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Introduction 

When modellers who exploit different approaches get together, there is a tendency to 

extol the virtues of one’s own approach and try to promote it over the approaches of 

others. This can lead to a funny kind of either-or mentality – is it better to be a 

connectionist or a dynamical systems modeller? To us this is truly the wrong question.   

We agree with Smith when she says (this volume, p.xxx), ‘[which approach is better 

is] not an argument much worth having.’ Much more important are the insights that 

each approach offers toward an understanding of the nature of cognition and 

behaviour, and the processes that underlie the development of cognitive and 

behavioural capacities. And of course, there are a number of reasons why any sort of 

either-or decision would be misguided. Neither school of thought is stationary; neither 

school of thought is unitary. Schlesinger (this volume) goes so far as to liken 

connectionism and dynamical systems theory (DST) to organisms evolving over time 

and increasing their adaptive fit to the environment (of explanation); and a cursory 

inspection within each field reveals separate groupings of researchers exploring 

different psychological phenomena with diverse (albeit related) modelling techniques 

and assumptions. 

For example, within DST, one can distinguish (1) Dynamical Field Theory 

(e.g., Thelen, Smith, Schöner, Spencer) focusing on behaviours unfolding in the 

millisecond and second range, such as sensori-motor control in relation to objects; (2) 

Growth Models (e.g., van Geert, Fisher) that focus on phenomena such as vocabulary 

development occurring over days, weeks, months and years, and exploiting linked 

growth functions; and (3) Catastrophe Theory (e.g., van der Maas, Raijmakers) 

focusing on development in reasoning occurring over hours, days, and weeks.  
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Within the connectionist modelling framework, one may also find a great deal 

of diversity. Some researchers use Feedforward backpropagation network models and 

target cognitive development over days, weeks, months, and years in domains such as 

language, semantics, and reasoning (McClelland, Plunkett, Plaut, Thomas) while 

others employ constructivist networks (most notably Schultz and colleagues). Some 

researchers use Recurrent attractor models and target both behaviour unfolding in the 

moment, and development over weeks, months, and years, in domains such grammar 

development and objected directed behaviour (Elman, McClelland, Plaut, Mareschal, 

Munakata, Thomas). There are also those who use what might be called 

Neurocomputational models, targeting specific neural structures such as the pre-

frontal cortex, basal ganglia, or the hippocampus (Cohen, O’Reilly, McClelland).    

These choices are not based on doctrine, and do not reflect doctrinal differences; 

rather they are generally pragmatic choices. The goal is to capture certain key features 

of human performance and human development – its experience-dependence, its 

partial but not complete tendency toward regularity, its graded sensitivity to various 

variables, and many other key features. 

For us, the aim of juxtaposing connectionist and DST approaches within the 

same volume is to identify the common themes of (successful) models of 

developmental phenomena, so that future work can benefit from the combined 

insights of both approaches. These themes will lie at the heart of any new theory of 

development, and their future evolution will, we suggest, be enhanced by maintained 

interaction among connectionist modellers and dynamical systems researchers.   

It is true that at times a tension has existed between connectionism and DST, 

and it is instructive to consider why this should be the case. But in what follows, one 

should remember that the similarities between the two approaches far outweigh their 
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differences. In this chapter, we argue that much of the tension in fact arises from a 

tenet that the two approaches share: both rely on the explicit quantitative instantiation 

of ideas in mathematical or computational models. We argue that the use of such 

models is responsible for much of the theoretical progress generated by 

connectionism and DST beyond the theories of Good Old-Fashioned Cognitive 

Development (GOFCD) (see Oaks, Newcombe & Plumert, this volume, for an 

exposition of those theories); but we also argue that the use of explicit quantitative 

models brings with it a new set of problems. In the next section, we discuss several 

consequences of the use of such models that are pertinent to any potential integration 

of dynamical and connectionist approaches. To illustrate these ideas, we then consider 

three points of apparent disagreement between connectionism and DST. These 

include the nature of children’s reasoning on the Piagetian balance scale task, the 

importance of embodiment, and the role of stability. We finish with a brief summary 

of the themes that we imagine will feature in any future integration of connectionist 

and dynamical systems approaches. We believe that they are all consistent with the 

current direction of connectionist theorising. 

 

Explicit quantitative models and cognitive development 

Several concepts have gained greater prominence in developmental theory through the 

work of connectionist and DST researchers. These include the idea of emergence; the 

demonstration that relatively sudden (apparently stage-like) transitions in behaviour 

can arise from continuously changing underlying mechanisms; the idea that instability 

or variability is often associated with change; and that behavioural patterns may arise 

from the competition between latent and active representations of knowledge.  
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Some have doubted that these ideas are genuinely new, arguing instead that 

connectionism and DST have simply served to shift the relative emphasis among pre-

existing ideas in our understanding of cognitive development (Oaks, Newcombe, & 

Plumert, this volume). In some sense, it is not important to establish who-thought-of-

the-idea-first (in most cases, it happened a very long time ago). Instead, we argue that 

the core contribution of connectionism and DST has been their reliance on explicit 

quantitative formulation. These methods have provided a new and sharper set of tools 

to drive forward theoretical progress in our field. In many scientific fields, explicit 

quantitative methods have historically followed an earlier phase of exploratory data 

collection that was guided by informally specified theories. Progress via this route 

often asymptotes because the theories aren’t sufficiently explicit to know what exactly 

they predict. Moreover, their terminology frequently glosses over deeper conceptual 

problems. For example, a verbal theory may claim that different rules appear at 

different ages in children’s reasoning on the balance scale task, but this theory hides 

the serious problem of specifying the nature of the experience-driven (or even 

maturational) mechanisms that can generate new rules. Ultimately, an explanatory 

theory must strive for mechanism, that is, a way in which behaviour can be explained 

by the operation of the causes that shape it. 

It is here that explicit quantitative models of development, be they 

connectionist models, dynamical systems models, or some other kind, offer so many 

advantages. The advantages have been much discussed elsewhere (see, e.g., Elman et 

al., 1996; Mareschal & Thomas, 2007; McClelland & Rumelhart, 1986; Munakata & 

McClelland, 2003; Thomas & McClelland, in press). Here we simply allude to a few 

of them. Explicit quantitative models necessitate that the theorist be much more 

specific about the causal entities in the theory – the same verbal term cannot be used 
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(unwittingly) in subtly different ways. Unexpected behaviours may emerge from the 

complex interactions of many simple components, along with the structure of the 

problem domain. A formal model can test whether the theory as specified indeed 

generates the behaviour it is supposed to explain at a quantitative level. Models can 

unify experimental data, for instance bringing together data from development, adult 

function, and breakdown with reference to a single well-specified system. Models can 

generate new predictions to be tested against quantitative data. They can produce 

general explanations by demonstrating how a small set of processing principles, when 

combined with the features of particular cognitive domains, can account for 

experimental data across a range of behaviours. Where new models are controversial, 

they stimulate further theoretically focused data collection, which advances the field. 

And so on. 

A key point about explicit quantitative models is that they are not generally 

intended to provide a detailed account of all aspects of a situation or phenomenon.   

Rather, their role is to help us understand the consequences of certain constellations of 

assumptions. Central to the effort to achieve understanding is the role of 

simplification. All models make certain simplifications in order to focus on explaining 

the phenomenon of interest. This may mean focusing on a very restricted range of 

task situations and experiences relevant to them (for example, in the case of the 

balance scale task, there is a focus on experience with balance) and considering 

change only over a certain timescale. Finer time scales believed to involve a graded 

and continuous real-time process may be replaced with single computations that are 

essentially treated as occurring instantaneously. Simplifications will often also be 

made in the way the environment is represented. For example, in the A-not-B task, the 

exact perceptual features of the objects that are manipulated in front of the child are 
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not all held to be important to the phenomenon, so a model may provide only a single 

dimension for the presence or absence of each object. The art of using explicit 

quantitative models is to make simplifications only in those aspects of the cognitive 

domain (regarding representation, process, or environment) that are not considered to 

be crucial in addressing the focal issues under consideration. Decisions about what 

these issues are and which simplifications are best to address them are themselves 

reflections of scientific judgment, and they are subject to disagreement – not all 

researchers find the same aspect of a particular phenomenon to be its most central 

feature. Furthermore, there are natural differences among investigators in the factors 

that contribute most importantly to the explanation of a phenomenon. Thus, there is 

no single ‘correct’ set of simplifications; and even if there were, there is no known 

algorithm for discovering what they are. This is why explicit quantitative modelling is 

for us best understood as an ongoing process of exploration. 

The central role of simplification adds some complexity to theory 

development, in particular in evaluating the success and failure of particular models. 

When a model works, what does this mean for the underlying theoretical 

commitments from which it was derived? If a model appears to succeed in capturing 

the development of some target phenomenon, is this only because it has included 

unrealistic simplifications in its design? If a model fails, is this fatal for the underlying 

theoretical perspective that it attempts to embody? Often, it may not be fully clear 

what those commitments actually are – thus assumptions that may be introduced 

either as simplifications or because the modeller did not choose to focus on a 

particular aspect of the phenomenon under consideration may appear to other readers 

to be matters of theory or principle. The ensuing dialog is in our view a healthy 
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process that, carried on over the course of several years, often leads to considerable 

progress. 

It is here, however, that we come to the source of the tension that exists 

between connectionism and DST. Frequently, connectionist and DST models include 

different simplifications because they are targeting different issues. The 

simplifications include differences in the timescales over which developmental 

change is examined; the relative emphasis on the role of learning (structural 

adaptations) versus priming (temporally continuous activation states) in modulating 

behaviour; simplifications regarding the importance of the structure of the problem 

domain in driving behaviour (e.g., representations in connectionist models are 

typically of higher dimensionality than in DST and place greater emphasis on the role 

of experience in the problem domain in shaping behaviour); the relative emphasis 

placed on the role of embodiment; the level of abstraction encoded in representations; 

and the roles of variability and stability in representational states. Indeed, in looking 

back across two decades of connectionist and DST models, it is striking how often 

these models have employed complementary simplifications. However, this may not 

reflect any fundamental theoretical incompatibilities; it may instead reflect differences 

in the specific issues and phenomena that are the focus of the modeller’s attention. 

The problem is not restricted to comparisons between connectionist models 

and DST. Model simplifications can vary as much within the approaches as between 

them.  One solution is to encourage researchers to be as clear as possible about what 

they take to be the core assumptions and what they consider to be simplifications 

introduced only for the sake of tractability and transparency. Then it will become 

more apparent where actual theoretically important points of contention lie, and which 

differences between models merely reflect differences in where the modellers have 
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chosen to make simplifications. What might such a list look like? As an exercise, in 

Box 1 we list the simplifications made in one connectionist model of the development 

of syntax comprehension (Thomas & Redington, 2004), along with the rationale for 

making them. If there were more efforts of this type, it would make it easier for 

researchers to be clearer about points of principle and points of strategic 

simplification. This in turn should lead eventually to a clarification of exactly what 

aspects of a particular model are responsible for its successes and/or failures. Of 

course, even listing everything relevant in such a table is no easy task, since modellers 

may not always have in the focus of their attention all the factors that could 

potentially be relevant to their simulations. And knowing which factors are crucial for 

success and failure is even harder. In general, we adopt simplification for the sake of 

tractability – were the simplifications to be replaced, the model could become 

intractable, making it in fact very difficult to know just how important the role of the 

simplification is. 

The complementarity between models frequently hinders a comparison 

between connectionism and DST. However, in support of our claim that these 

approaches have much in common, when the respective researchers have turned their 

minds to explaining the same developmental phenomenon, their models have tended 

to converge. The A-not-B error in infants provides one such case (Smith, this volume; 

Morton & Munakata, this volume). As we shall shortly see, both connectionist and 

DST models of this phenomenon employ uni-dimensional representations of objects 

and motor actions; both employ settling attractor states driven by recurrent 

connections; and both explain behaviours in terms of a competition between states 

induced by a sequence of previously encountered situations and the most recent event 
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witnessed. First, we turn to consider another developmental phenomenon where 

connectionist and dynamical approaches have collided. 

------------------------------ 

Insert Box 1 around here 

            ------------------------------ 

 

Connectionist and dynamical modelling of children’s development on the 

balance scale task 

As discussed in McClelland and Vallabha (this volume), connectionist models often 

focus on the overall time course of development, neglecting some of the details of 

shorter term processing. In the context of modelling the balance scale task, this focus 

on overall developmental trends has in part led to a neglect of the question: exactly 

how well do these models capture the details of transitions between stages? Van der 

Maas and Raijmakers (this volume), researchers who use catastrophe theory as a 

framework for understanding stage transitions, have criticized connectionist models 

for not exhibiting the abrupt transitions between stages of the balance scale task that 

they claim are present in experimental data. In their view, these transitions exhibit 

several catastrophe flags that they see as indicative of underlying phase transitions in 

behaviour. Looking for evidence of such catastrophe flags in the McClelland (1989, 

1995) balance scale model, they argue that these flags are not exhibited in the model’s 

behaviour (Raijmakers, van Koten, & Molenaar, 1996).  

 There have been many interesting contributions made in the application of 

catastrophe theory to the balance scale task and in the related effort at analysis of the 

connectionist model’s ability to account for these effects (see also Jansen & van der 

Maas, 1997; 2001; 2002; Quinlan et al., 2007). Indeed, the McClelland (1989, 1995) 
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model does have some shortcomings in accounting for several aspects of the relevant 

experimental data. However, these shortcomings arise from simplifications in the 

model in relation to its initial focus on the longer time scale over which 

developmental change occurs in tasks such as the balance scale. Are these 

shortcomings deficiencies in the underlying theory embodied in the model? There can 

be several different perspectives on this issue. We will come back to this question 

after observing that recent extensions to the McClelland model (1989, 1995), which 

incorporate shorter-term dynamics into the architecture, show that it is able to exhibit 

the indicators of the transitions in development that van der Maas and Raijmakers 

(this volume) have suggested it cannot capture (Schapiro & McClelland, in 

preparation). 

 The data recently modelled are from Experiment 1 of Jansen and van der Maas 

(2001). A paper-and-pencil version of the balance scale task was administered to over 

300 children between the ages of 6 and 10. The study contained a pre- and post-test to 

assess children’s performance on several items of various problem types. Between the 

pre- and post-tests the investigators inserted a ‘hysteresis test’, a special series of 

items progressing stepwise from a minimum to a maximum difference in the distance 

of the weights from the fulcrum on the two sides of the scale, then stepping back 

down from the maximum to the minimum again. Key findings from the study were a 

tendency toward bimodality in test scores (most children got all or none of the 

distance problems correct on the pre-test and most got all or none of the distance 

problems correct on the post-test); an upward shift in the distributions of scores from 

pre- to post-test; and the presence of transitions in performance during the hysteresis 

test. 
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 The original McClelland model had some degree of bimodality in test scores, 

but no shift in the distributions of scores from pre- to post-test and no transitions 

during the hysteresis test. There are three extensions to the model, however, which 

allow a good fit to nearly all aspects of the Jansen and van der Maas (2001) data. The 

first is to allow the model’s own output to serve as a teaching signal that can lead to a 

change in behaviour. The lack of a mechanism addressing how change can occur 

without a teaching signal was not explicitly recognized as a simplification in the 

initial formulation of the model; the focus was on how experience with situations 

involving weight and distance might lead to progress in understanding balance scales 

and an apparent succession of developmental stages. However, it is clear that when 

we behave, the responses we make can lead to changes in our behaviour, and any 

satisfactory model should provide a mechanism that makes this possible. To address 

this, Schapiro and McClelland used the network’s output for a given problem as the 

basis for assigning it a corresponding teaching signal. This assignment was based on 

the same discrete categorization of the network’s continuous output that was used to 

assign one of the three possible responses to the network’s output. For example, if the 

activation of the left output unit was .333 or more greater than the activation of the 

right output unit, the output was scored ‘left side down’ and a teaching signal of 1 for 

the left output unit and 0 for the right output unit was assigned. The other two 

extensions were (a) the incorporation of noise, or intrinsic variability, into the model, 

and (b) the use of the teaching signal to modulate the ‘gain’ on the inputs to the 

hidden layers in the model during network testing. Concerning the first of these 

extensions, we drew on earlier work (McClelland, 1991; 1993; Movellan & 

McClelland, 2001; Usher & McClelland, 2001) indicating the importance of including 

intrinsic variability in the activations of units throughout the network.  Based on this 
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work, a sample of normally distributed zero-mean Gaussian noise was added to a 

given unit’s net input before its activation was calculated. The addition of noise is an 

example of a more detailed level of modelling that can be quite important but is 

missed in a model that focuses only on overall developmental patterns. 

Regarding the second extension, the adjustment of gain has been proposed as 

one way of implementing an attention-like mechanism in connectionist networks 

(Kruschke & Movellan, 1991; Kruschke, 1992).  The ‘gain’ is simply a scalar 

multiplier that scales the net input to the hidden units in the model. An increase in 

gain thus corresponds to an increased sensitivity to the inputs coming to the affected 

units. Following Kruschke (1992), we adopted the idea that dimensional attention, 

operationalized as an adjustment to a dimension-specific gain parameter, might be 

adjusted using the back-propagated error signal, which in this case is derived from the 

teaching signal generated by the network’s own output.  Adjustment to the gain 

variable provides one possible mechanism that may explain changes in children’s 

sensitivity to the distance dimension during testing.  

The model still contains simplifications. In other work, we and many other 

connectionists have assumed that processing within connectionist networks is itself a 

real-time continuous process; indeed, it was with this specific assumption that 

McClelland (1979) first began to explore connectionist models, and this assumption is 

part of the set of basic processing principles that McClelland (1993) later proposed. 

But we have maintained the simplification of relying on a single-pass feedforward 

computation in the present extension of the McClelland (1989) balance scale model.  

The addition of a self-generated teacher, and the use of gain and noise, seem to be 

sufficient to produce all the evidence of catastrophe-like transitions in behaviour 

found in the data from Jansen and van der Maas (2001), as discussed in Schapiro and 
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McClelland (in preparation), including those enumerated above. In particular, the 

model showed a pattern of bimodality quite similar to that seen in the Jansen and van 

der Maas data. It also showed a progression to higher scores from pre- to post-test, 

and a pattern of transitions in the hysteresis test quite similar to that observed by 

Jansen and van der Maas, including the tendency they viewed as most clearly 

demonstrative of a catastrophe: the so-called ‘delay’ pattern, in which the participant 

switches from making an incorrect ‘balance’ response to a correct distance-based 

response at some point during the sequence of increasing distance problems, and then 

persists in making the correct response on the way back down through the series of 

distances past the point of the switch-over during the earlier increasing sequence. 

It is interesting to consider the consequences of the model’s ability to account 

for the presence of these catastrophe flags. Is there really a phase transition happening 

in the model? Our inclination is to say no; the delay patterns displayed by the model 

(and many of the so-called ‘sudden-jump’ patterns, see Schapiro and McClelland for 

discussion) appear to be the result of relatively small changes in unit activations. 

In fact, there seem to be several indications in the Jansen and van der Maas (2001) 

data that the transitions exhibited by many of the children tested are actually more 

continuous than the presence of catastrophe flags might at first suggest. First, both on 

the pre-test and the post-test, there are many children who get some but not all 

distance problems correct. The distance problems these children are most likely to get 

correct involve larger variations of distance. In other work, Jansen and van der Maas 

(2002) actually identified such a pattern as characterising a group of children, and 

treated it, as we do, as a developmental phase that lies between the more categorical 

patterns associated with what Siegler (1976) called “rule 1” (relying only on weight) 

and “rule 2” (relying on distance only when weights are equal). Furthermore, about 
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half of the transitions to the categorical rule 2 pattern on the post-test are from 

intermediate patterns on the pre-test, and most of the transitions from the rule 1 

pattern on the pre-test are to an intermediate pattern on the post-test. These results 

suggest that many children have a graded sensitivity to the distance cue which 

increases over the course of the experiment, instead of a sudden realization that 

distance is important prior to showing no previous awareness of the distance 

dimension. Such a change in an underlying graded pattern is, of course, the core claim 

of the connectionist model, distinguishing it from approaches based on the actual 

representation and use of categorical rules, as in models such as those of van Rijn, van 

Someren, and van der Maas (2003) or Klahr and Siegler (1978). 

 Having said all this, there do seem to be a small number of cases of children 

who really do make a bigger jump, moving from taking only weight into account on 

all the problems on the pre-test to consistently relying on distance in the post-test 

when the weight on both sides is equal. This pattern, as well as some large jump 

patterns seen in the hysteresis test, is sometimes seen even in our model, but is also 

consistent with the possibility that more categorical or stage-like change may be 

occurring in a small number of children. Even so, there appears to be a persistent 

tendency to see performance in this task as essentially more rule-like, and transitions 

as more discrete or categorical, than the data actually warrant. Several phenomena we 

have considered, and others that are not reviewed here (see McClelland, 1995, for 

more discussion) point to an underlying continuity, especially around points of 

transition, at least for a substantial proportion of participants. 

What is of fundamental importance for the present analysis is the observation 

that, by replacing simplifying assumptions (such as noise-free processing) with 

assumptions that are considered crucial in dynamical systems research (such as 
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intrinsic variability) we have increased the extent to which the connectionist models 

can be successful. The absence of intrinsic variability from the McClelland (1989) 

model was not a point of principle, but only one of simplification. The successful 

outcome of its reintroduction, prompted by findings offered by proponents of the 

dynamical systems approach, points toward a future convergence in which the 

principles on which both approaches have focused are seen as part of an integrated 

and improved approach that exploits the key insights of both. 

 

Embodiment 

Corbetta (this volume, p.xxx) illustrates the emphasis that DST frequently places on 

embodiment: ‘the body with its physical properties is the vital liaison between the 

mind and the outer world and this liaison is constant throughout the lifespan as we 

grow and interact with the environment’. In this view, we cannot escape the fact that 

the mind is encapsulated within a body. Moreover, this body undergoes a series of 

changes throughout life – particularly during early development as we learn to carry 

out basic actions, such as reaching, grasping, and walking. The extent to which our 

physical status constrains the formulation of our intentions to act upon the outer world 

is a topic of debate, and is intimately linked to the nature or indeed actual existence of 

internal representations. 

There is a range of different perspectives on the nature of embodiment. One 

perspective, perhaps the middle of the road between extreme representationalist and 

anti-representationalist approaches, is that embodiment acts as an additional constraint 

on cognitive processing (Mareschal, Johnson, Sirois, Spratling, Thomas, & 

Westerman, 2007). This stance recognises the contribution of our physical status, 

whilst at the same time not rejecting out of hand or devaluing the significance of 
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internal representations – a point of contention between connectionist and DST 

approaches to cognition. This perspective is consistent with the ideas of Glenberg 

(1997), who argues that representations held in memory reflect the structure of the 

environment – making them analogical or embodied – because they are mapped to the 

outside world. This allows the representation of perceptual states to become 

meaningful in themselves through their use in interpreting the environment, making 

our own actions central to our understanding. Evidence for physical constraints in our 

internal representations can be found in studies investigating the correlation between 

real rotary movements and mental rotation. These studies concluded that the same 

laws of motion govern mental rotation as actual movement (Decety, 1996; Jeannerod, 

1995; Georgopoulos & Pellizzer, 1995; Wexler, Kosslyn & Berthoz, 1998). The role 

of embodiment can be found even under conditions that do not directly invoke any 

physical aspects of task performance. For example, when van den Bergh, Vrana and 

Eelan (1990) presented letter pairs to typists and non-typists and asked them to 

express preferences between competing pairs, they found that typists preferred letter 

pairs that were typed with two different fingers to letter pairs that could be typed with 

the same finger. The non-typists showed no such preference. Judgements were 

implicit, in the sense that the typists were unable to verbalise an explanation for their 

preference. Van den Bergh et al. concluded that motor programme information is 

encoded within the representations for letter pairs, which then influences the selection 

of the preferred pair for typists. 

Consideration of embodiment can certainly lead to elegant explanations of 

phenomena that must be explained very differently (and perhaps incorrectly) from a 

cognitive or neurocomputational viewpoint. For example, Thelen and Fisher’s (1982) 

embodied account of the disappearance of infants’ stepping reflex is that as the legs 
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grow heavy with subcutaneous fat during development, for a time the infant does not 

have the strength to lift them when supported upright. This contrasts with an 

alternative explanation that the disappearance reflects a process of cortical inhibition 

of the reflex. Thelen (1986) later found evidence against the inhibition theory by 

demonstrating that the infants could still make stepping movements under certain 

conditions, such as when are placed on a treadmill. 

Given the potential insights that embodied accounts offer, why have 

connectionists so often chosen to simplify their models by excluding the constraints of 

embodiment? Why have they instead construed developmental problems in terms of 

learning transformations between abstract (disembodied) representational states? In 

many cases, connectionists would argue that this is because the phenomena they are 

targeting are those where embodiment is less relevant – for example, in the study of 

language acquisition. Indeed, when DST researchers turned their attention to the 

sensori-motor basis of learning object labels in infancy, they too found that the 

infants’ application of these labels generalised beyond the sensori-motor 

circumstances of acquisition. Object labels therefore seem to require a more abstract 

level of encoding than sensory-motor links (see Smith, this volume). The role of 

embodiment in constraining the design of explicit quantitative models becomes more 

apparent when we compare connectionist and DST models of precisely the same 

phenomenon. For this, we turn to the A-not-B task. 

The A-not-B task is a classic Piagetian task, in which infants demonstrate 

perseverative reaching behaviour. The typical task set-up consists of two covered 

hiding locations (A and B, respectively). During ‘A’ trials, the experimenter waves a 

toy near location A and hides the toy under the cover in that location. The infant then 

reaches for the toy. This procedure is repeated for several trials in location A. 
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Following these trials, the toy is then waved near and hidden in location B. Typically, 

8- to 11-month-old infants will (erroneously) continue to reach to location A to 

retrieve the toy on these ‘B’ trials (Piaget 1954; Diamond, 1985). Interestingly, 

infants have been found to gaze at the correct B location on ‘B’ trials but still reach 

perseveratively to location A (Diamond, 1985). 

The connectionist account of perseverative reaching (Morton & Munakata, 

this volume) focuses on a competition between active and latent internal 

representations that link object locations to actions such as reaching and gazing. 

Active representations correspond to sustained neuronal firing for current events, 

implemented through recurrent connectivity. By contrast, latent representations 

correspond to a longer-term memory of previous events, implemented through 

experience-dependent change to connection weights. During ‘A’ trials, the model 

learns that objects will be at the A location, thereby building up a latent representation 

that biases interest to that location and explains correct reaching performance on the 

A trials. On the B trial, the system must overcome its bias to reach to the A location 

based on the observation that the object is now at B. During early development, the 

strength of recurrent connections for maintaining active representations of current 

events is low. If there is a delay between the observation and the opportunity to reach 

for the object, infants may be unable to overcome the latent bias of location ‘A’ on B 

trials – resulting in perseverative reaching. Across development, the strength of 

recurrent connectivity is increased, allowing active representations to be maintained 

in memory with a sufficient strength to override the bias of latent representations – 

resulting in a decrease in perseverative reaching and correct reaching to B. 

The DST account, by contrast, explains perseverative reaching in the A-not-B 

task in terms of the infants’ inability to break the “motor habit” of reaching towards 
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location A on ‘B’ trials. The crucial difference is a claim that the key internal state is 

an embodied motor programme for reaching to a certain location in space. Infants 

learn a motor programme during ‘A’ trials and keep on using it even when no longer 

appropriate. There is considerable debate about the nature of motor programmes and 

the extent to which they are effector specific (for example, one’s signature looks 

broadly similar if one writes it very small on a piece of paper or large on a 

whiteboard, even though different muscle groups are involved in the producing the 

movements in each case). Nevertheless, the claim of motor specificity is motivated by 

empirical data that indicate that the A-not-B error can occur even when infants are 

simply reaching to visible covers over empty containers (Smith, McLin, Titzer, & 

Thelen, 1995) and can be eliminated by altering the infant’s body position between 

the A trials and the B trial (Smith et al., 1999; Smith, this volume). The DST model 

focuses on the evolution of activity in a dynamic field representation of the motor 

programme over time. The dynamic field is influenced by the current sensory input, 

the most recent event, and long-term memories of previous reaches. When the field’s 

activity exceeds threshold, the location of the peak activity drives a reach to a certain 

location in space (either the A or B location, in this case). Perseverative reaching 

occurs when the long-term memory comes to dominate the persisting activation from 

the last event (the B trial). Errors are overcome across development through a change 

to an external control parameter h, which modifies the influence of the reaching bias 

built up during previous trials (Thelen, Schöner, Scheier & Smith, 2001). 

Now these accounts do place a different emphasis on the role of embodiment 

in how the activation states of the models are characterized – but underneath the 

hood, how different are they? Both formalizations consist of two forms of memory 

that may be placed in competition; both involve an in-the-moment memory system 
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that involves cycling activation in a recurrent computational circuit; both utilize 

(externally applied) parameter changes that affect the strength of active 

representations of the cue on the B-trial in order to capture developmental change in 

levels of perseveration; both simplify the encoding of objects, spatial locations, and 

motor actions to uni-dimensional variables (representing, for example, a reach to 

location A). They differ as follows. The connectionist model includes a learning 

mechanism for building up the latent representations of A-trials, whilst the DST 

model assumes the build-up occurs without providing a mechanism for it. The 

dynamics of the DST model enable it to account for the trial-by-trial stochasticity 

shown by infants (Thelen et al., 2001) while the connectionist model does not.  

It appears the primary role of embodiment in the DST model is in its 

characterisation of the dynamic field as encoding a motor programme, while the 

connectionist account includes more abstract internal representational states that 

intervene between sensory systems and motor behaviour. Neither model actually 

incorporates any biomechanical aspects of reaching. Is the difference between the 

models just skin deep, then? Are these similar computational systems merely labelled 

in different ways, with no body in sight? Perhaps. But the difference in labelling 

nevertheless reflects the theoretical concerns of each set of researchers and it results 

in real consequences for the interface between model, theory, and empirical data. It 

leads the DST researchers to focus on bodily manipulations to the infant, on 

manipulations to the sensory properties of the objects, and on situations in which the 

role of motor habits may be adaptive in learning, as avenues of further research of the 

A-not-B phenomenon (Smith, this volume). By contract, connectionist researchers 

have focused on the graded nature of the internal memory representations without 

particular regard for their content, and therefore their potential to drive different 
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behaviours (e.g., comparing reaching behaviour versus gaze behaviour) and to 

account for perseveration in other tasks (such as children’s rule-guided behaviour in 

card-sorting and speech interpretation tasks; Morton & Munakata, this volume). In the 

example of A-not-B errors, then, the common developmental phenomenon has led 

connectionist and DST researchers to include many of the same assumptions and 

simplifications into their explicit quantitative models, whilst retaining subtly different 

emphases in the theories that these models are claimed to instantiate. It seems likely 

that a synthesis of the two would lead to a more complete model than either of the 

current models taken on their own. 

 

Stability 

Many connectionist models of development to date have explored the ability of 

associative neural networks to learn transformations between representations that 

encode cognitive domains. For example, infamously, Rumelhart and McClelland 

(1986a) trained a network to learn the relationship between phonological 

representations of the present and past tense of English verbs, and explored whether it 

would go through the same stages of development that children exhibit when learning 

this feature of language. Other examples can be found in models of reasoning, 

memory and category/concept formation (see Elman et al., 1996). 

If one puts the issue of embodiment to one side, DST researchers have 

expressed further reservations about models of this type. First, as Schlesinger points 

out, connectionist models have rarely investigated timescales at the fast end of ‘real-

time’ (i.e., milliseconds), despite being inspired by the concept of neural processing 

that operates over such timescales (Schlesinger, this volume). Moreover, it is far from 

obvious that the abstract, stable representations employed in some connectionist 
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models of development are a realistic starting assumption. The real cognitive system 

is in a continuous state of flux – the world usually offers a continually shifting stream 

of sensory data, much of it a consequence of the individual’s own actions in the 

world. Perhaps in downplaying sensori-motor contributions to cognition, 

connectionists have created artificial, neat-and-tidy, abstract problems for their 

networks to solve, problems that are nothing like those faced by the child embedded 

in his or her own, continuously unfolding subjective world. Indeed, perhaps the 

leisurely timescales over which these connectionist models operate are simply too 

blunt to reveal the key phenomena that characterise developmental change. 

Stability is a concept that is central to dynamic systems theory. Schöner (this 

volume) describes how cycling activation in recurrent circuits can produce 

representational states that are stable over time, both in being self-sustaining and 

(potentially, where appropriate) robust to perturbations. Given a gradual change in 

external input, the system can appear stable up until a certain point, when it may flip 

into another stable pattern of behaviour. Changes in control parameters in the system 

may have similar effects, leading the system to change qualitatively in nature despite 

the quantitative (and perhaps linear) change in the control parameter. Moreover, 

before a flip takes place, it may be anticipated by a period of increased instability. 

Stability and instability in behaviour therefore themselves become a focus of 

investigation in the study of developmental change. These arguments are often 

illustrated with the example of motor control but are also viewed as pertinent to the 

development of higher cognition (see, e.g., van der Maas & Raijmaker’s analysis of 

children’s reasoning, this volume). 

As before, our interest in this chapter is to consider whether there is a 

fundamental difference between connectionism and DST on the issue of stability, or 
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whether the difference arises from model simplifications made in the service of 

explaining divergent developmental phenomena. Our sense here is very much the 

latter, and perhaps even that connectionist models are better situated to address issues 

of stability in development. 

Mareschal, Leech and Cooper (this volume) convincingly argue that much of 

the disagreement on the centrality of stability lies in the different historical origins of 

connectionism and DST. Connectionism arose from the study of neural memory 

systems, where the objective is the retrieval of a stable representation of a memory 

given an appropriate cue. By contrast, DST arose from the study of motor control, 

where the task involves a continuous computational loop of motor commands given 

the goal and the unfolding sensory information that is (in part) the consequence of 

previous motor commands. In this domain, the adjustments are continuous. 

It is true that connectionist models have tended to examine developmental 

change over longer time periods, simplifying away questions of change over shorter 

time ranges. Thus, the model of sentence comprehension described in Box 1 assumes 

the existence of distinct representations of individual words and has a temporal 

dimension specified by the rate at which words arrive. It is not clear what is to be 

gained in such a model by including the millisecond range, other than to force 

attention onto the issues of phoneme recognition and word recognition and away from 

those touching on sentence comprehension. 

However, importantly, connectionist models can and do operate at finer 

timescales. Simple recurrent models of the type proposed by Elman (1991) allow the 

researcher to study developmental change over months as the model adapts to the 

training set. They also allow the researcher to study the on-line recurrent processing 

dynamics as each subsequent word is processed in the sentence. Even simple 
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feedforward networks can be treated in this way, by allowing activation to build up in 

a cascading fashion rather than to be computed in a single pass (Cohen, Dunbar, & 

McClelland, 1990; McClelland, 1979). In these models, the chosen timescale can be 

arbitrarily small as mathematically, the difference equations used in connectionist 

models approach the differential equations of DST. The temporally extended versions 

of connectionist models have allowed researchers to examine the consequences of 

persisting activation states in networks, for example to explain short-term priming 

effects in word recognition (Thomas, 1997). Mareschal et al. (this volume) use 

precisely this approach in an attractor network to model the development of 

analogical reasoning in children. If the model is given an initial pair (“Cat is to kitten 

as . . .”), cycling activation causes the network to settle into a state that encodes the 

implicit relation (“parent_of”). When a new first term is applied to the network’s 

input units (“ . . . Dog is to . . .”), this input combines with the persisting activation 

state to settle into the solution to the analogy at the output (“Puppy”). 

Crucially, the Mareschal et al. model demonstrates how connectionist models 

offer a wider perspective than the short-range dynamics of behaviour considered in 

DST. This is because the settling activation states (attractors) exhibited by a recurrent 

connectionist network are created by a longer-term, experience-dependent 

development process. The Mareschal et al. model is trained on the relationship 

between pairs of terms (“Cat is parent of kitten”). As it develops this conceptual 

knowledge, the nature of the analogies it can draw ‘in the moment’ alters. The model 

exhibits a developmental phenomenon known as the relational shift, in which its 

analogies move from being driven by perceptual similarities to relational similarities 

as a function of the knowledge that has been acquired. In the same vein, Thomas 

(1997) demonstrated how short-term and long-term word priming effects could be 
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reconciled via considering the first to be a consequence of persisting activation states 

in the word recognition system and the second a consequence of experience-

dependent structural (weight) change produced by recognising words. DST examines 

how the attractor states that it builds into its equations impact on behaviour, but 

connectionism is able to show how these dynamic properties arise as a consequence 

of change over a longer time period – or as McClelland and Vallabha put it, how new 

macroscopic behavioural properties emerge from microscopic mechanistic changes 

within adaptive systems (McClelland & Vallabha, this volume). Connectionist 

models, therefore, offer a potential bridge between timescales – even if connectionist 

researchers have often focused their attention on developmental changes occurring at 

longer timescales. As previously discussed, a similar bridging of timescales has also 

been achieved by Schapiro and McClelland’s augmented version of the earlier 

McClelland (1989) balance scale model. 

Does the issue of stability solely revolve around the question of incompatible 

model simplifications? We would argue that there are a number of areas where it does 

not. First, as in the case of embodiment, empirical data about stability – of input, of 

representations – are additional constraints that must influence the construction of 

models. For the computation of syntactic relations in sentences, it may be reasonable 

to assume some prior availability of stable word level information. But in other 

domains, particularly those closer to the senses or to motor interfaces, an assumption 

of stability may be more questionable. 

Second, connectionism usually commits to a richer representation of 

knowledge than the uni-dimensional variables present in DST models. This has led 

connectionism to face what is called the stability-plasticity dilemma, that is, how new 

knowledge may be incorporated into an information processing system while 
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preserving existing knowledge (see Richardson & Thomas, in press, for discussion). 

The stability-plasticity dilemma has particular importance where the individual’s 

environment is non-stationary – that is, where the information content of experience 

tends to change over time. In models employing distributed representations, the 

stability of knowledge may be especially problematic and necessitate intermediate 

memory systems to ‘damp’ the changes on long-term knowledge wrought by fleeting, 

in-the-moment experiences (see, e.g., McClelland, McNaughton & O’Reilly, 1995). 

Lastly, some connectionist theorists have taken the issue of stability very 

seriously and argued that the presence or absence of stability in a dynamic 

representational state may have real consequences for the experiential states of the 

organism. For example, O’Brien and Opie (1999) proposed that stable, explicit, neural 

representations are the only states that contribute to the contents of consciousness. 

These authors further proposed that the connectivity within parallel distributed 

processing systems provides a set of ‘potentially-explicit’ representations that may 

influence future behaviour, an idea similar to that of latent representations discussed 

previously in the context of the A-not-B models (see Morton & Munakata, this 

volume). If stability is indeed key in generating phenomenal states, this leads to the 

intriguing idea that the continuously unfolding processes characterised by DST in 

domains such as motor control may be causally efficacious but not contribute to the 

contents of consciousness. 

 

Conclusion 

We believe a constructive integration of connectionist and DST approaches is not 

only possible but desirable. It will be driven beyond the borders of GOFCD by the use 

of explicit quantitative models championed by connectionism and DST. We have 
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argued that such models may appear to exaggerate the differences between DST and 

connectionist theories of development by virtue of their different simplifications in 

service of explaining different empirical phenomenon. We have illustrated this point 

via the examples of the balance scale task, the role of embodiment, and the role of 

stability. Equally, we could have considered other points of debate, such as the level 

of abstraction or the appropriate dimensionality of representational states employed in 

explicit quantitative models, and we would have drawn similar conclusions. 

Connectionism and DST share the greater part of their vision of cognitive 

development, a vision that is conditioned by the neurocomputational substrate that 

delivers cognition. The nature of (what we believe will be) an eventual convergence is 

as yet hazy on the horizon but already some of its features can be discerned. These 

include concepts such as distributed and graded knowledge, experience-dependent 

change, attractor dynamics, partial representations, soft assembly and the constraints 

of embodiment. The concept of cognitive development itself may have to expand to 

embrace constraints from as low as the genome, from as high as society, and from as 

wide as evolution. But, crucially, we also see the future in pluralistic terms. No one 

single set of assumptions makes sense for all models, and workers within and between 

the two converging approaches will continue to exploit a range of different 

simplifications appropriate to the specific focus of their interests and the demands of 

the tasks and issues under consideration. This convergent but still pluralistic activity 

will continue to depend on explicit quantitative models of cognition and behaviour 

and of the mechanisms of change. The great opportunity that remains is to apply such 

models across the full range of developmental phenomena that constitute human 

cognition. 
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Example Explicit Quantitative model of development: 

 
“A Simple Recurrent Network model of the development of syntax comprehension” 

 
The Task: 

• Participants listen to sentences and make a binary response to identify the agent of the sentence.  Data 
for accuracy and speed of sentence classification have been collected for children and adults in various 
typical and atypical populations 

 
Phenomena to be captured: 

• Order of difficulty of accuracy for comprehending different sentence types (e.g., actives, passives); order 
of acquisition for the sentence types in children 

• Changes in this pattern in adult breakdown and in different developmental disorders 
• The type of information that is exploited in learning this task with an impoverished system (word specific, 

sequence specific) 
 

Assumed essential characteristics: 

• Stable, abstract representations of words (though not necessary grammatical word classes) 
• Other components of a language system 
• World that delivers examples of sentences where agent-patient knowledge is available to the system (the 

training set can be assumed to occur via episodes of experience rather than as an internally stored set)  
 
Representation of information in the model: 

• Localist input representations depict individual words in the sentence to be understood 
• Localist output units (a) predict the next word in the sentence and (b) classify the sentence as agent-

precedes-patient or patient-precedes-agent 
 
Simplifications: 

• System is not embodied: stable input representations and training signals (some auto-predictive) are 
delivered by an assumed external cognitive system, body, and world 

• Learning algorithm: Backpropagation of error signals as a proxy for some more plausible error-driven 
neural learning algorithm 

 
Timescale: 

• Real-time is simulated in discrete steps, each time step aligns with the presentation of the next word in 
the sentence. Network contains internal units. Activation is feedforward from the input but recurrent from 
the internal units (a copy of activation on the previous time step). No noise under normal conditions 

• Target timescale is performance over seconds 
• Shorter time scales simplified in activation dynamics of the model (steps of vector matrix calculation) 
• Change over longer time scales (hours, months) assumed to be an accumulation of changes in the 

second range 


