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I ntroduction

The computational modelling of cognitive processes offers severa advantages. One of the
mogt notable is theory clarification. Verbaly specified theories permit the use of vague, ill-
defined terms that may mask errors of logic or consistency, errors that often become apparent
when formd implementation forces these terms to be clarified. Whereasin the domain of
intdligence research, one may refer to amore clever cognitive system as being ‘faster’, an
implemented mode of that system must specify what ‘speed’ redlly means. Whereasin the
domain of developmentd research, one may refer to a more developed cognitive system as
containing ‘more complexity’, an implemented modd must specify what ‘ complexity’ redly
means. Whereas in the domain of atypica development, one may refer to adisordered
cognitive system as having ‘ insufficient processng resources , an implemented mode must
specify what a‘ processing resource’ redly means.

Computer models have recently been applied to each of these domains — individua
differences, cognitive development, and atypica development — against a background of pre-
exiging verba theories speculating on what cognitive mechanisms might underlie variations
in each domain. The am of this chapter isto examine how computationa implementation has
forced conceptud clarification of these mechanisms, and in particular, how implementation
has shed light on the theoreticd relation between the domains. Our discussion focuses on one
particular class of widdy used model, connectionist networks.

The crux of theissueis asfollows. The domains of individuad differences, cognitive

development, and atypica development each represent aform of cognitive variability: they

ded interms of superior or inferior performance on cognitive tasks. Each computationd
mode contains parameters that dter the system’s performance on the task it is built to address.
Therefore, such computationa parameters stand as possible mechanistic explanations for

variahility in performance. Implemented modds of individua differences, of cognitive
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development, and of atypica development have appedled to certain computationa parameters
to explain superior or inferior performance on cognitive tasks. We can ask firstly, do these
models gpped to the same parameters in each case, or different ones? And secondly, what
computationa role do the parameters play in each modd ? These two questions can be recast in
theoretica terms: do individud differences, cognitive development, and atypical development
lie on the same dimension or on different dimensions? And what are the precise computetiond
mechaniams that underlie the dimensions? Our chapter addresses these questions.

In the following sections, we first examine pre-existing theoreticd clamsthat have been
meade on the relaion of theindividua differences, cognitive development, and atypica
development. Second, we introduce connectionist networks and their component parameters.
We then discuss how connectionist networks have been gpplied to the three domains, in turn
cognitive development, atypica development, and individud differences. Third, we compare
the three domains, and draw conclusions about the theoretica positions these models embody.
Findly, given the ams of this volume, we consider in more depth the form that future
computational accounts of individua differences may take, and speculate on whether research
might turn up asingle ‘golden’ computationa parameter that can explain generd intelligence
—that is, a parameter that can generate improvements or decrementsin performance whatever

the cognitive domain.

Pre-existing theoretical claims

(1) How areindividua differences and cognitive development related?

Fird, let us be clear about the target phenomena. By individua differences, we mean the
‘generd’ and * specific’ factors of intelligence. The generd factor of intelligence, indexed by
Intelligence Quotient (1Q), reflects the fact that individuas tend to show a positive correlation

on performance across arange of intellectud tasks. At agiven age, the genera factor accounts
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for much of the varigbility between individuas. In addition to the generd factor, there are
domain-specific factors such as verba and spatia ability, which may vary independently
within an individud. The exact number of domain-specific ailitiesis controversd. Individud
differencesin 1Q tend to be reatively stable over time, and 1Q in early childhood is predictive
of adult 1Q leve (Hindley & Owen, 1978). This fact suggests that |Q corresponds to some
inherent property of the cognitive system. A clue as to the nature of this property might be
gained from the fact that performance on eementary cognitive tasks with very low knowledge
content correlates with performance on intellectud tasks requiring extensve use of
knowledge.

By cognitive development, we mean the phenomenon whereby within an individud,
reasoning ability tends to improve with age roughly in pardld across many intelectud
domains. Although there may be some mismatch in abilitiesin different tasks at a given time,
by and large children’ s performance on awide range of intellectud tasks can be predicted
from their age. However, a a certain point in development, children’s performance can only
be improved to alimited extent by practice and indtruction (Siegler, 1978), suggesting that
development may not be identical to learning or to the acquisition of more knowledge.

Davis and Anderson (1999) offer arecent, detailed consderation of the theoretica
relation of these two forms of cognitive variability. Here we highlight two dams. Firg, the
ideathat having a higher 1Q is equivadent to having a‘bit more cognitive development’ is
challenged by the fact that when older children with alower 1Q are matched to younger
children with a higher 1Q, performance appears quditatively different. The older children
show gtronger performance on tasks with a high knowledge component while the younger
children show stronger performance on tasks involving abstract reasoning (Spitz, 1982).

Second, severd theoretical mechanisms have been proposed to underlie individua

differences and cognitive development. In terms of mechanisms that might underlie
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differencesin 1Q, severa authors have proposed differencesin speed of processing among

basic cognitive components, on the grounds that speed of response in Smple cognitive tasks
predicts performance on complex reasoning tasks, and that neurophysiological measures such

as latency of average evoked potentials and speed of neura conductivity correlate with 1Q
(Anderson, 1992, 1999; Eysenck, 1986; Jensen, 1985; Nettelbeck, 1987). Sternberg (1983) has

proposed differences in the ability to control and co-ordinate the basi ¢ processng mechanisms,

rather than in the functioning of the basic components themselves. Findly, Dempster (1991)

has proposed differences in the ability to inhibit irrdlevant informeation in lower cognitive

processes, since individuals can show large neuroanatomica differencesin the frontal 1obes,
the neural bases of executive function.

In terms of mechaniams that might underlie cognitive devel opment, we once more find

Speed of processing offered as a factor that may drive improvementsin reasoning ability

(Case, 1985; Hale, 1990; Kail, 1991; Nettlebeck & Wilson, 1985). Case (1985) suggested that
an increase in gpeed of processing aids development viaan effective increasing in short term
storage space, alowing more complex concepts to be represented. Halford (1999) proposed
that the congtruction of representations of higher dimensiondity or greater complexity is

driven by an increase in processing capacity where processing capacity is a measure of the

‘cognitive resources dlocated to atask. Lagtly, Bjorklund and Harnishfeger (1990) proposed

improvements in the ability to inhibit irrdevant information, based on evidence from cognitive

tasks and changesin the brain that might reduce cross-talk in neural processing, such asthe
myelination of neura fibres and the decrease with age in neurond and synaptic density.

On one hand, then, previous theories relating individud differences to cognitive
development proposed that cognitive development is not equivaent to ‘more 1Q" and thus that
development and intelligence are variaion on different cognitive dimensions. On the other

hand, the lists of hypothetical mechanisms postulated to drive variability in each domain show
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severa overlaps (gpeed, inhibition), suggesting that development and intelligence could

represent variaions on the same cognitive dimension(s). There is no current consensus.

(2) Aretypicd and atypica development quditatively different?

The relation of typica cognitive development and atypica development could be construed in
two ways. Perhaps there are variations in the efficiency of typica cognitive development,
whereby atypica development just forms the lower end of the distribution of typica
development. Thiswould imply that the two amount to cognitive variation on the same
dimension(s) astypica development. On the other hand, one might view atypica development
as qualitatively different from norma, as representing a disordered system varying on quite
different dimensons.

Current theory holds that individuas with developmentd disabilities comprise a
combination of these two groups (Hodapp & Zigler, 1999). One group represents the extreme
end of the norma digtribution of 1Q scores in the population (Pike & Plomin, 1996), in which
there is no obvious organic damage and individuds frequently exhibit milder levels of
imparment. Aswith typicaly developing children, individuads within thisfirst group are
characterised by relatively even profiles across ahilities, dbeit a lower overdl 1Q levels. The
second group is more heterogeneous and impairments stem from known organic damage,
either of genetic, peri-natd, or early post-natd origin. Although this group shows lower levels
of 1Q and sometimes severe levels of menta retardation, individual disorders can dso
demondrate particularly uneven profiles of specific abilities. For ingtance, in Williams
syndrome, language &bilities are often much lessimpaired than visuo-spatia abilities (seeeg.,
Mervis, Morris, Bertrand & Robinson, 1999). In Fragile X syndrome, boys can show greeter
deficitsin tasks requiring sequential processing than in those requiring Smultaneous

processing (Dykens, Hodapp, & Leckman, 1987). And in savant syndrome, individuals with
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low 1Qs can nevertheless show exceptiond skills within relatively narrowly defined areas such

as music, arithmetic, or language (see e.g., Nettelbeck, 1999).

3) Generd versus specific variation

When we come to examine connectionist gpproaches to cognitive varigbility, one distinction
will become particularly sdient, that between genera and specific variation. Theories of
individud differences tak about the generd factor of intelligence aong with multiple
independent domain-specific intelligences. Theories of cognitive development stress the
gpparent genera increase in cognitive ability across dl domains, but aso note the disparities
that can emerge between specific domains. Theories of atypica development note that in one
group of individuas with developmentd disabilities, al cognitive domains are generdly
depressed, whilst in a second group with gpparent organic damage, there can be marked
dispaitiesin ability between different soecific domains. Any full theory of cognitive
variability must address the conditions under which that variability is generd acrossdl
domains, and when it is specific to particular domains. We will find that connectionist models
have generated detailed proposals for specific variability, but thus far have made limited

progress on genera variability. We now turn to a congderation of these models.

Connectionist models

Connectionist models are computer models loosely based on principles of neurd information
processing. These models seek to strike a balance between importing basic conceptsfrom
neuroscience into explanations of behaviour, while formulating those explanations using the
conceptud terminology of cognitive and developmenta psychology. (For an introduction to
connectionist models, see, for example, Chapter 2 in Elman, Bates, Johnson, Karmiloff- Smith,

Parisi & Plunkett, 1996),
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Connectionist networks have been widely used to model phenomenain cognitive
development because they are essentidly learning systems (Thomas & Karmiloff-Smith,
2002). An dgorithm is used to modify connection strengths o that the network learnsto
produce the correct set of input-output mappings by exposure to atraining set. By contradt,
symboalic, rule-based computationa modelsrardly offer developmenta accounts for how
relevant knowledge can be acquired, even when such models are able to accurately
characterise behaviour in the adult Sate.

Connectionist modes embody arange of condraints or parametersthat dter their ability
to acquire intelligent behaviours (see Figure 1). Thisissue is sometimes framed within the
nature-nurture debate, in which networks are portrayed as empiricist tabular rasa systems
whose knowledge representations are specified purely by their training experience. On closer
examination, however, it turns out thet in common with al learning systlems, connectionist
networks contain a set of biases that congtrain the way in which they learn. These biases are
determined prior to the onset of learning, and include condraints such astheinitia
architecture of the network (in terms of the number of processing units and the way they are
connected), the network dynamics (in terms of how activation flows through the network), the
way in which the cognitive domain is encoded within the network (in terms of input and
output representations), the learning agorithm used to change the connection weights or
architecture of the network, and the regime of training the network will undergo. Only the last
of these congdraintsis derived from the environment; the preceding four are candidates for
innate components of the learning system, athough in principle these four congraints may
themselves be the products of learning.

Decisgons about the design of the network directly affect the kinds problem it can learn,
how quickly and accuratdly learning will take place, aswell asthefind level of performance.

To the extent that these networks are valid models of cognitive systems, differencesin these
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condraints or parameters provide us with candidate explanations for the variations found both
between individuas and within individuas over time.

To illugtrate, networks contain interna processing units that are not specified as input or
output units, and are thus available as resources over which the network can develop itsown
internal knowledge representations (Fig. 1). Aswe shall see, each of the following clams has
been made within the connectionigt literature: (1) anetwork that has more interna processing
unitsis more ‘intelligent’, i.e, it is able to learn more complex input-output functions; (2)
cognitive development can be moddled by networks which recruit extrainternd units over
time so that more complex ideas can be represented with increasing age; (3) atypica
development can be modelled by networks which have too few or too meny internd units

outsde some innatdly specified normd range.

Figure 1. A typical connectionist architecture: thethree-layer feedforward network.
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Connectionist models of cognitive development

Connectionist models have been gpplied to awide range of developmental phenomena over
the lat fifteen years. These include categorisation and object-directed behaviour in infants,
Piagetian reasoning tasks such as the balance scae problem, seriation, and conservation, and
other children’s reasoning tasks such as learning the relation between time, distance and
vdocity, and discrimination shift learning. Within the domain of language acquistion,
developmenta modd's have been constructed to investigate the categorisation of speech
sounds, the segmentation of the speech stream into words, vocabulary development, the
acquistion of inflectional morphology, the acquisition of syntax, and learning to reed (see
Elman et d, 1996; Thomas & Karmiloff-Smith, in press, for reviews).

Typicdly these models begin by building an architecture specific to the domain of study,
with input and output representations able to encode the relevant cognitive information. For
instance, in balance scae problems, a child is presented with a balance scae thet has a certain
number of weights on each Sde, positioned at various distances from the fulcrum. The scdeis
fixed in alevel postion as the weights are added, and the child must predict which sde will
drop wheniit isreleased. A network mode of the development of reasoning in thistask has an
input representation that encodes both the distances and number of weights placed ether sde
of the fulcrum and an output representation that encodes a prediction of which sde of the scale
will drop (McCldland, 1989). Other assumptions are built into the modd, including the
number of interna processng units, the connectivity, and the learning agorithm. Connection
grengths are initidly randomised. Development is taken to correspond to changesin the
connection strengths caused by repeated exposure of the network to the problem domain (in
this example, ingtances of varying numbers of weights placed at different distances from the

fulcrum, dong with the resulting movement of the baance scae).
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Thistype of modd embodies the assumption that development and learning are
quditatively the same kind of thing. However, such atheoretical postion is controversid.
Connectionists who support this view point out that gradud changesin connection strengthsin
developmenta modds are able to smulate behaviourd data previoudy taken to imply
quaitatively different stages of development with an associated interna restructuring of
representations, for instance, asin the case of McCldland’ s balance beam modd (McCldland,
1989). Moreover, models that rely on changes to connection weights can produce complex
developmentd trgectories not just through changes to weightsin specidised modules but dso
through changes of weights connecting modules (eg., Mareschd, Plunkett & Harris, 1999).
And indeed, evidence that intense instruction cannot accelerate devel opment does not
necessarily rule out a continuum between development and learning; it merdly implies that the
pace of change mugt be intringcaly limited.

On the other hand, not al connectionists accept this view: some maintain that learning
and development correspond to different dimensions of change. They argue that, on their own,
changes to existing network weights are insufficient to capture developmenta phenomena, and
that changes to other network parameters will be necessary before the models can smulate
quditatively different stages of reasoning. One such change might be a progressive ateration
in network architecture, either driven by afixed maturationd timetable or by the dynamics of
the learning process itsdlf. For example, the so-called generdive connectionist approach has
sought to capture cognitive development by progressvely adding interna processing unitsto
neurd networks during learning (e.g., Mareschd & Shultz, 1996). The number of interna
units serves to determine the complexity of the input-output function that the network can
learn; given enough internd units, anetwork can in principle learn an arbitrarily complex
function (Cybenko, 1989). In generative connectionist models, then, the distinction between

learning and development is reingtated. Changes in weights are taken to correspond to
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learning, while the addition of internd units (aso driven by the learning dgorithm) istaken to
correspond to the increasing complexity of the representations supported by the cognitive
system during development.

A smilar proposa comes from work in the modeling of cognitive ageing. Li and
Lindenberger (1999) have speculated that, while changes in weights may correspond to
learning, cognitive development is driven by changesto a different network parameter, the
activation function (or threshold) present in each processing unit. This parameter corresponds
to the ability of the network’s processng unitsto discriminate between smdl differencesin
input activation. The proposd isthat discriminability increases with cognitive development,
but decreases during ageing. This idea has the advantage that increases in discriminability may
also produce an increase in processing speed and areduction in interference, thereby offering a
way to link together some of the theoretical cognitive mechanisms introduced earlier.

However, developmental models have yet to be put forward implementing Li and

Lindenberger’ s suggestion. Moreover, their proposal, and that of the generative connectionists,
congtitute only two of the network congtraints that might be altered to account for a process of
cognitive development separate from that of learning. Other parameters remain to be explored.

Connectionist models of development remain limited in at least two respects. Firg, thus
far they have only been applied to specific cognitive domains such as language acquisition or
categorisation. Therefore they cannot currently address issues concerning the development of
domain-genera processing capacities. Second, connectionist networks do not readily represent
relationd or syntactic information. Therefore at present they cannot be used to evauate clams
such asthat of Halford (1999), that cognitive development can be explained as an increasein
the ability to represent higher orders of relationd complexity. Although network modes can
embody relationd information using synchrony binding (e.g., Humme & Holyoak, 1997),

these models have yet to be extended to the developmenta redlm. The sameistrue of rule-
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based models. By design, they are good at representing relationa information (e.g., Jones,

Ritter, & Wood, 2000), but they offer poor models of development.

Connectionist models of atypical development

Connectionist models have been extended to account for patterns of atypica development
found in developmentd disorders. Here researchers take an existing modd of a given domain
that captures development within the norma population, and attempt to demonstrate that
dterationsto theinitid congraints (in terms of its architecture, dynamics, representations, or
learning rule) produce an atypicd trgectory of development consstent with the behavioura
deficits observed within a disorder (Elman et d, 1996; Karmiloff- Smith, 1998; Oliver,
Johnson, Karmiloff-Smith & Pennington, 2000). Since the initid work in thisfidd has been
based on exigting connectionist models of norma development, it has focused on specific
cognitive domains and accepted the position that development can be explained in terms of
weight changes within pre-structured networks. In principle, however, the approach is
extendible to generative networks, whereby a disorder might congtitute a disruption to the
process of atering network congraints during development, rather than adisruption to
learning by weight change.

A number of specific deficits in development disorders have been investigated. Thomas
and Karmiloff-Smith (2003a) have demonstrated that imparmentsin the acquisition of

inflectiona morphology in the language of individuas with Williams syndrome (WS)

(Thomaset d., 2001) can be explained by changesin theinitia phonologica and lexica-
semantic representations of amodd of normal development in this domain. A number of
Sartstate manipulations were examined. Two that were successful in smulating the WS data
were the use of initia phonologica representations with reduced smilarity and redundancy in

line with a hypothesis concerning an dtered role for phonology in WS, and a deficit in the on
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line integration of phonologicad and lexica-semantic knowledge, dso consigtent with
empirica findings. Hoeffner and McCleland (1993) offered arelated account for deficits

found in the inflectiond morphology of individuads with Specific Language Imparment (SLI).

To explain deficits in past tense formation, participle formation and plurdisation, the
representations of certain aspects of phonology were weskened in line with a hypothesis
concerning perceptud processing deficitsin SLI. These aspects carried cruciad informeation
about inflectiond regularities, and S0 selectively impaired acquisition of the past tense ‘rule’.
Severd authors (see e.g., Harm & Seidenberg, 1999) have used models of normd
development in reading ability to show how dterationsto variousinitia congraints can

produce different types developmenta dydexia. Manipulations to Smulate dydexia have

included reducing the number of interna processing units, using aless efficient learning
agorithm or adower rate of weight change, congraining the size of weightsin learning,
degrading the input and/or output representations, iminating certain layers of units or
connections, adding noise to weight changes, or Smply exposing the system to lesstraining.

Cohen (1998) has argued that increases or decreases in the number of internal processng
units in categorisation networks can account for various behavioura festuresin autism For
ingtance, an increase in interna processing units causes fagt initid learning thet later regresses.
Subsequent categorisation performance is not robust, focusing on details of the origind
training set rather than abstracting generd categories. A reduction in interna processing units
on the other hand can lead to afailure to learn in complex domains.

Finaly, in the context of Li and Lindenberger (1999)’s proposd that reduced unit
discriminability can be used to smulate ageing effects and cognitive development, it isworth
mentioning that manipulation of this same parameter, now within the confines of a fronta
executive module, has been used to smulate attentiond deficitsin schizophrenia (Cohen &

ServanSchreiber, 1992). Thiswork exploits a mechanism for atentiona sdection postulated
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to operate within domain-specific networks in norma cognition by mediating the activation
function of interna processing units (Cohen, Dunbar, & McCleland, 1990).

Connectionist models of developmentd disorders have led to theoretica advancesin this
field in that they have shifted the focus of explanation to the developmenta processitsdlf. A
previous, widdly used gpproach was based on the static, adult neuropsychological framework
(seediscussion in Thomas & Karmiloff-Smith, 2003b). This framework sought to explain
strengths and weaknesses in developmenta disorders in terms of selective preservation of, or
damage to, domain-specific modules. However, Karmiloff- Smith (1998) argued that the use of
aframework designed to infer the structure of the adult cognitive system from petterns of
breakdown in adults with brain damage was inappropriate for the study of an atypical
developmenta system, since domain-specific processing modules are likely to be an outcome

of development rather than a precursor to it. On the other hand, within the neurocongtructivist

framework (Karmiloff- Smith, 1998), the strengths and weaknesses found in adults with
developmenta disorders are the outcome of an atypical developmenta process that may
include both atypical modularisation and different underlying cognitive processes — even when
surface behaviour is gpparently preserved. Developmental connectionist models embody this
conception, since high-level behaviourd deficitsin each trained modd are the consegquence of
adeveopmenta process acting on a system with low-leve deficienciesin its Sartdate, rather
than anorma fully trained sysem suffering sdective damage to high-level components.
Findly, we should note that (once more) the connectionist moddling work in
developmentd disorders has focused on specific cognitive domains, with little work
examining domain-genera effects. At present, such models are silent, therefore, on the more

generd imparmentsto |Q found in many developmentd disorders.
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Connectionist models of individual differences

To date, less connectionist research has been directed at explaining individua differences.
However, a number of themes can be discerned in existing work, and researchers are now
beginning to specificdly target individud differences for explanation via parameter
manipulations to their models.

For some time, the connectionist position on individud differences was merdy implicit.
Such differences related to random variationsin initia network conditions or in thetraining
regime to which the network was exposed. As we have seen, the mgority of cognitive models
begin by congructing a domain-specific network. The connection weights areinitialy
randomised, and the mode is then exposed to an environment of randomly ordered training
examples, from which it must acquires the given ability. In demongtrating thet the
performance of a given network does not rely on some particularly advantageousinitia set of
weights or random order of presentation, it is standard practice to run the model severd times
using different randomised Sart States and presentation orders. Performance over severa
networks is then averaged. The set of networks can be used to demonstrate statistically reliable
effects of atask dimenson, akin to an experimenta design with human participants.

Sometimesimplicitly, and sometimes explicitly (e.g., Juola& Plunkett, 1998), variation
in the performance of networks with different random start states and training orders has been
equated with individua variation anong human participants. If thiswere afull-scae theory, it
would gpportion individud differences and cognitive development to different though related
sources, respectively, the initia weight matrix and subsequent changes to these weights.

However, this source of individua variation is an unlikely candidate to account for a
generd factor of intelligence, sSince there is no reason (at least within currently stated

modelling assumptions) why an individua should tend to have smultaneoudy fortuitous
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random initia weight sets in separate networks dedicated to unrdlated cognitive domains. Such
an account would need to implicate a single network involved in many domainsfor such
randomness to have a domain-general effect. Note that there are two senses of adomain
generdity here. One senseis of amodule thet is a‘jack-of-dl-trades , participating in the
processing of many domains, of which aworking memory system is an example. The other
senseis of amodule with a specific executive or control function, which isthen linked to a
range of modulesinvolved in processing disparate domains. Thisisadiginction will be
important |ater.

McLeod, Plunkett, and Rolls (1998) summarised severa in-principle proposasfor how
connectionist networks might account for individua differences. In addition to initial weight
dates, they suggested in three other sources of variation. Thefirg of these was in the learning
rate of the network, in terms of how quickly weights can be changed in responseto learning
episodes (see Garlick, in press, for afuller development of thisided). The second wasin the

number of internd units, and the third was in terms of differences in learning experience, or

the training regime to which the network is exposed.

Three recent papers have explicitly aimed to use connectionist models to account for
individual differences found in certain language tasks. Plaut and Booth (2000) sought to
account for individud differencesin semantic priming in amodd of word recognition. They
appealed to pre-exiging differences in perceptud efficiency, and dtered the mode’ s input to
reflect the relative effectiveness of low-level perceptual processes (processes not implemented
in the modd). Plaut (1997) argued that differencesin the patterns of acquired dydexia shown
by adults after brain injury could be explained by pre-morbid individud differencesin the
divison of labour in the reading system between two processing routes for naming, one
involving semantics, one not. In an illudtrative example, Plaut implemented these differences

ether by varying sources of information externd to the modd, or by manipulating aweght
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change parameter in one of the processing routes within the modd. This parameter was taken
to reflect the degree to which the individud’ s underlying physiology ‘ can support large
numbers of synapses and hence strong interactions between neurons . Lastly MacDondd and
Chrigtiansen (in press) sought to explain individud differencesin linguistic working memory
during sentence processing. Importantly, these authors used connectionist models to argue that
the very notion of domain generd-processing capacity may be faulty, and that any such
cgpacity isinherently linked to (domain-specific) processing and knowledge. (These criticisms
were not extended to the other sense of ‘domain-generdity’ which we distinguished above,
that of executive control). MacDonad and Christiansen proposed that individua differencesin
linguistic working memory derive ether from different levels of experience with language, or
from differences in the accuracy of individuas phonologica representations. Evidence of
correlations between individud differencesin linguistic and spatia working memory (which
would contribute towards a generd factor of intelligence), are accounted for either by shared
processing components across memory systems, or by smilar ‘biology and experience
underlying language comprehension skills and the skills used in navigation through space’ .
Three conclusions can be drawn from the exigting connectionist work on individua
differences. Firg, little work has addressed the generd factor of intelligence. Accounts of
individuad variation are restricted to models of specific domains. Second, existing proposals
for parameters that might explain domain-specific individua variation include the usud
suspects, i.e, the same parameters that we have seen offered to explain variation in cognitive
development and atypica development. These include changes in the number of internd units,
changesin the learning rate, and changesin initid representations, aswell as differencesin the
leved of training determined by some other (modd-) externd source of variance. Thirdly,
athough differencesin initia randomised weight strengths might offer adistinct candidate to

explan (a least domain-specific) individua differences, this hypothesis makes such strong
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assumptions concerning the homogeneity of al other computationa congtraints across

individuals thet it seems unlikely to suffice as a complete theory.

Connectionisam and generd intelligence

How might one proceed to investigate generd intelligence within the connectionist

framework? We envisage at least two possible approaches. First, one could search for a one or
more parametersin a domain-generd processng module that would improve performancein
this module. Since the module is involved in many domains, it would explain corrdated
performance across those domains. Second, one could search for a one or more parameters
present in arange of different domain-specific modules that would improve performancein

each of these domains. Cross-domain corrdationsin individua differences would then be
explained by yoked changes in these ‘golden’ parameter, which had a benign computationdl
influence whatever the problem.

With regard to the first gpproach, the search for a Single parameter in adomain-generd
processng module, recal that we identified two sorts of ‘genera’ system: one gpplicable to
any domain — such as generalised working memory — and the other involved in the contral of a
range of separate processing modules — such as executive function. However, we have seen
that connectionist researchers have argued againgt notions of generdised working memory,

while detailed models of executive function have yet to emerge.

! Paut, for instance, prefersto view individua differences asinvolving not just variation in
numbers of internd units, but dso the dengity of connectivity between layers of units, learning
rate, weight decay, strength of input, and processing rate in recurrent networks (pers. comm.,

May 2000).
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A more ready approach, then, might be to consider whether one parameter can improve
performance across existing models of disparate cognitive domains. For example, correlations
are found between measures of infant preverba cognition in tasks like novelty preference, and
subsequent childhood performance on standardised assessments of intellectud function, as
measured by g-loaded tests such as Raven’ s Progressive Matrices (see Columbo & Frick,
1999). If we had two connectionist models, one of infant novelty preference in categorisation
and one of adult performance on atask like the Progressive Matrices test (roughly, andogica
reasoning about geometrica patterns), then we would be in a position to look for asngle
parameter that could improve performance in both domains.

A comparison of thiskind isindeed possible. Marescha, French & Quinn (2000) have
proposed a developmental mode of infant novelty preference in which asmple network
system learns objects presented to it in categories (defined over perceptua features), and then
shows a hovelty response to new objects outside the category compared to new objects within
the category. Thereis as yet no developmenta model of anaogical reasoning about
geometrica patterns, nor of asystem that performs domain-generd reasoning. Theorists such
as Fodor (2000) have argued that we know 0 little about domain-generd reasoning that
modeling its computations would be premature. However, there exisisamode! of creative
andogy formation in adults in the micro-domain of letter strings (Mitchdll, 1993; see dso
French, 1995). This domain is not too dissmilar from thet of the Ravens progressive matrices
tes, in that the model must produce answers to questions of the form “If abd changesto jki,
what is the analogous change to mirrjjj?” The modd employs a multi-component sysem in
which ‘codelets or micro-agents compete probabilisticaly to construct anovel representation
of the particular anadogy in aworking memory space, relying on a complex network of

domain-specific background knowledge about |etters and the formation of letter sequences. Is
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there a golden parameter that could improve performance in both models, that might make
both more *intelligent’?

In infant categorisation, increased novelty preference predicts later 1Q. The mode would
generate an increase in novety preference with aricher festura representation of the input, a
fagter learning rate (or more training, or more efficient learning), alarger number of internd
processing units, greater unit discriminability, and in arecurrent format, faster settling into a
dable activation state. The adult andlogy modd gains its abilities from many domain-specific
structures and processes, it is less straightforward to predict parameters that will improve its
performance. French (pers. comm., May 2000) suggests the following would produce less
intelligent performance: poor perception of the features of the three input strings, noisein the
system, afailure to resolve competitive processes, afailure of the micro-agentsto focuson
less speculative and more cons stent interpretations over time, and an apriori preference for
the surface attributes of |etter strings (such as identity) compared to deeper structura
information (such as successor). If we rule out knowledge-based possibilities, on the grounds
that performance in eementary cognitive tasks correlates with 1Q, the most likely common
candidate to improve performance in both these modds is the settling of competitive
processes, perhaps mediated by fast-cycling recurrent connections, by noise free processing, or
by processing units with greater discriminability.

In sum, researchers are beginning to propose parameters of connectionist models that
might account for individua differences. All detalled proposas are implicitly aimed towards
specific factors of inteligence, in the main because each mode captures only one micro-
domain. However, asillustrated, the search for computationa factors underlying generd
inteligence is entirdly possible within this framework, and such asearch may yet link qudity

of performance with parameters of underlying computation in different domains.
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Discussion
We began this chapter by highlighting the darification that computationa implementation
brings to verbaly specified theories, and we are now in a postion to revigt thisclam. In the
domain of intelligence, one predominant clam was that differences in cognitive ‘ speed” might
underlie variation between individuals of the same age. A computationa congderation of this
proposal suggested that ‘ speed’ may need to be interpreted in terms of the settling of recurrent
circuitsif it isto be linked to the quality of processing, and perhaps to the activation function
of unitsif it isto be linked to the quality of representations. In the domain of development, one
predominant claim was that increases in ‘ complexity’ drive improved performance over
development. A computationa consideration suggested that one feasible interpretation of this
clam was that complexity corresponds to the number of internd processing units available to
form menta representations at a given point in development. Within the generative
connectionist framework, such numbers increase with development dlowing more
sophisticated representations to be learned. In the domain of atypical disorders, one
predominant claim was that cognitive systems might be restricted by having ‘insufficient
processing resources . A computational consideration in disorders such as autism and dydexia
suggested that one interpretetion of thisclam isin terms of networks with too few internd
processing units to acquire adomain of a given complexity.

In each case, however, work with connectionist networks has also generated new
computationa parameters as potentia explanations of each type of cognitive variability.
Moreover, Snceit isinevitable that connectionist models will become more complex over
time, it islikely that new candidate parameters will emerge. Our conclusion here is smply that
theoretical ideas benefit immensdy by exploration within a computationa framework, where

the effects of parameter variations can be studied closdly in redigtic cognitive domains.
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What light does the work we have reviewed shed on the possible conceptua relation of
individua differences, cognitive development, and atypica development? Table 1 summarises
the different computationa parameters proposed to account for cognitive varidbility. It is

notable that many of the same parameters have been proposed to account for different forms of

variability, for ingance, changes to interna unit numbers and changes to unit activation
functions. In principle, then, one might take connectionist work as supporting the daim thet
different forms of cognitive variability lie on the same dimensions, perhaps representing
different ranges of parameter vaues on those dimensions. However, we suspect that some of
this overlgp represents a historical anomaly, in which investigators have begun to explore each
field of varigbility by atering the first parameters to hand. Currently thereis no coherent
overdl account of cognitive variability within connectionism (indeed, this chapter represents
the first systematic comparison). Time will tell whether the dimensions taken to underlie
individud differences, cognitive development, and atypica devel opment subsequently

diverge.

Table 1. Exigting (independent) proposals for parameters within connectionist models

that may explain forms of cognitive variability (seetext for refer ences of specific

proposals).
Learning Development Atypical Individual Moment to Ageing
development variation moment variation
(attention)
Change Change Different initial Remove
weights weights random weights weights
Change Change Change Remove units

architecture
(internal units)

architecture
(internal units)

architecture
(internal units)

Alter activation
function

Alter activation
function

Alter activation
function

Alter activation
function

Alter learning rate

Alter learning rate

Differences in

Differences in

input/output input/output
representations representations
+ others Is there a
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GOLDEN
domain-general
parameter?

Finaly, we return to a consderaion of intelligence. Throughou, it has become apparent
that the current state of connectionist research focuses on variations within models of specific
abilities, with no good account of generd cognitive varighility. In the previous section, we
gpeculated on the possibility of a Golden parameter that would improve performance whatever
the domain. Indeed Garlick (in press) has recently proposed that learning rate — corresponding
to neurd plagticity — could be just such a parameter. However, Garlick’s supporting
amulations only demonstrated that on three problems, networks with a faster learning rate
required fewer exposures to the training examples to reach celling. There was no indication
that learning rate aone could produce changes in the quality or abstractness of representations.
It remains a possbility that generd intelligence is an emergent property of the interaction of
many specific components (Detterman, 1986), an idea that future modd ling work should
address. Our suspicion, however, istha generd intelligence may turn out to correspond to
vaidions of aparameter in adomain-generd cognitive system that has a‘finger in every pi€,
such as an executive system. (A smilar but more complicated proposa would be that a given
parameter variesin dl parts of the system but only produces changes in intelligence viathe
generd module. This would explain many more diverse corrdations). Our own experience
with modelling leads us to think that the search for a golden computationa parameter exerting
abeneficid effect whatever the domain may be a difficult one, for the mgority of parameter
changes have effects that depend on the nature of the problem domain.

Some examplesilludrate this point. The famous manipulation of interna processng
units turns out to be a parameter where increases help in complex domains but hinder in

smple domains. The addition of noise is hepful in the acquisition of domains with broad
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regularities and irrd evant superficia detall, but damaging when categories must be
distinguished on the basis of fine detail. A fast settling syssem may be an advantage in a
domain that isinternaly consstent, but a hindrance in a domain where many soft congrants
must be combined to produce abest ‘ compromise solution. A fast learning system isan
advantage for instantly storing memories, but a disadvantage when it comes to extracting
prototypica structure across many exemplars.

The precise computationa basis of intelligence remains amystery, but one of the most
promising methods to explore thisissue is through the gpplication of computationa modeling.
It is an gpproach that may yet dlow usto link intelligence to many other forms of cognitive

variability.
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