
researchers claim that incrementa connection changes aone cannot produce discontinuitiesin
development (Raijmakers, van Koten, & Molenaar, 1996) and that changes in architecture are a
necessary precondition. However, others argue that the non-linearity of the decison functions
within processing units does provide the condition for aorupt changes in performance, even when a
network architecture is held congtant and its connections gradually changed during training (e.g.
Elman, et d., 1996; Plunkett, Snha, Moller, & Strandsby, 1992).

The models so far described illustrate the broad approach to producing mechanistic
computational modes of important Piagetian tasks used in exploring childhood devel opment.
However, thisis not the limit of connectionist models. They have dso been use to examine a variety
of other developmenta phenomena: discrimination shift learning (Sirois & Shultz, 1999), the
understanding of the relationship between velocity, time, and distance (Buckingham & Shultz,
1994), the development of concepts (Schyns, 1991), and the development of strategy usein externa
memory tasks (Bray, Reilly, Villa& Grupe, 1997).

Connectionist models of infant development

Infant behaviour is more closdly tied to perceptua-motor skills, and the development of knowledge
in infants typically must be explored by indirect means. These include the use of preferentia

looking and habituation techniques, where infants are found to direct more attention to unfamiliar or
unexpected events, as well as the sudy of search behaviours like reaching for objects. When abdll
passes behind an occluder, do infants look to see whether the ball regppears from the other side of
the screen? Are they surprised if the ball does not regppear? If the ball remains behind the screen,
do the infants reach behind the screen to recover it? The empirical data here suggest a disparity
between the different indices of measuring infant knowledge. While infants younger than 7.5t0 9
monthsfail to reach for the bal when it is hidden behind the occluding screen (Piaget, 1954),
infants as young as 3.5 months digplay surprise in terms of their looking behaviour if the bal does
not regppear from behind the screen (e.g. Baillargeon, 1993). If reaching behaviour and looking
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behaviour disagree, at what age would we want to claim that infants have a menta representation of
the hidden object?

Two connectionist models tackled this phenomenon by employing recurrent network
architectures. Munakata, McClelland, Johnson, and Siegler (1997) designed a network to predict the
motion of objects across the retina. As the system was given increasing experience with the
trgectory of moving objects, an internal representation of atemporarily hidden object could
eventualy be maintained in the memory loop long enough to drive an expectancy thet it would re-
gppear. The model suggests that the concept of the (out-of-view) object is gradudly built up
through experiences of object trgjectories, rather than taking the form of an al-or-nathing
understanding of object permanence. Again, performance relies on the fact that knowledge in the
network is built up viathe gradud strengthening of connections during training. The disparity
between expectancy and reaching behaviour is accounted for by showing that the developing
representation of the hidden object corresponds to activation patterns which are at first only strong
and unambiguous enough to drive expectancy. Further training is required for the representation to
be sufficiently robust to drive reaching as well.

Marescha, Plunkett, and Harris (1999) took a more neurophysiologically motivated
gpproach to the same problem, again using recurrent networks. However, they split processing in
the modd into an object knowledge module (a‘what’ channel) and an object location module (a
‘where’ channdl), based on evidence of such afunctiona split in the brain (e.g., Milner & Gooddle,
1995). A further reaching module had the task of integrating knowledge from both the ‘what’” and
‘where’ channels. In this model, the expectancy/reaching disparity was accounted for because
expectancy (e.g. looking to where the object might regppear) was driven by one of the lower
modules, while reaching required integration of both lower-level modules and so took longer to
develop (see Mareschal, 2000, for areview of this research). This explanation predicts that, prior to
showing reaching behaviour, infants can generate expectancies based only on information in one of
the lower-leve modules, reaing ether to the object’s motion or itsidentity but not both
smultaneoudy. Subsequent empirica evidence has supported this prediction (eg. Ledie, Xu,
Tremoulet, & Scholl, 1998; Wilcox, 1999).

The contribution of models of infant development has been to quedtion the legitimete
inferences that should be drawn from the indirect measures of infant knowledge currently in use.
Thus far, connectionist models have pointed to the importance of considering graded internd
representations, and of consdering that certain behaviours may index individud sysemswhile
others may require that the cognitive system integrates across separate processing modules and so
exhibit developmentd lags. While these modds have explained high-level conceptua knowledge
(categories, representations of hidden objects) in terms of predominantly perceptua information
(visud features), they do not imply that there are no such things as high-level concepts, and indeed
these models have not provided explanations of the development of conceptua categories. They do
however caution againg ignoring Smpler, low-leve explanations of the infant behaviour reveded
in current paradigms.

Connectionist models of language development

A greet ded of research has employed connectionist models to investigate processes of language
development (see Plunkett, 1998 for review). There isinsufficient space to review thiswork here,
other than to give an indication of its scope. Modds have employed sdf-organising networksto
explore processes of early phonological development in learning to categorise speech sounds
(Nakisa & Plunkett, 1998; Schafer & Mareschd, in press). They have used recurrent architectures
in models of the development of segmentation of the speech stream into discrete words
(Chrigiansen, Allen, & Seidenberg, 1998) and the acquisition of syntax structure from sequences of
words (e.g. ElIman, 1993). Generative networks have been employed to mode the acquisition of
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persond pronouns (Shultz, Buckingham, & Oshima-Takane, 1994). Feedforward networks and
atractor networks have been used in models of the development of vocabulary (Gasser & Smith,
1998; Plunkett, Sinha, Muller, & Strandsby, 1992), aswell asin two of the most heavily researched
areas, the development of inflectiona morphology, including past tense and plurdisation, (e.0.
Daugherty & Seldenberg, 1992; Forrester & Plunkett, 1994; Hahn & Nakisa, in press, MacWhinney
& Leinbach, 1991; Plunkett & Juola, 1999; Plunkett & Marchman, 1991, 1996; Plunkett & Nakisa,
1997; Rumehart & McClelland, 1986), and the development of reading (Harm & Seidenberg, 1999;
Paut, McCldland, Seidenberg, & Patterson, 1996; Zorzi, Houghton, & Butterworth, 19983).

Theoretical implications

We now turn to consider some of the theoretica issues raised by the use of connectionist networks
to modd processes of normal cognitive development. The chapter began by pointing out that
mechanisms of change in cognitive development were poorly understood, and that verba theories
of such mechaniams, such as Piaget’ s notions of assimilation and accommodation, were vagudy
defined and therefore hard to evauate. The process of building computational models of
development in domains such as conservation and the balance sca e task demands that both the task
environmert and the mechanisms be precisdy specified and in turn, dlows us to generate candidate
redlisations of vague theoreticd terms.

There have been at least two (contrasting) attempts to use connectionist models of
development to offer computationd interpretations of Piaget’s mechaniams of change. McCleland
(1989) suggested that, for networks with a fixed architecture, the activation caused in the network
by the presentation of an input might be viewed as assmilation, the interpreting of experience
according to existing knowledge. The ateration of connection strengths during learning could then
be viewed as accommodation, the adjustment of knowledge structures to fit with new experience.
An dternative interpretation of these concepts was offered for generative networks that add
additiona hidden units during learning. Here assmilation is viewed asthe gradud changein
connection strengths that occurs during training, while accommodetion is viewed as the change in
network structure caused when the network adds hidden units to move from a plateau in itslearning
performance (e.g. Mareschal, 1991; Shultz, 1998).

With concrete definitions of these notions in hand, we can then move on to consder some of
the wider theoretica debates. For example, at the beginning of the chapter we saw how Fodor
(1980) had downplayed the role of learning in development, arguing that increasesin
representational power are due to maturation and cannot be a consequence of learning. Learning
itsdf only involves selecting among subsets of pre-existing representationd primitives. However, it
turns out that Fodor's conception of limited learning is entirdly consstent with the learning thet
goes on in networks with fixed architectures. On the other hand, generative networks that chaenge
their structure during learning may indeed be seen as systems that increase their representationa
power during development as a direct consequence of learning. How can we reconcile the notion
that fixed architecture networks are essentidly learning systems with the apparently nativist
Fodorian notion that learning is a process of merdly selecting amongst pre-existing representational
primitives? And how isit that generative networks escape this limitation?

To answer these questions, we must consider a description that is often ascribed to
connectionist models of development. Thisis that they are tabula rasa learning systems. If thiswere
true, such models would necessarily fal within a strongly empiricist view of devel opment.

However, this characterisation ignores the fact that networks are highly constrained in what kinds of
problems they can learn (Karmiloff- Smith, 1992). These condraints are defined by the design
decisons that the moddler makes in congtructing the network with regard to the initid sate of the
network, the number of units, layers, connections, and the pattern of connectivity, aswell asthe
way that activation propagates through the network, the learning agorithm, the input and output
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representations, and the regime of training that the network will undergo. Initia network congraints
thus define the full set of representationa primitives that the system possesses, and the process of
learning selects a particular . It isin this sense that fixed networks conform to Fodor’ s nativist
notion (Quartz, 1993).

Despite this gpparent weakening of the role of learning, the balance scde modd illustrates
that connectionist networks still manage to give a powerful account of the stage-wise acquistion of
problem solving in children. Moreover, this account is consistent with Piaget’ s congructivist
conception of development, as an interaction between pre-exising structures, domain-genera
learning mechanisms (i.e. principles of neural computation), and the environment. Thus the use of
connectionist networks as models of development offers the opportunity of arapprochement
between the apparently divergent views of Piaget and Fodor. Furthermore, these models suggest a
view of the nature of innate knowledge. Networks clearly distinguish between knowledge of
content, derived through learning, and knowledge based on the congtraints that will shape learning.
In aconnectionist formulation, only the second of these types of knowledge is aredligtic candidate
for knowledge given to the systemin advance of development (Elman et d., 1996).

Although gtatic networks fit Fodor’s notion of development, it has been argued that
generative networks are examples of systems that can increase their representationa power through
learning, with the addition of hidden units to improve performance (Quartz, 1993). Thus generative
networks seem to be well fitted to mode the increase in complexity of cognition during
development. However, a caveast must be introduced: to some extent, the claim that generative
networks increase their representational power isamatter of frame of reference. From the point of
view of the task-specific network, the representationa power indeed increases. However, if hidden
units are seen as anaogous to neurons (or clusters of neurons or cell assemblies or neurd circuits),
these must have been available in the cognitive system to begin with, abeit not pre-committed to a
specific problem. The representationa power of the overdl system would only change if new
hidden units were ‘ grown from scratch’. On the other hand, if one described a generative network as
initidly containing alarge st of hidden units which it chooses to use only later onin learning
(Marcus, 1998a), then the network’ s representational power would be fixed by thistota number of
units

Two other theoretica issues are now briefly considered. The firgt relates to whether
connectionist modds are actudly sufficiently powerful learning devices to explain the acquigtion
of the competencies we witness in humans. The second relates to the developmenta origin of the
network architectures that we see presented for each model. Where do task-specific networks come
from?

Learning within any sysem at dl must employ biases to get off the ground (abasic axiom
within theories of machine learning; see Mitchell, 1997). The biases contained in connectionist
systems correspond to the congtraints listed above, and serve just thisrole of determining what
theories the network will consider in learning about a given domain. In a sense, the congtraints are
the *helping hand’ that the system receives to enable it to succeed at learning. Of course, whether
learning is ultimately successful depends not just on this “helping hand’ but aso on the complexity
of the problem to be learned. For example, a network with too few hidden units may fail to learn a
complex set of input-output mappings but be effective in learning asmpler problem. A number of
theorists have suggested that certain capacities that humans display could not be learned given the
information available in the environment and the congraints typicdly built into the connectionist
networks we have consdered (see eg. Fodor & Pylyshyn, 1988). These capacities usudly involve
Stuations characterised by the use of rules, for example in high-leve reasoning and language. Rules
are hard for connectionist systems to learn because such networks derive their knowledge of content
through exposure to associations between inputs and outputs. While networks can extend this
knowledge to novel Stuations, these Stuations must be amilar in some respect to those previoudy
encountered, wheress rules imply generdisation to Stuations without such smilarity. Since humans
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successfully acquire abilities in rule-based domains such as language, many theorists maintain that
the condraints available in network models are insufficient and that these mode s will require a pre-
exiding rule-based processing system; the system will initialy contain blank rules and then setsthe
content of these rules through learning (Marcus, 1998b).

Although this view may ultimatdy be right, three kinds of problems arise. Firdly, current
networks can often produce behaviour that looks asif the mode were following rules, asif it were
smulaing arule-based system (e.g., McClelland, 1989). Secondly, it is not uncontroversialy
edtablished that humans themsalves use rules in cognition. Thirdly, non-connectionis, rule-based
computationa modes of development have greet difficulty in accounting for mechanisms of
change. By contrast, the very strength of connectionist modd s is that they are plausible candidates
for mechanisms of change in cognitive development. When connectionist networks have been
gpplied to the domain of language, where the case for rule-based representations of syntactic
structure appears strongest, recent models of sentence processing have produced an interesting
finding. Recurrent connectionist networks that attempt to acquire this rule-based behaviour are only
partidly successful. However, it turns out that the limitations the networks display conform to
gmilar limitations shown by people when processing sentences (Christiansen & Chater, in press).
The current connectionist/rule-based models debate is unlikely to be resolved until either
connectionist network models are put forward that convincingly demondtrate the acquisition of
apparently rule-based behaviours, or rule-based computational models are put forward that
incorporate plausible mechanisms of change.

Ladtly in this section, we consider the origin of the architectures proposed to explain
performance in each domain. It is a sandard assumption in cognitive psychology that the adult
cognitive system can be decomposed into specialised components or modules, but some
developmentalists claim on neurocongtructivist grounds that high-level modules are more likely the
gradud product of development than reflecting the innate structure of the brain (Johnson, 1999,
Karmiloff-Smith, 1992, 1998). However, dl of the computational models of development we have
seen S0 far focus on explaining only one domain — that is, they assume a module dedicated to
learning the computationsin a given domain prior to exposure to the training set (see discusson in
Karmiloff-Smith, 1992). Thereisamode for baance scae problems, amodd for seriation, and so
on, each with input and output representations encoding information specific to its domain. In the
broader picture, thereisastep missing in connectionist theories of cognitive development. If
development itself produces such modules, what is the nature of the developmenta process that
produces modules? Connectionist work is beginning to addressthisissue (see Jacobs, 1999, for a
review). The basic ideais that dthough areas of the neocortex may not initidly be specidised to
particular cognitive domains, they will differ in their computationd properties (i.e. in terms of the
congraints we discussed earlier). A given set of computationa properties equips agiven areato be
particularly effectivein processing a given domain (e.g. recurrent connections would equip a
network to process sequences). Areas might thus have domain-reevant rather than domain-specific
properties (Karmiloff-Smith, 1998). Their content is not fixed, and in principle, they could be used
to acquire other domains for which they are lesswell suited, athough performance would then be
sub-optimal. Apart from this computational heterogeneity, areas would aso be distinguished by the
input and output systems to which they are initidly connected. A process of competition between
different areas would lead to specialisation and the emergence of modular structure. Thus Jacobs,
Jordan, & Barto (1991) showed how specidisation to perform ‘what’ and ‘where’ processingin a
modd of visud object recognition could emerge from a network which at the outset only contained
components differing in their computationa properties. Work of this nature is a necessary step for
connectionist modds of development, so that the field can consider some of the more high leve
agpects of development, such as Strategy formation, the interaction between modules (such as
between modalities), and phenomenathought to require ‘ representational re-description’
(Karmiloff-Smith, 1992).




Modeling cognitive development 1



Modeling cognitive development 1

Connectionist models of atypical development

Developmentd disorders can be classfied into four groups. genetic disorders caused by well
understood genetic abnormdlities (e.g., Fragile X syndrome, Down'’s syndrome, Williams
syndrome, Turner’s syndrome); disorders defined by abehaviourd deficit (e.g., developmenta
dydexia, Specific Language Impairment, autism); menta retardation of unknown aetiology; and
disorders resulting from environmentd factors (e.g., an impoverished environment, Foetad Alcohol
syndrome). Thefirst and last of these groups distinguish the locus of initid causdlity in terms of a
nature/nurture distinction. The middle two groups tell us about the current understanding of the
fiedld of such disorders. For example, disorderslike SLI and autism agppear to have a genetic
component but the genes involved are not yet identified (Bishop, North, & Donlan, 1995;
Pennington & Smith, 1997; Smonoff, Bolton, and Rutter, 1998).

Thefirgt research am of thefied of developmental cognitive neuropsychology has been to
characterise the strengths and weakness exhibited in each disorder, i.e. to describe its behaviourd
phenotype. Temple (1997, p. 5) outlined two further aims. Thefirg isto use developmentd
disorders to inform and expand our current understanding of norma development. For example, if
in acertain disorder, ability A develops in the absence of ability B, one might clam thet ability B is
not necessary for the development of A. The second aim isto identify what Temple describes as
“intact subsystems’ within a disorder, which might then be utilised in an educationd or remedid
context.

Despite the gpparent smplicity of these ams, the terminology of “intact subsystems’ isin
fact controversd, and highlights a current debate in the fidld. The identification of intact and
damaged components of the cognitive system is an gpproach that originates in research on adults
with brain damage. In the fidd of adult cognitive neuropsychology, patterns of preserved and
impaired abilities in adults with different types of brain damage have been used to identify the
structure of speciaised components within the cognitive system. But Bishop (1997) and Karmiloff-
Smith (1997) amongst others have argued that this gpproach is ingppropriate for the study of
developmentd disorders. Most obvioudy, using the adult system as a modd for adeveloping infant
or child system offers no explanatory role for development in developmenta disorders. Use of the
adult modd in this context relies on two assumptions, both of which are unlikely to be true. The
firgt isthat the specidlised components found in the adult system are present in the infant system.
However, in the previous section, we saw that specialised components are most likely an outcome
of development rather than a precursor to it (Karmiloff- Smith, 1992). Second, the adult model
needs to assume that if a specidised component isinitidly damaged in a developmentd disorder,
the rest of the cognitive system can nevertheless develop normaly around it. However, such
independence between components does not seem to be a characteristic of norma cognitive
development, where early on, interactivity is more typica (Bishop, 1997).

The dternative to the adult brain damage mode isto view developmenta disorders as the
outcome of along development process occurring in asystem in which there are different initia
computationd congraints (Elman et d., 1996; Karmiloff- Smith, 1998; Oliver, Johnson, Karmiloff-
Smith, & Pennington, 2000). Causes are seen not as the failure of high-level speciaisad cognitive
components for, say, language or reasoning about menta states, but in terms of low-leve deficitsin
neura connectivity or the firing properties of particular neurons. These deficits may initidly be
smdll, but become exaggerated by the process of development so that marked behaviourd deficits
are gpparent in the adult state. This perspective predicts that atypical systems could show strengths
aswedll as weaknesses, perhaps even demongtrating behaviour at a higher level then typicaly
developing individuas. Even where behaviour gppears normd in a given developmenta disorder, it
may have atypical cognitive processes underlying it (Karmiloff-Smith, 1998).

Connectionist modes of cognitive development are an ided framework within which to
explore this latter view of developmenta disorders because, as we have seen, such models throw a
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particular spatlight on the role of initia computationd congtraintsin development (Karmiloff- Smith
& Thomeas, in press). The ability of amode to acquire information from agiven domain is limited
by itsinitid architecture, activation dynamics, learning agorithm, and the representations with
which the domain is depicted. In connectionist models of typica development, such design
decisons are judtified asfar as possble viaempirica evidence. A modd isthen judged successful if
it captures the endstate competencies of the system aswell asthe developmenta trgjectory through
which it passes. The opportunity hereisto demondtrate thet theoretically motivated dterations to
theinitid congraints of anorma modd can capture both the atypicd trgectory and endstate
behavioura deficits found in a particular developmenta disorder.

Connectionist models of behavioural phenotypes

Perhaps the largest body of work in this area has been dedicated to the investigation of the possible
computationa causes of developmenta dydexia A number of connectionist models have atempted
to Smulate the reading processin adults, a process characterised in this context as learning to map
between representations of the orthographic and phonologica properties of word forms, and their
corresponding meanings. The general computationd framework postulates that hidden units
mediate the mappings between these three sources of information, and that processing is both
bottom-up and top-down (Seidenberg & McCldland, 1989). In the usual case, however, only a
portion of this framework isimplemented within aworking modd. While few current models
congtitute serious attempts to capture the developmenta processes of early reading acquisition (see
Zorzi et d, 19983, for an exception), these models do commence with randomised connection
strengths and use training on large word sets to acquire the adult processing structures. On this
basis, severd attempts have been made to dter initid congraintsin these models such that at the
end of training, the network exhibits the behaviourd features of dydexia The target isto capture
two particular clusters of deficits. In phonologica dydexia, children and adults predominantly show
difficultiesin reading novel words. In surface dydexia, there is a difficulty in reading words whose
pronunciations form exceptions to the usua way |etters map onto sounds.

With regard to surface dydexia, an impairment in reading exception wordsis smulated by
dtering any initid congtraints that reduce the generd ability of the network to learn. Exception
words will be the first to suffer from this degradation, since they are inconsistent with most of the
knowledge gained from exposure to reading words. Congraints that have this effect have included a
reduction in the initid number of hidden units in the network mapping between orthography and
phonology (Bullinaria, 1997; Harm & Seidenberg, 1999; Plaut et al., 1996; Seidenberg &
McCldland, 1989; Zorzi, Houghton & Butterworth, 1998b), a less efficient learning dgorithm
(Bullinaria, 1997), lesstraining (Harm & Seidenberg, 1999), and adower learning rate (Harm &
Seidenberg, 1999).

Phonologicd dydexiarepresents a case of developing an insufficiently generd function
relating orthography to phonology. This could derive from input and output representations that
themsdves are insufficiently generd (Brown, 1997; Plaut et d., 1996; Seidenberg & McCleland,
1989), or network congraints that prevent a generd function being learnt even when given
gppropriate initia representations (Harm & Seidenberg, 1999; Zorzi et d., 19984). Since reading
assumes alarge pre-exigting poken vocabulary, some researchers have focused on the devel opment
of phonologica representations in isolation, following the hypothesis that problems with phonology
precede the attempt to relate visua word forms to pronunciations. For example, Harm and
Seidenberg (1999) separately manipulated weight change algorithms and architecturd congraintsin
amodd of the development of phonology, to explore what initia adterations would generate
insufficiently generd representations at the end of training.

It is notable that severd manipulations have been proposed to smulate each form of
dydexia To the extent that these manipulations are mutudly successful, one might infer that there
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are many ways to produce the same behavioura deficits. Thisisapoint to which wewill return
shortly. In terms of dydexia, the next research step will be to determine which of these
manipulations are computationaly equivaent accounts and which are sufficiently distinct to
generate different empiricaly testable predictions.

In Specific Language Impairment (SLI), thereis a serious limitation in language ability
without associated impairments in hearing, low 1Q, or neurologica damage (Leonard, 1998). It has
been proposed that these individuals show rdlatively greater deficits in usng grammatica rulesthan
in accessing lexicd items. Problems with inflectional morphology are often cited as an example.

For instance, in English past tense formation, individuals with SLI fal to show the usud advantage
of regular past tense formation (talk-talked) over irregular (creep-crept), and fail to inflect the root
form in many cases, producing ‘unmarking’ errors (e.g., van der Lely & Ullman, 2001). Hoeffner
(1992) congtructed a connectionist modd of inflectionad morphology designed to learn the
mappings between the meanings of verbs and their phonological forms under avariety of
inflections, including past tense, third person —s and progressive —ing suffixes (e.g. [jump] => jump,
jumped, jumps, jJumping). Hoeffner and McCldland (1993) then dtered theinitid congtraints under
which the mode was trained in order to smulate SLI. Their am was to test the hypothesisthat SLI
is associated with impairments in the processing of speech which affect the devel opment of
phonologica representations and in turn, cause knock-on effectsin learning morphology and syntax
(see Leonard, 1998). On the grounds thet children with SLI have difficulty in processing low-
phonetic substance inflections in English, Hoeffner and McCleland systematicaly degraded the
phonological representations of their modd such that the network’ s ability to represent word find
stops and fricatives (including /t/, /d/, and /5/) was particularly impaired.

The mode showed dower and more error-prone learning, with differentiad deficits across the
inflection types. Itsfind performance displayed a dramatic increase in the number of errors where
the verb stem was unmarked, as well as difficulty applying the past tenserule to verbs and, to a
lesser extent, in producing irregular past tense forms — dl characteristics of SLI. Moreover, just as
in SLI, the modd showed an impairment on morphemic phonemes (e.g. the fina /d/ in died) but not
phonologicaly identica phonemes which were nort morphemic (eg. the find /d/ in need). Thisis
because during training, ‘di€’ was often presented in contexts other than with the find /d/, such as
in‘dies and ‘dying’. On the other hand, since neither ‘nees’ nor ‘neeing’ existed in the training
corpus, ‘nee’ was aways presented in the context of afinal /d/. ‘Need' was therefore learned as a
single output, while ‘died’ was learned as a sem with an optiond (and vulnerable) affix. This result
isimportant because it establishes the viability of a perceptua deficit account that can preferentially
target morphemic phonemes.

Despite some impressive features, this modd has limitations. Ullman and Gopnik (1999)
point out that the model was unable to capture the low performance on irregular as well as regular
verbs reported by themselves and by van der Lely and Ullman (2001). Furthermore, the perceptud
deficit account of SLI on which it is predicated remains controversd.

Autism represents a behavioura phenotype with a much wider range of impairments. The
disorder is characterised by a centrd tria of deficitsin socid interaction, communication and
imagination. In addition, there are other associated features, including arestricted repertoire of
interests, an obsessve desire for sameness, savant abilities, excelent rote memory, a preoccupation
with parts of objects, improved perceptud discrimination, and an impaired ability to form
abgtraction or generaise knowledge to new situations (see Happé, 1994, for areview).

Cohen (1994) suggested that Ssmple categorisation networks could capture thefact that in
some cases, children with autism have trouble acquiring smple discriminations and attend to a
restricted range of stimuli, whilein others, children have good discrimination and indeed very good
memory but seem to rely on representing too many unique details of stimuli. Cohen concluded that
evidence from neuropathological investigations of the brains of affected individuas was suggestive
of abnorma wiring patternsin various brain regions. In comparison with the normad brain, the
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structurd deficits were consstent with too few neuronsin some areas, such as the cerebellum, and
too many neurons in other areas, such as the amygdaa and hippocampus. Cohen showed that
ample classfication networks with too few hidden units showed afailure to learn, while those with
asurfeit of hidden units showed very fast learning, but subsequently generaisation became poor,
and the network increasingly responded according to particular details of the training set.
Interestingly in this case, neuropathologca evidence was used to motivate dterations to initia
condraints in a cognitive model, such that the performance of the network made contact with
behavioural deficits of the disorder (see Marescha & Thomeas, in press, for detailed discussion of
thismodé!).

Gudtafsson (1997) has argued that dterations to the dynamics of learning in low-leved
sensory features maps could aso account for differences in perceptua discrimination in autism.
Gustafsson proposed that the relevant atypica computationa constraint would be the leve of
inhibition exigting between units in saif-organising feature maps. In these maps, units compete with
each other to represent particular aspects of the input. If the competition istoo fierce, the argument
goes, unitswill end up defending too smdl aterritory — that is, they will come to represent too fine
alevd of detail in the sensory input to support robust categorisation, athough perceptua
discrimination will be facilitated. This idea has yet to be tested in adirect implementation, dthough
Oliver et d. (2000) have explored related ideas (see Thomas, 2000).

O’ Loughlin and Thagard (2000) have proposed that a similar idea applied to avery much
higher leve (and less developmenta) model may aso account for difficulties in theory-of-mind
reasoning in autism. Their mode exhibited a deficit in reasoning about false beliefs, produced by
high levels of inhibition between representations of concepts in a hand-wired interactive network.
The system reasons by sttling into a Stable activation state. Cycling activetion is congtrained by the
inhibitory and facilitatory connections that represent the consistency between beliefs, each belief
being represented by asingle unit. With helghtened inhibition, however, the network fdlsinto a
dtable sate before it has time to integrate al aspects of its knowledge. In particular, thereis
insufficient time for knowledge about false bdliefs to override information about the date of the
world directly fed from the perceptud system. The attempt to link low- and high-level modd s of
autistic characterigics via dterations to a smilar computation congtraint is novel. One might
question the vdidity of attempting to link such disparate levels of description, and the theory-of-
mind modd certainly sheds much developmenta and biologica vdidity. However, together these
proposals represent one of the few exceptions to the current trend in thisfield of addressing the
behavioura deficits of adisorder in isolation.

Modelling a developmental disorder with clear genetic cause: Williams syndrome

Williams syndrome (WS) is a rare neurodevel opmentd disorder, caused by a micro-deletion on one
copy of chromosome 7 (Tassabehji et d., 1999). It resultsin specific physical, cognitive, and
behavioura abnormdities (Karmiloff-Smith, 1998). The syndrome has been of particular interest to
cognitive scientists because individuas with WS exhibit an uneven cognitive-linguigtic profile,
together with menta retardation (Howlin, Davies, & Udwin, 1998). Full 1Q scores, typicaly
between 50 and 70, mask differences in specific cognitive abilities: individuas with WS frequently
digolay relatively good verbd abilities dongsde deficient visuospatid abilities (eg. difficultiesin
congtructing peatterns, drawing, etc.). While thisis the most salient disparity, there are others. People
with WS often perform within the norma range on certain sandardised tests for face recognition
(Bdlugi, Wang, & Jernigan, 1994; Udwin & Yule, 1991), and show relatively good performance on
theory-of-mind tasks (Karmiloff- Smith, Klima, Bdlugi, Grant, & Baron-Cohen, 1995). By contragt,
they exhibit difficultiesin numerica cognition (Karmiloff-Smith et d., 1995), and in problem

solving and planning (Bellugi, et d., 1994).
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The dissociation of cognitive abilitiesin WS hasled to the use of this syndrome to support
arguments concerning the independence of certain cognitive abilities during development, in
particular the developmenta independence of generd cognition and language. However, it has dso
been used to attempt a fine-scaled fractionation of the language system itsdlf. Thus, Pinker (1994,
1999) and Clahsen and Almazan (1998) have clamed that individuas with WS have intact mentd
representations of grammatical knowledge but an impairment to the system which stores knowledge
about individua words. The genetic nature of the syndrome then leads to the claim that
dissociations found in the language abilities of individuas with WS can serve to reved the innate
structure of the language system — for instance, that the distinct processing of grammatica rules
versus word knowledge is built into the cognitive system prior to birth.

The experimentd evidence put forward to support this picture once again comes from the
acquisition of the English past tense, where it has been clamed that individuads with WS show a
spexific difficulty in producing irregularly inflected past tense forms (Clahsen & Almazan, 1998).
Theoretical arguments are based on a particular (verba) mode of the acquisition of past tense
formation (Pinker, 1994). Pinker proposed that the acquisition of the past tense involves two
mechanisms, one that |earns the grammatical rule (add —ed to the verb stem), the other that learns
about individua words that are exceptionsto the rule. (Thisis agood example of atheoretica
gpproach wishing to ascribe an innate rule- processing mechaniam to the cognitive system to permit
it to learn rule-based behaviour). If separate mechanisms indeed underlie formation of regular and
irregular past tense forms, then it is assumed that difficultiesin inflecting one of these forms can be
taken as reveding impai rments to the respective mechanisam. In WS, then, the evidence would
imply a deficit to the mechanism processing irregulars. We saw earlier the clam that individuds
with SLI have difficulties forming regular past tenses. By the samelogic, SLI would imply a
disorder with a deficit to the regular rule mechanism. Taken together, Pinker (1999) has argued that
these two disorders represent a‘ genetic double dissociation’ of two mechanismsin the language
system (p. 262).

Three points are of interest here. Firstly, Pinker’ s theory is not the only one that seeksto
explan the acquigtion of inflectiond morphology. A number of neura network models have been
proposed seeking to explain how this partialy regular domain might be acquired (e.g., Plunkett &
Marchman, 1991; Plunkett & Juola, 1999). These models have demonstrated that a neura network
learning the relationship between phonologica representations of verb stems and past tense forms,
can successfully acquire both regular and irregular forms in the same network, aswell as extend the
‘add —ed’ rule to novel exemplars (see Pinker, 1999, Thomas & Karmiloff- Smith, 2001a, for
discussions). These models make no a priori division in their architecture between processing
structures for regulars and irregulars. In contrast to the verba theory offered by Pinker, these
connectionist systems are working computational models of typical development, evaluated both
againg the type and quantities of errors they make during learning and againgt their successin
acquiring the domain. We will shortly see this dternative modd used to explore atypica language
development in WS.

Secondly, the argument that deficitsin WS relate to damage to particular processing
sructuresin amode of adult performance represents a classic example of an attempt to extend a
brain damage approach to a developmentd disorder. As an illustration, here is the dlam made by
Clahsen and Almazan on the basis of poor WS performance on irregular past tense formations:
‘[the] computationd [rule-based] system for language is selectively spared, yielding excdlent
performance on syntactic tasks and on regular inflection, whereas the lexical system and/or its
access mechanism required for irregular inflection areimpaired’ (1998, p. 193, italics added). The
explanation of the behavioura deficit is couched in terms of damage to an adult sysem —an
impairment to lexicd memory — alongside other components which are claimed to be spared or
intact. The proposal contains no role for development, and the ‘intact’ component is assumed to
have reached its norma endgtate. This explanatory framework becomes obvious when Pinker
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directly compares the behaviour of individuas with Williams syndrome to past tense deficits shown
by patients with Alzheimer’ s disease and aphasia (Pinker, 1994).

Thirdly, theinitid data collected to support this clam had limitations, both in the small
number of participants with WS involved in the study and in the nature of the control data against
which their performance was compared. Subsequent to these initid findings, the largest study to
date (Thomas, Grant, Barham, Gsodl, Laing, Lakusta, Tyler, Grice, Paterson & Karmiloff-Smith,
2001) suggested that the performance of individuals with WSisin fact best captured by three
characterigtics. Firgly, children and adults with WS are ddlayed in their production of past tense
forms, showing aleved of accuracy demongtrated by much younger typicaly developing children.
Thisis consgtent with other findings that language development in WS is often delayed (e.g.,

Harris, Bdlugi, Bates, Jones & Rossen, 1997). Secondly, while individuas with WS do show
poorer performance on exception verbs than regular verbs, this appearsto be in step with their
delayed performance, since younger children aso find exception verbs harder than regular verbs.
Thereis no goedific deficit for irregular verbs. Thirdly, individuas with WS are Sgnificantly less
willing to generdise what they know about exigting verbs to novel verbs, for ingance in extending
the regular rule (crog-crogged).

Thomas and Karmiloff- Smith (2001a) set out to explore whether dterations to theinitid
congraints of aconnectionist modd of past tense development could account for these three
features of the WS data. The past tense network mapped from verb stem to past tense form in the
presence of semantic information. Various clams have been made that there are in fact subtle
deficits in the language system of individuas with Williams syndrome. These include the proposas
that their phonologica representations may be atypica and perhaps rey on sengtive auditory
processing (Karmiloff- Smith, Grant, Berthoud, Davies, Howlin & Udwin, 1997; Mgerus,
Palmisano, van der Linden, Barisnikov & Poncelet, 2001; Neville, Mills, & Belugi, 1994;), that
their semantic representations may be atypica (Rossen, Klima, Bellugi, Bihrle, & Jones, 1996;
Temple, Almazan, & Sherwood, in press), or that semantic information about words may be poorly
integrated with phonology (Frawley, in press, Karmiloff-Smith et a., 1998). In order to explore the
viahility of these different accounts to explain the pattern of performance in the past tense task,
Thomas and Karmiloff- Smith dtered the initid condraints of the network modd to implement each
type of deficit.

They found the following results. First, amanipulation of the phonologica representations
that reduced their similarity and redundancy was sufficient to reproduce the delay for regular and
irregular past tense forms, as well as the reduction in generdisation. Second, the pattern could aso
be produced when noise was added to the information coming from the semantic system during the
acquigition of the past tense. Third, imination or weakening of the semantic contribution produced
a pattern inconsistent with the WS data, including a selective delay for irregular verbs and no
reduction in generdisation. Lastly, dowed learning failed to produce a reduction in generdisation,
suggesting that delayed development aone was insufficient to explain WS performance, and
atypical computational congtraints are involved. This modelling work was therefore able to test the
viahility of severad competing hypotheses on the causes of language imparments in Williams
syndrome. Manipulations to phonology or to the integration of phonology and semantics were able
to Smulate the past tense data; manipulations to semantics alone or delayed development were not.

What if the WS data had shown a sdective deficit on irregular verbs— could the model have
shown this pattern? In addition impoverishing semantic information, performance on irregular verbs
could be preferentialy delayed ether by employing atwo-layer network which restricted the
complexity of the function that the network could learn between verb stems and past tense forms, or
by acdibrated reduction in the pladticity of the learning agorithm. However, none of these three
manipulations resulted in an impairment to irregular verbs at the end of training. Endgtate deficits
on irregular verbs only emerged if training was terminated earlier than usud or if the network was
forced to learn at adower rate, so that by the end of training, regular verbs had reached ceiling but
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irregular verbs had not. In this latter case, a sdective deficit for irregular verbs would then be
apparent.

Although not necessarily relevant to Williams syndrome, the potentid of the past tense
model to produce a selective developmenta deficit in irregular past tense formation leads to an
important theoretical point. When Thomas and Karmiloff- Smith' s findings are taken in combinetion
with Hoeffner and McCldland's (1993) mode of past tense formation in SLI, it is evident that
dterationsin initid condraints are sufficient to produce either selective imparmentsin regular or
irregular past tense formation at endstate. Compared to Pinker and Clahsen and Almazan’s Satic
explanation based on selective damage to an adult model of the past tense system, these
computationa developmental modes give amore plausible explanation of deficitsin
developmentd disorders. In addition, the two modesimply that developmental double dissociations
should not automaticaly be taken to reved gdructure within the cognitive system: neither of these
modes employed a structura distinction between components for processing regular and irregular
verbs, yet regular and irregular verb performance could be sdectively dissociated by different
changesto theinitid network congraints.

Modeling implicationsfor atypical development

We will use the Thomas and Karmiloff- Smith model to focus on a number of theoretical issues. The
first issue addresses how easy it isto produce a given pattern of developmenta impairmentsin these
models. A number of connectionist models of developmentd disorders have smply demongtrated
that manipulating one network congraint is sufficient to cgpture some target atypica data. But how
many other network congraints did the researchers test? What if many possible manipulations
applied to the modd at the start of training successfully smulate the target data? Then the
smulations would be conggtent with many different theoreticad accounts of the imparment. The
model would fail to usefully congtrain the theory (unless, of course, the theory was that agiven
impairment had many causes). When a modd with asingle dtered congtraint Smulates a pattern of
atypical data, how can we be confident that we have the right explanation for the emergence of a
behaviourd deficit?

In addition to their theoreticaly- driven manipulations, Thomas and Karmiloff- Smith
(2001a) systematically explored arange of other manipulationsto the initid sate of the mode,
including varying the number of hidden units, varying the architecture, and varying the learning
agorithm, adding noise to processing, and atering the threshold function in the processing units.
When they compared the results, they found that the three features of the WS data were in fact
generated by very few manipulations. However, interestingly, many of the manipulations produced
one or two of the three fegtures. A sngle enddtate deficit might be the result of a number of
different initid network manipulations, wheress patterns involving severa festures were harder to
come by. One might take this result as offering a cautionary note for disorders that are defined on
the basis of narrow behavioura impairments (e.g. ‘grammatical’ SLI; van der Lely, 1997). The
modelling work suggests a high risk that such disorder groups will contain individuas for whom the
computationa cause of the impairment is different. How can we avoid this? Smulations generated
apossble solution. Groups of individuas who share the same underlying cause are likely to show
gmaller levels of variance across other related behaviourad measures, and across longitudina testing,
compared to groups of heterogeneous cause (see Thomas & Karmiloff- Smith, 2001b).

We have encountered the theoretica debate that adult brain damage models are
ingppropriate for explaining behaviourd deficits in developmentd disorders. Here again,
developmenta connectionist models can help us evauate this clam. Connectionist models of adult
performance have been widely used to smulate cognitive breakdown under brain damage (see eg.,
Reggia, Ruppin, & Berndt, 1996). Now we can straightforwardly compare the deficitsin
performance of a network model that experiences the same damage prior to training (asin a
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developmenta disorder) with one that experiencesit at the end of training (asin adult brain
damage). Are the behaviourd deficits the same in each case? Thomas & Karmiloff-Smith (2001¢)
carried out this comparison for severd forms of damage in the past tense network: the eimination
of network connections, the addition of noise to unit activations, and dterations to the ability of
units to discriminate activation levels (i.e,, the sharpness of their activation thresholds).

The results showed a highly complex pattern relating adult (endstate) and devel opmental
(dartstate) deficits. Sometimes damage at the two points produced the same effect (eliminating
connections) but to different degrees (removing connections in the endstate was far more damaging,
snce the network could no longer reorganise around the damage). Sometimes deficits appeared in
one case but not in the other (higher discrimination produced deficits only when applied to the
endgtate; noise produced deficits only when gpplied to the Sartstate). Sometimes the effect of a
manipulation was selective (higher discrimination only impaired performance on exception verbs),
whereas sometimes it was globa (noise caused a deficit for regulars, exceptions, and in
generdisation). Given thet the startstate and the endstate are separated by a dynamic developmental
process, it is perhgps unsurprisng to find in this modd that the relationship between themisso
complex. This modelling work does, however, tend to support the contention that adult deficits are
unlikely to serve as ardiable andogy to developmenta deficits.

Findly, in this chapter we have encountered model ling work that seeks to explain two types
of variaion: the variation in cognitive performance asindividuas get older, and the variation
between individuas who are developing typically compared to those who are developing atypicaly.
Thereisathird type of variation, however, that of individud differences or intdligence. Thereis
insufficient space here to describe the initid connectionist work on modd ling intelligence.

However, it is worth mentioning that it is an open question whether each type of variation should be
explained in these cognitive modeds by manipulating smilar computationa parameters, or whether
each type of variation should be explained by gpped to different parameters. Indeed, thereisa
further debate about whether learning and development should themselves be ascribed to different
mechanisms of change. Thomas and Karmiloff- Smith (in press) recently compared connectionist
models of the three types of variaion. They concluded that thus far, smilar manipulations have

been used to mode each type of variation (apopular candidate being aterationsin the number of
hidden units). However, thissmilarity may be an artefact of the infancy of the respective fields, and
explanations for sources of variation may well diverge astime goes on.

Conclusion

In this chapter, we have discussed the use of computationa models for exploring possible
mechanisms of change in cognitive development, focussng in particular on connectionist
moddling. We have seen how these neurdly ingpired models of cognition can learn complex
cognitive abilities when exposed to atraining environment. Importantly, in theoretical terms, we
have shown how these systems are not blank sheets, but contain congtraints that shape the content
that they can learn. We dso explored how differencesin the initid congraints under which a
network develops can provide hypotheses about the causes of behaviourd deficitsin developmenta
disorders such as developmental dydexia, autism, Specific Language Impairment, and Williams
syndrome. Thistheoretica approach to explaining developmentd deficits was contrasted with an
earlier approach attempting to concelve of such deficits as equivadent to cases of adult brain
damage. We finish the chapter with two fina points.

Fird, it isimportant to clarify an ideathat may have become obscured in the discussion of
the many models outlined in this chapter. In any modelling endeavour, the am is not soldy to
produce amodd that can smulate human behaviour, whether typica or atypicad. Theamisto
derive an explanation of the target behaviour. Explanations based on connectionist models tend to
bein terms of particular learning systems being exposed to cognitive domains with particular
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(statistical) structures, as we saw in the case of the balance scale and conservation models. However
they must be clearly specified and empiricaly testable. It is not sufficient merdly to point to a
working model or list aset of connection strengths! Modd s alow the viability and coherence of
theoretical ideas to be tested and, in so doing, drive theory forward. They aso provide the
opportunity to unify diparate empirica phenomenain aunified (and implemented) explanatory
framework. But snce models can be run in novel conditions, they aso play an essentid rolein
generaing new testable empirica predictions, as we saw in the case of the models of seriation and
of infants' expectancies concerning occluded objects.

Second, two mgor chalenges remain for connectionist modes of development in the future,
Thefirgt chalenge we aluded to earlier, in the need for more detailed accounts of the emergence of
modules, and the need for smulations that address behaviour arising from cross-module interaction.
The second chalenge rdates to training environments. The congruction of a developmental modedl
requires not just modelling the relevant cognitive system but dso moddling the environment to
which the system is exposed. The way in which connectionist modes of development have focused
atention on the exact nature of the environment has been one of ther great strengths. However, the
majority of current network modds are passive recipients of their environment. In contrast, children
are agents who, to a grester or lesser extent, control and seek out their learning environment. The
next step for moddling will be to address the active nature of the child in development. Thisis of
course avery complex issue. ‘Dynamicd’ network systems, whose current performance affects
their exposure to future training experiences, are ligble to lapse into unstable, fluctuating sates of
temporary knowledge. It is probable that multi-component learning sysems will be required to
protect the system from this danger and creete arelatively stable trgectory of development (see eg.
McClelland, McNaughton, & O'Reilly, 1995, for initid work on thisideg).

Much work remains to be done in the modelling of development. However, connectionist
networks provide an exceptiondly useful tool for sudying cognitive change — atool that, asa
servant of empiricd investigation, can findly alow usto gain sgnificant purchase on the role of the
condraints of the mind and congtraints of the environment in jointly driving cognitive development.
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