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Introduction 

The computational modelling of cognitive processes offers several advantages. One of the 

most notable is theory clarification. Verbally specified theories permit the use of vague, ill-

defined terms that may mask errors of logic or consistency, errors that often become apparent 

when formal implementation forces these terms to be clarified. Whereas in the domain of 

intelligence research, one may refer to a more clever cognitive system as being ‘faster’, an 

implemented model of that system must specify what ‘speed’ really means. Whereas in the 

domain of developmental research, one may refer to a more developed cognitive system as 

containing ‘more complexity’, an implemented model must specify what ‘complexity’ really 

means. Whereas in the domain of atypical development, one may refer to a disordered 

cognitive system as having ‘insufficient processing resources’, an implemented model must 

specify what a ‘processing resource’ really means. 

Computer models have recently been applied to each of these domains – individual 

differences, cognitive development, and atypical development – against a background of pre-

existing verbal theories speculating on what cognitive mechanisms might underlie variations 

in each domain. The aim of this chapter is to examine how computational implementation has 

forced conceptual clarification of these mechanisms, and in particular, how implementation 

has shed light on the theoretical relation between the domains. Our discussion focuses on one 

particular class of widely used model, connectionist networks. 

The crux of the issue is as follows. The domains of individual differences, cognitive 

development, and atypical development each represent a form of cognitive variability: they 

deal in terms of superior or inferior performance on cognitive tasks. Each computational 

model contains parameters that alter the system’s performance on the task it is built to address. 

Therefore, such computational parameters stand as possible mechanistic explanations for 

variability in performance. Implemented models of individual differences, of cognitive 
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development, and of atypical development have appealed to certain computational parameters 

to explain superior or inferior performance on cognitive tasks. We can ask firstly, do these 

models appeal to the same parameters in each case, or different ones? And secondly, what 

computational role do the parameters play in each model? These two questions can be recast in 

theoretical terms: do individual differences, cognitive development, and atypical development 

lie on the same dimension or on different dimensions? And what are the precise computational 

mechanisms that underlie the dimensions? Our chapter addresses these questions. 

In the following sections, we first examine pre-existing theoretical claims that have been 

made on the relation of the individual differences, cognitive development, and atypical 

development. Second, we introduce connectionist networks and their component parameters. 

We then discuss how connectionist networks have been applied to the three domains, in turn 

cognitive development, atypical development, and individual differences. Third, we compare 

the three domains, and draw conclusions about the theoretical positions these models embody. 

Finally, given the aims of this volume, we consider in more depth the form that future 

computational accounts of individual differences may take, and speculate on whether research 

might turn up a single ‘golden’ computational parameter that can explain general intelligence 

– that is, a parameter that can generate improvements or decrements in performance whatever 

the cognitive domain. 

 

Pre-existing theoretical claims 

(1) How are individual differences and cognitive development related? 

First, let us be clear about the target phenomena. By individual differences, we mean the 

‘general’ and ‘specific’ factors of intelligence. The general factor of intelligence, indexed by 

Intelligence Quotient (IQ), reflects the fact that individuals tend to show a positive correlation 

on performance across a range of intellectual tasks. At a given age, the general factor accounts 
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for much of the variability between individuals. In addition to the general factor, there are 

domain-specific factors such as verbal and spatial ability, which may vary independently 

within an individual. The exact number of domain-specific abilities is controversial. Individual 

differences in IQ tend to be relatively stable over time, and IQ in early childhood is predictive 

of adult IQ level (Hindley & Owen, 1978). This fact suggests that IQ corresponds to some 

inherent property of the cognitive system. A clue as to the nature of this property might be 

gained from the fact that performance on elementary cognitive tasks with very low knowledge 

content correlates with performance on intellectual tasks requiring extensive use of 

knowledge. 

 By cognitive development, we mean the phenomenon whereby within an individual, 

reasoning ability tends to improve with age roughly in parallel across many intellectual 

domains. Although there may be some mismatch in abilities in different tasks at a given time, 

by and large children’s performance on a wide range of intellectual tasks can be predicted 

from their age. However, at a certain point in development, children’s performance can only 

be improved to a limited extent by practice and instruction (Siegler, 1978), suggesting that 

development may not be identical to learning or to the acquisition of more knowledge. 

Davis and Anderson (1999) offer a recent, detailed consideration of the theoretical 

relation of these two forms of cognitive variability. Here we highlight two claims. First, the 

idea that having a higher IQ is equivalent to having a ‘bit more cognitive development’ is 

challenged by the fact that when older children with a lower IQ are matched to younger 

children with a higher IQ, performance appears qualitatively different. The older children 

show stronger performance on tasks with a high knowledge component while the younger 

children show stronger performance on tasks involving abstract reasoning (Spitz, 1982). 

Second, several theoretical mechanisms have been proposed to underlie individual 

differences and cognitive development. In terms of mechanisms that might underlie 
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differences in IQ, several authors have proposed differences in speed of processing among 

basic cognitive components, on the grounds that speed of response in simple cognitive tasks 

predicts performance on complex reasoning tasks, and that neurophysiological measures such 

as latency of average evoked potentials and speed of neural conductivity correlate with IQ 

(Anderson, 1992, 1999; Eysenck, 1986; Jensen, 1985; Nettelbeck, 1987). Sternberg (1983) has 

proposed differences in the ability to control and co-ordinate the basic processing mechanisms, 

rather than in the functioning of the basic components themselves. Finally, Dempster (1991) 

has proposed differences in the ability to inhibit irrelevant information in lower cognitive 

processes, since individuals can show large neuroanatomical differences in the frontal lobes, 

the neural bases of executive function. 

In terms of mechanisms that might underlie cognitive development, we once more find 

speed of processing offered as a factor that may drive improvements in reasoning ability 

(Case, 1985; Hale, 1990; Kail, 1991; Nettlebeck & Wilson, 1985). Case (1985) suggested that 

an increase in speed of processing aids development via an effective increasing in short term 

storage space, allowing more complex concepts to be represented. Halford (1999) proposed 

that the construction of representations of higher dimensionality or greater complexity is 

driven by an increase in processing capacity where processing capacity is a measure of the 

‘cognitive resources’ allocated to a task. Lastly, Bjorklund and Harnishfeger (1990) proposed 

improvements in the ability to inhibit irrelevant information, based on evidence from cognitive 

tasks and changes in the brain that might reduce cross-talk in neural processing, such as the 

myelination of neural fibres and the decrease with age in neuronal and synaptic density. 

On one hand, then, previous theories relating individual differences to cognitive 

development proposed that cognitive development is not equivalent to ‘more IQ’ and thus that 

development and intelligence are variation on different cognitive dimensions. On the other 

hand, the lists of hypothetical mechanisms postulated to drive variability in each domain show 
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several overlaps (speed, inhibition), suggesting that development and intelligence could 

represent variations on the same cognitive dimension(s). There is no current consensus. 

 

(2) Are typical and atypical development qualitatively different? 

The relation of typical cognitive development and atypical development could be construed in 

two ways. Perhaps there are variations in the efficiency of typical cognitive development, 

whereby atypical development just forms the lower end of the distribution of typical 

development. This would imply that the two amount to cognitive variation on the same 

dimension(s) as typical development. On the other hand, one might view atypical development 

as qualitatively different from normal, as representing a disordered system varying on quite 

different dimensions. 

 Current theory holds that individuals with developmental disabilities comprise a 

combination of these two groups (Hodapp & Zigler, 1999). One group represents the extreme 

end of the normal distribution of IQ scores in the population (Pike & Plomin, 1996), in which 

there is no obvious organic damage and individuals frequently exhibit milder levels of 

impairment. As with typically developing children, individuals within this first group are  

characterised by relatively even profiles across abilities, albeit at lower overall IQ levels. The 

second group is more heterogeneous and impairments stem from known organic damage, 

either of genetic, peri-natal, or early post-natal origin. Although this group shows lower levels 

of IQ and sometimes severe levels of mental retardation, individual disorders can also 

demonstrate particularly uneven profiles of specific abilities. For instance, in Williams 

syndrome, language abilities are often much less impaired than visuo-spatial abilities (see e.g., 

Mervis, Morris, Bertrand & Robinson, 1999). In Fragile X syndrome, boys can show greater 

deficits in tasks requiring sequential processing than in those requiring simultaneous 

processing (Dykens, Hodapp, & Leckman, 1987). And in savant syndrome, individuals with 
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low IQs can nevertheless show exceptional skills within relatively narrowly defined areas such 

as music, arithmetic, or language (see e.g., Nettelbeck, 1999). 

 

3) General versus specific variation 

When we come to examine connectionist approaches to cognitive variability, one distinction 

will become particularly salient, that between general and specific variation. Theories of 

individual differences talk about the general factor of intelligence along with multiple 

independent domain-specific intelligences. Theories of cognitive development stress the 

apparent general increase in cognitive ability across all domains, but also note the disparities 

that can emerge between specific domains. Theories of atypical development note that in one 

group of individuals with developmental disabilities, all cognitive domains are generally 

depressed, whilst in a second group with apparent organic damage, there can be marked 

disparities in ability between different specific domains. Any full theory of cognitive 

variability must address the conditions under which that variability is general across all 

domains, and when it is specific to particular domains. We will find that connectionist models 

have generated detailed proposals for specific variability, but thus far have made limited 

progress on general variability. We now turn to a consideration of these models. 

 

Connectionist models 

Connectionist models are computer models loosely based on principles of neural information 

processing. These models seek to strike a balance between importing basic concepts from 

neuroscience into explanations of behaviour, while formulating those explanations using the 

conceptual terminology of cognitive and developmental psychology. (For an introduction to 

connectionist models, see, for example, Chapter 2 in Elman, Bates, Johnson, Karmiloff-Smith, 

Parisi & Plunkett, 1996). 
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Connectionist networks have been widely used to model phenomena in cognitive 

development because they are essentially learning systems (Thomas & Karmiloff-Smith, 

2002). An algorithm is used to modify connection strengths so that the network learns to 

produce the correct set of input-output mappings by exposure to a training set. By contrast, 

symbolic, rule-based computational models rarely offer developmental accounts for how 

relevant knowledge can be acquired, even when such models are able to accurately 

characterise behaviour in the adult state. 

Connectionist models embody a range of constraints or parameters that alter their ability 

to acquire intelligent behaviours (see Figure 1). This issue is sometimes framed within the 

nature-nurture debate, in which networks are portrayed as empiricist tabular rasa systems 

whose knowledge representations are specified purely by their training experience. On closer 

examination, however, it turns out that in common with all learning systems, connectionist 

networks contain a set of biases that constrain the way in which they learn. These biases are 

determined prior to the onset of learning, and include constraints such as the initial 

architecture of the network (in terms of the number of processing units and the way they are 

connected), the network dynamics (in terms of how activation flows through the network), the 

way in which the cognitive domain is encoded within the network (in terms of input and 

output representations), the learning algorithm used to change the connection weights or 

architecture of the network, and the regime of training the network will undergo. Only the last 

of these constraints is derived from the environment; the preceding four are candidates for 

innate components of the learning system, although in principle these four constraints may 

themselves be the products of learning. 

Decisions about the design of the network directly affect the kinds problem it can learn, 

how quickly and accurately learning will take place, as well as the final level of performance. 

To the extent that these networks are valid models of cognitive systems, differences in these 
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constraints or parameters provide us with candidate explanations for the variations found both 

between individuals and within individuals over time. 

To illustrate, networks contain internal processing units that are not specified as input or 

output units, and are thus available as resources over which the network can develop its own 

internal knowledge representations (Fig. 1). As we shall see, each of the following claims has 

been made within the connectionist literature: (1) a network that has more internal processing 

units is more ‘intelligent’, i.e., it is able to learn more complex input-output functions; (2) 

cognitive development can be modelled by networks which recruit extra internal units over 

time so that more complex ideas can be represented with increasing age; (3) atypical 

development can be modelled by networks which have too few or too many internal units 

outside some innately specified normal range. 

 

Figure 1: A typical connectionist architecture: the three-layer feedforward network. 
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Connectionist models of cognitive development 

Connectionist models have been applied to a wide range of developmental phenomena over 

the last fifteen years. These include categorisation and object-directed behaviour in infants, 

Piagetian reasoning tasks such as the balance scale problem, seriation, and conservation, and 

other children’s reasoning tasks such as learning the relation between time, distance and 

velocity, and discrimination shift learning. Within the domain of language acquisition, 

developmental models have been constructed to investigate the categorisation of speech 

sounds, the segmentation of the speech stream into words, vocabulary development, the 

acquisition of inflectional morphology, the acquisition of syntax, and learning to read (see 

Elman et al, 1996; Thomas & Karmiloff-Smith, in press, for reviews). 

Typically these models begin by building an architecture specific to the domain of study, 

with input and output representations able to encode the relevant cognitive information. For 

instance, in balance scale problems, a child is presented with a balance scale that has a certain 

number of weights on each side, positioned at various distances from the fulcrum. The scale is 

fixed in a level position as the weights are added, and the child must predict which side will 

drop when it is released. A network model of the development of reasoning in this task has an 

input representation that encodes both the distances and number of weights placed either side 

of the fulcrum and an output representation that encodes a prediction of which side of the scale 

will drop (McClelland, 1989). Other assumptions are built into the model, including the 

number of internal processing units, the connectivity, and the learning algorithm. Connection 

strengths are initially randomised. Development is taken to correspond to changes in the 

connection strengths caused by repeated exposure of the network to the problem domain (in 

this example, instances of varying numbers of weights placed at different distances from the 

fulcrum, along with the resulting movement of the balance scale). 
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This type of model embodies the assumption that development and learning are 

qualitatively the same kind of thing. However, such a theoretical position is controversial. 

Connectionists who support this view point out that gradual changes in connection strengths in 

developmental models are able to simulate behavioural data previously taken to imply 

qualitatively different stages of development with an associated internal restructuring of 

representations, for instance, as in the case of McClelland’s balance beam model (McClelland, 

1989). Moreover, models that rely on changes to connection weights can produce complex 

developmental trajectories not just through changes to weights in specialised modules but also 

through changes of weights connecting modules (e.g., Mareschal, Plunkett & Harris, 1999).  

And indeed, evidence that intense instruction cannot accelerate development does not 

necessarily rule out a continuum between development and learning; it merely implies that the 

pace of change must be intrinsically limited. 

On the other hand, not all connectionists accept this view: some maintain that learning 

and development correspond to different dimensions of change. They argue that, on their own, 

changes to existing network weights are insufficient to capture developmental phenomena, and 

that changes to other network parameters will be necessary before the models can simulate 

qualitatively different stages of reasoning. One such change might be a progressive alteration 

in network architecture, either driven by a fixed maturational timetable or by the dynamics of 

the learning process itself. For example, the so-called generative connectionist approach has 

sought to capture cognitive development by progressively adding internal processing units to 

neural networks during learning (e.g., Mareschal & Shultz, 1996). The number of internal 

units serves to determine the complexity of the input-output function that the network can 

learn; given enough internal units, a network can in principle learn an arbitrarily complex 

function (Cybenko, 1989). In generative connectionist models, then, the distinction between 

learning and development is reinstated. Changes in weights are taken to correspond to 
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learning, while the addition of internal units (also driven by the learning algorithm) is taken to 

correspond to the increasing complexity of the representations supported by the cognitive 

system during development. 

A similar proposal comes from work in the modelling of cognitive ageing. Li and 

Lindenberger (1999) have speculated that, while changes in weights may correspond to 

learning, cognitive development is driven by changes to a different network parameter, the 

activation function (or threshold) present in each processing unit. This parameter corresponds 

to the ability of the network’s processing units to discriminate between small differences in 

input activation. The proposal is that discriminability increases with cognitive development, 

but decreases during ageing. This idea has the advantage that increases in discriminability may 

also produce an increase in processing speed and a reduction in interference, thereby offering a 

way to link together some of the theoretical cognitive mechanisms introduced earlier. 

However, developmental models have yet to be put forward implementing Li and 

Lindenberger’s suggestion. Moreover, their proposal, and that of the generative connectionists, 

constitute only two of the network constraints that might be altered to account for a process of 

cognitive development separate from that of learning. Other parameters remain to be explored. 

Connectionist models of development remain limited in at least two respects. First, thus 

far they have only been applied to specific cognitive domains such as language acquisition or 

categorisation. Therefore they cannot currently address issues concerning the development of 

domain-general processing capacities. Second, connectionist networks do not readily represent 

relational or syntactic information. Therefore at present they cannot be used to evaluate claims 

such as that of Halford (1999), that cognitive development can be explained as an increase in 

the ability to represent higher orders of relational complexity. Although network models can 

embody relational information using synchrony binding (e.g., Hummel & Holyoak, 1997), 

these models have yet to be extended to the developmental realm. The same is true of rule-
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based models. By design, they are good at representing relational information (e.g., Jones, 

Ritter, & Wood, 2000), but they offer poor models of development. 

 

Connectionist models of atypical development 

Connectionist models have been extended to account for patterns of atypical development 

found in developmental disorders. Here researchers take an existing model of a given domain 

that captures development within the normal population, and attempt to demonstrate that 

alterations to the initial constraints (in terms of its architecture, dynamics, representations, or 

learning rule) produce an atypical trajectory of development consistent with the behavioural 

deficits observed within a disorder (Elman et al, 1996; Karmiloff-Smith, 1998; Oliver, 

Johnson, Karmiloff-Smith & Pennington, 2000). Since the initial work in this field has been 

based on existing connectionist models of normal development, it has focused on specific 

cognitive domains and accepted the position that development can be explained in terms of 

weight changes within pre-structured networks. In principle, however, the approach is 

extendible to generative networks, whereby a disorder might constitute a disruption to the 

process of altering network constraints during development, rather than a disruption to 

learning by weight change. 

A number of specific deficits in development disorders have been investigated. Thomas 

and Karmiloff-Smith (2003a) have demonstrated that impairments in the acquisition of 

inflectional morphology in the language of individuals with Williams syndrome (WS) 

(Thomas et al., 2001) can be explained by changes in the initial phonological and lexical-

semantic representations of a model of normal development in this domain. A number of 

startstate manipulations were examined. Two that were successful in simulating the WS data 

were the use of initial phonological representations with reduced similarity and redundancy in 

line with a hypothesis concerning an altered role for phonology in WS, and a deficit in the on-
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line integration of phonological and lexical-semantic knowledge, also consistent with 

empirical findings. Hoeffner and McClelland (1993) offered a related account for deficits 

found in the inflectional morphology of individuals with Specific Language Impairment (SLI). 

To explain deficits in past tense formation, participle formation and pluralisation, the 

representations of certain aspects of phonology were weakened in line with a hypothesis 

concerning perceptual processing deficits in SLI. These aspects carried crucial information 

about inflectional regularities, and so selectively impaired acquisition of the past tense ‘rule’. 

Several authors (see e.g., Harm & Seidenberg, 1999) have used models of normal 

development in reading ability to show how alterations to various initial constraints can 

produce different types developmental dyslexia. Manipulations to simulate dyslexia have 

included reducing the number of internal processing units, using a less efficient learning 

algorithm or a slower rate of weight change, constraining the size of weights in learning, 

degrading the input and/or output representations, eliminating certain layers of units or 

connections, adding noise to weight changes, or simply exposing the system to less training. 

Cohen (1998) has argued that increases or decreases in the number of internal processing 

units in categorisation networks can account for various behavioural features in autism. For 

instance, an increase in internal processing units causes fast initial learning that later regresses. 

Subsequent categorisation performance is not robust, focusing on details of the original 

training set rather than abstracting general categories. A reduction in internal processing units 

on the other hand can lead to a failure to learn in complex domains. 

Finally, in the context of Li and Lindenberger (1999)’s proposal that reduced unit 

discriminability can be used to simulate ageing effects and cognitive development, it is worth 

mentioning that manipulation of this same parameter, now within the confines of a frontal 

executive module, has been used to simulate attentional deficits in schizophrenia (Cohen & 

Servan-Schreiber, 1992). This work exploits a mechanism for attentional selection postulated 
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to operate within domain-specific networks in normal cognition by mediating the activation 

function of internal processing units (Cohen, Dunbar, & McClelland, 1990). 

Connectionist models of developmental disorders have led to theoretical advances in this 

field in that they have shifted the focus of explanation to the developmental process itself. A 

previous, widely used approach was based on the static, adult neuropsychological framework 

(see discussion in Thomas & Karmiloff-Smith, 2003b). This framework sought to explain 

strengths and weaknesses in developmental disorders in terms of selective preservation of, or 

damage to, domain-specific modules. However, Karmiloff-Smith (1998) argued that the use of 

a framework designed to infer the structure of the adult cognitive system from patterns of 

breakdown in adults with brain damage was inappropriate for the study of an atypical 

developmental system, since domain-specific processing modules are likely to be an outcome 

of development rather than a precursor to it. On the other hand, within the neuroconstructivist 

framework (Karmiloff-Smith, 1998), the strengths and weaknesses found in adults with 

developmental disorders are the outcome of an atypical developmental process that may 

include both atypical modularisation and different underlying cognitive processes – even when 

surface behaviour is apparently preserved. Developmental connectionist models embody this 

conception, since high-level behavioural deficits in each trained model are the consequence of 

a developmental process acting on a system with low-level deficiencies in its startstate, rather 

than a normal fully trained system suffering selective damage to high-level components. 

Finally, we should note that (once more) the connectionist modelling work in 

developmental disorders has focused on specific cognitive domains, with little work 

examining domain-general effects. At present, such models are silent, therefore, on the more 

general impairments to IQ found in many developmental disorders. 
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Connectionist models of individual differences 

To date, less connectionist research has been directed at explaining individual differences. 

However, a number of themes can be discerned in existing work, and researchers are now 

beginning to specifically target individual differences for explanation via parameter 

manipulations to their models. 

For some time, the connectionist position on individual differences was merely implicit. 

Such differences related to random variations in initial network conditions or in the training 

regime to which the network was exposed. As we have seen, the majority of cognitive models 

begin by constructing a domain-specific network. The connection weights are initially 

randomised, and the model is then exposed to an environment of randomly ordered training 

examples, from which it must acquires the given ability. In demonstrating that the 

performance of a given network does not rely on some particularly advantageous initial set of 

weights or random order of presentation, it is standard practice to run the model several times 

using different randomised start states and presentation orders. Performance over several 

networks is then averaged. The set of networks can be used to demonstrate statistically reliable 

effects of a task dimension, akin to an experimental design with human participants. 

Sometimes implicitly, and sometimes explicitly (e.g., Juola & Plunkett, 1998), variation 

in the performance of networks with different random start states and training orders has been 

equated with individual variation among human participants. If this were a full-scale theory, it 

would apportion individual differences and cognitive development to different though related 

sources; respectively, the initial weight matrix and subsequent changes to these weights. 

However, this source of individual variation is an unlikely candidate to account for a 

general factor of intelligence, since there is no reason (at least within currently stated 

modelling assumptions) why an individual should tend to have simultaneously fortuitous 
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random initial weight sets in separate networks dedicated to unrelated cognitive domains. Such 

an account would need to implicate a single network involved in many domains for such 

randomness to have a domain-general effect. Note that there are two senses of a domain 

generality here. One sense is of a module that is a ‘jack-of-all-trades’, participating in the 

processing of many domains, of which a working memory system is an example. The other 

sense is of a module with a specific executive or control function, which is then linked to a 

range of modules involved in processing disparate domains. This is a distinction will be 

important later. 

McLeod, Plunkett, and Rolls (1998) summarised several in-principle proposals for how 

connectionist networks might account for individual differences.  In addition to initial weight 

states, they suggested in three other sources of variation. The first of these was in the learning 

rate of the network, in terms of how quickly weights can be changed in response to learning 

episodes (see Garlick, in press, for a fuller development of this idea). The second was in the 

number of internal units, and the third was in terms of differences in learning experience, or 

the training regime to which the network is exposed. 

Three recent papers have explicitly aimed to use connectionist models to account for 

individual differences found in certain language tasks. Plaut and Booth (2000) sought to 

account for individual differences in semantic priming in a model of word recognition. They 

appealed to pre-existing differences in perceptual efficiency, and altered the model’s input to 

reflect the relative effectiveness of low-level perceptual processes (processes not implemented 

in the model). Plaut (1997) argued that differences in the patterns of acquired dyslexia shown 

by adults after brain injury could be explained by pre-morbid individual differences in the 

division of labour in the reading system between two processing routes for naming, one 

involving semantics, one not. In an illustrative example, Plaut implemented these differences 

either by varying sources of information external to the model, or by manipulating a weight 
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change parameter in one of the processing routes within the model. This parameter was taken 

to reflect the degree to which the individual’s underlying physiology ‘can support large 

numbers of synapses and hence strong interactions between neurons’. Lastly MacDonald and 

Christiansen (in press) sought to explain individual differences in linguistic working memory 

during sentence processing. Importantly, these authors used connectionist models to argue that 

the very notion of domain general-processing capacity may be faulty, and that any such 

capacity is inherently linked to (domain-specific) processing and knowledge. (These criticisms 

were not extended to the other sense of ‘domain-generality’ which we distinguished above, 

that of executive control). MacDonald and Christiansen proposed that individual differences in 

linguistic working memory derive either from different levels of experience with language, or 

from differences in the accuracy of individuals’ phonological representations. Evidence of 

correlations between individual differences in linguistic and spatial working memory (which 

would contribute towards a general factor of intelligence), are accounted for either by shared 

processing components across memory systems, or by similar ‘biology and experience 

underlying language comprehension skills and the skills used in navigation through space’. 

Three conclusions can be drawn from the existing connectionist work on individual 

differences. First, little work has addressed the general factor of intelligence. Accounts of 

individual variation are restricted to models of specific domains. Second, existing proposals 

for parameters that might explain domain-specific individual variation include the usual 

suspects, i.e., the same parameters that we have seen offered to explain variation in cognitive 

development and atypical development. These include changes in the number of internal units, 

changes in the learning rate, and changes in initial representations, as well as differences in the 

level of training determined by some other (model-) external source of variance. Thirdly, 

although differences in initial randomised weight strengths might offer a distinct candidate to 

explain (at least domain-specific) individual differences, this hypothesis makes such strong 
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assumptions concerning the homogeneity of all other computational constraints across 

individuals that it seems unlikely to suffice as a complete theory.1  

 

Connectionism and general intelligence 

How might one proceed to investigate general intelligence within the connectionist 

framework? We envisage at least two possible approaches. First, one could search for a one or 

more parameters in a domain-general processing module that would improve performance in 

this module. Since the module is involved in many domains, it would explain correlated 

performance across those domains. Second, one could search for a one or more parameters 

present in a range of different domain-specific modules that would improve performance in 

each of these domains. Cross-domain correlations in individual differences would then be 

explained by yoked changes in these ‘golden’ parameter, which had a benign computational 

influence whatever the problem. 

With regard to the first approach, the search for a single parameter in a domain-general 

processing module, recall that we identified two sorts of ‘general’ system: one applicable to 

any domain – such as generalised working memory – and the other involved in the control of a 

range of separate processing modules – such as executive function. However, we have seen 

that connectionist researchers have argued against notions of generalised working memory, 

while detailed models of executive function have yet to emerge. 

                                                 
1 Plaut, for instance, prefers to view individual differences as involving not just variation in 

numbers of internal units, but also the density of connectivity between layers of units, learning 

rate, weight decay, strength of input, and processing rate in recurrent networks (pers. comm., 

May 2000). 
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A more ready approach, then, might be to consider whether one parameter can improve 

performance across existing models of disparate cognitive domains. For example, correlations 

are found between measures of infant preverbal cognition in tasks like novelty preference, and 

subsequent childhood performance on standardised assessments of intellectual function, as 

measured by g-loaded tests such as Raven’s Progressive Matrices (see Columbo & Frick, 

1999). If we had two connectionist models, one of infant novelty preference in categorisation 

and one of adult performance on a task like the Progressive Matrices test (roughly, analogical 

reasoning about geometrical patterns), then we would be in a position to look for a single 

parameter that could improve performance in both domains. 

A comparison of this kind is indeed possible. Mareschal, French & Quinn (2000) have 

proposed a developmental model of infant novelty preference in which a simple network 

system learns objects presented to it in categories (defined over perceptual features), and then 

shows a novelty response to new objects outside the category compared to new objects within 

the category. There is as yet no developmental model of analogical reasoning about 

geometrical patterns, nor of a system that performs domain-general reasoning. Theorists such 

as Fodor (2000) have argued that we know so little about domain-general reasoning that 

modelling its computations would be premature. However, there exists a model of creative 

analogy formation in adults in the micro-domain of letter strings (Mitchell, 1993; see also 

French, 1995). This domain is not too dissimilar from that of the Ravens progressive matrices 

test, in that the model must produce answers to questions of the form “If abd changes to jki, 

what is the analogous change to mrrjjj?” The model employs a multi-component system in 

which ‘codelets’ or micro-agents compete probabilistically to construct a novel representation 

of the particular analogy in a working memory space, relying on a complex network of 

domain-specific background knowledge about letters and the formation of letter sequences. Is 
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there a golden parameter that could improve performance in both models, that might make 

both more ‘intelligent’? 

In infant categorisation, increased novelty preference predicts later IQ. The model would 

generate an increase in novelty preference with a richer featural representation of the input, a 

faster learning rate (or more training, or more efficient learning), a larger number of internal 

processing units, greater unit discriminability, and in a recurrent format, faster settling into a 

stable activation state. The adult analogy model gains its abilities from many domain-specific 

structures and processes; it is less straightforward to predict parameters that will improve its 

performance. French (pers. comm., May 2000) suggests the following would produce less 

intelligent performance: poor perception of the features of the three input strings, noise in the 

system, a failure to resolve competitive processes, a failure of the micro-agents to focus on 

less speculative and more consistent interpretations over time, and an a priori preference for 

the surface attributes of letter strings (such as identity) compared to deeper structural 

information (such as successor). If we rule out knowledge-based possibilities, on the grounds 

that performance in elementary cognitive tasks correlates with IQ, the most likely common 

candidate to improve performance in both these models is the settling of competitive 

processes, perhaps mediated by fast-cycling recurrent connections, by noise free processing, or 

by processing units with greater discriminability. 

In sum, researchers are beginning to propose parameters of connectionist models that 

might account for individual differences. All detailed proposals are implicitly aimed towards 

specific factors of intelligence, in the main because each model captures only one micro-

domain. However, as illustrated, the search for computational factors underlying general 

intelligence is entirely possible within this framework, and such a search may yet link quality 

of performance with parameters of underlying computation in different domains. 
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Discussion 

We began this chapter by highlighting the clarification that computational implementation 

brings to verbally specified theories, and we are now in a position to revisit this claim. In the 

domain of intelligence, one predominant claim was that differences in cognitive ‘speed’ might 

underlie variation between individuals of the same age. A computational consideration of this 

proposal suggested that ‘speed’ may need to be interpreted in terms of the settling of recurrent 

circuits if it is to be linked to the quality of processing, and perhaps to the activation function 

of units if it is to be linked to the quality of representations. In the domain of development, one 

predominant claim was that increases in ‘complexity’ drive improved performance over 

development. A computational consideration suggested that one feasible interpretation of this 

claim was that complexity corresponds to the number of internal processing units available to 

form mental representations at a given point in development. Within the generative 

connectionist framework, such numbers increase with development allowing more 

sophisticated representations to be learned. In the domain of atypical disorders, one 

predominant claim was that cognitive systems might be restricted by having ‘insufficient 

processing resources’. A computational consideration in disorders such as autism and dyslexia 

suggested that one interpretation of this claim is in terms of networks with too few internal 

processing units to acquire a domain of a given complexity. 

In each case, however, work with connectionist networks has also generated new 

computational parameters as potential explanations of each type of cognitive variability. 

Moreover, since it is inevitable that connectionist models will become more complex over 

time, it is likely that new candidate parameters will emerge. Our conclusion here is simply that 

theoretical ideas benefit immensely by exploration within a computational framework, where 

the effects of parameter variations can be studied closely in realistic cognitive domains. 
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What light does the work we have reviewed shed on the possible conceptual relation of 

individual differences, cognitive development, and atypical development? Table 1 summarises 

the different computational parameters proposed to account for cognitive variability. It is 

notable that many of the same parameters have been proposed to account for different forms of 

variability, for instance, changes to internal unit numbers and changes to unit activation 

functions. In principle, then, one might take connectionist work as supporting the claim that 

different forms of cognitive variability lie on the same dimensions, perhaps representing 

different ranges of parameter values on those dimensions. However, we suspect that some of 

this overlap represents a historical anomaly, in which investigators have begun to explore each 

field of variability by altering the first parameters to hand. Currently there is no coherent 

overall account of cognitive variability within connectionism (indeed, this chapter represents 

the first systematic comparison). Time will tell whether the dimensions taken to underlie 

individual differences, cognitive development, and atypical development subsequently 

diverge. 

 

Table 1. Existing (independent) proposals for parameters within connectionist models 

that may explain forms of cognitive variability (see text for references of specific 

proposals). 

 
Learning Development Atypical 

development 
Individual 
variation 

Moment to 
moment variation 

(attention) 

Ageing 

Change 
weights 

Change 
weights 

 Different initial 
random weights 

 Remove 
weights 

 Change 
architecture 
(internal units) 

Change 
architecture 
(internal units) 

Change 
architecture 
(internal units) 

 Remove units 

 Alter activation 
function 

Alter activation 
function 

 Alter activation 
function 

Alter activation 
function 

  Alter learning rate Alter learning rate   
  Differences in 

input/output 
representations 

Differences in 
input/output 
representations 

  

  + others Is there a   
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GOLDEN 
domain-general 
parameter? 

 

 

Finally, we return to a consideration of intelligence. Throughout, it has become apparent 

that the current state of connectionist research focuses on variations within models of specific 

abilities, with no good account of general cognitive variability. In the previous section, we 

speculated on the possibility of a Golden parameter that would improve performance whatever 

the domain. Indeed Garlick (in press) has recently proposed that learning rate – corresponding 

to neural plasticity – could be just such a parameter. However, Garlick’s supporting 

simulations only demonstrated that on three problems, networks with a faster learning rate 

required fewer exposures to the training examples to reach ceiling. There was no indication 

that learning rate alone could produce changes in the quality or abstractness of representations. 

It remains a possibility that general intelligence is an emergent property of the interaction of 

many specific components (Detterman, 1986), an idea that future modelling work should 

address. Our suspicion, however, is that general intelligence may turn out to correspond to 

variations of a parameter in a domain-general cognitive system that has a ‘finger in every pie’, 

such as an executive system. (A similar but more complicated proposal would be that a given 

parameter varies in all parts of the system but only produces changes in intelligence via the 

general module. This would explain many more diverse correlations). Our own experience 

with modelling leads us to think that the search for a golden computational parameter exerting 

a beneficial effect whatever the domain may be a difficult one, for the majority of parameter 

changes have effects that depend on the nature of the problem domain. 

Some examples illustrate this point. The famous manipulation of internal processing 

units turns out to be a parameter where increases help in complex domains but hinder in 

simple domains. The addition of noise is helpful in the acquisition of domains with broad 
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regularities and irrelevant superficial detail, but damaging when categories must be 

distinguished on the basis of fine detail. A fast settling system may be an advantage in a 

domain that is internally consistent, but a hindrance in a domain where many soft constraints 

must be combined to produce a best ‘compromise’ solution. A fast learning system is an 

advantage for instantly storing memories, but a disadvantage when it comes to extracting 

prototypical structure across many exemplars. 

The precise computational basis of intelligence remains a mystery, but one of the most 

promising methods to explore this issue is through the application of computational modelling. 

It is an approach that may yet allow us to link intelligence to many other forms of cognitive  

variability. 
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