
Received: 22 September 2016 Revised: 26 June 2017 Accepted: 1 July 2017

DOI: 10.1002/cpe.4262

S P E C I A L I S S U E P A P E R

Rule extraction from autoencoder-based connectionist
computational models

Juan Yang1 Michael S. C. Thomas2 Hongtao Liu3

1College of Computer Science, Sichuan Normal

University, Chengdu, Sichuan, China
2Developmental Neurocognition Lab,

Department of Psychological Sciences,

Birkbeck, University of London, London, UK
3College of Computer Science and Technology,

Chongqing University of Posts and

Telecommunications, Chongqing, China

Correspondence

Juan Yang, College of Computer Science,

Sichuan Normal University, Chengdu, Sichuan,

China.

Email: jkxy_yjuan@sicnu.edu.cn

Funding information

National Natural Science Foundation of China,

Grant/Award Number: (61402309); UK

Economic and Social Research Council,

Grant/Award Number: RES-062-23-2721

Summary

Mapping problems are typical research topics related to natural language learning, and they

include not only classification mappings but also nonclassification mappings, such as verbs and

their past tenses. Connectionist computational models are one of the most popular approaches

for simulating those mapping problems; however, their lack of explanatory ability has prevented

them from being further used to understand the language learning process. Therefore, the work

of extracting rational rules from a connectionist model is as important as simulating the mapping

behaviors. Unfortunately, there is no available technique that can be directly applied in those com-

putational models to simulate nonclassification problems. In this paper, an autoencoder-based

connectionist computational model is proposed to derive a rule extraction method that can con-

struct “If-Then” rational relations with high fidelity for nonclassification mapping problems. To

demonstrate its generalizability, this computational model is extended to a modified version to

address a multi-label classification mapping problem related to cognitive style prediction. Experi-

ments prove this computational model's simulation ability and its explanatory ability on nonclassi-

fication problems by comparing its fidelity performances with those of the classical connectionist

computational model (multilayer perceptron artificial neural network), and its similar ability on a

multi-label classification problem (Felder-Silverman learning style classification) by comparing its

prediction accuracy with those of other rule induction techniques.

KEYWORDS

connectionist computational model, classification mapping problem, non-classification mapping

problem, rule extraction

1 INTRODUCTION

Pattern mapping generally refers to a mapping from the feature space into a category space, which defines objects.1 In research related to natural

language learning, pattern mapping is a major research topic that may reveal language developmental natures and include discovering the structural

dependencies inherent in the aspects of linguistic units and labeling them with the correct linguistic abstract category.2 Mapping problem reflects

not only the general characteristics of language learning but also the common properties shared by most language developmental processes, eg, the

process of summarizing and capturing the general mapping rules of building the past tenses for verbs or generating the plural forms for nouns are

shared by most normal children on their language developmental trajectories.

To reveal and understand the causal relationships inherent in those mapping problems, computational models are employed as a basic presen-

tation tool because they can not only simulate humans' mental abilities from experience but also provide plausible explanations for their learning

processes 3, such as the mechanistic causal explanations about an intervention method for a language developmental disorder problem.4 Although

computational models can be used in a wide variety of different problem domains related to human cognition, most of them are applied on the lan-

guage developmental-related problem domains.5 In the classical generative approach,6,7 language is characterized in terms of a domain-specific

form of knowledge representation called grammar.8 Generative grammar provides an effective way to understand how language is structured as

a production system in a white-box way.5 Another approach is to use connectionist computational models, such as artificial neural network (ANN)

models.3 In connectionist networks, grammars are taken as the characterizations of some aspects of the behavior,9,10 and the correlations between

input and output are learned based on experience (training data) in a black-box way.

Concurrency Computat: Pract Exper. 2017;e4262. wileyonlinelibrary.com/journal/cpe Copyright © 2017 John Wiley & Sons, Ltd. 1 of 13
https://doi.org/10.1002/cpe.4262

https://doi.org/10.1002/cpe.4262
http://orcid.org/0000-0002-4868-3168

2 of 13 YANG ET AL.

Although connectionist computational models are superior to symbolic ones from a development perspective,3 to understand and explain the

mapping behaviors, one needs to go inside those black boxes (networks) and make them readable.11 For example, connectionist computational mod-

els can be used to simulate the input(verb) and output(past tense) of the verb/past tense mapping problem, and it is necessary to further understand

how the past tenses can be successfully mapping from the verbs by the chosen connectionist computational model.

Until now, this cognition-related problem has been described as making a connectionist computational model available to explain the causal

relationships between its input and the output. This description can be further extended to a machine learning problem: to discover the hid-

den knowledge (rules) embedded in a connectionist computational model. If the connectionist computational model simulates a typical mapping

problem, such as classifying data into categories based on some similarity of function,12 there are a variety of rule extraction techniques and meth-

ods can be chosen. Unfortunately, there are two unsolved challenges laid before us: first, mapping problems related to language learning include

not only classification mappings but also nonclassification mappings (such as building the past tenses for verbs or generating the plural forms for

nouns). If we want to extract the rules for a nonclassification problem, we need to design an explanatory component that can reveal the correlations

between general input and the nonclassification output of a connectionist computational model. Second, the classical computational model being

used to simulate the nonclassification problems is the 3-layered ANN due to its optimal simulating ability on the correlations between input and

output.13 However, there are no available machine learning techniques that can be directly applied to those ANN computational models; even if

there were, the performance of the explanation component based on those 3-layered ANNs is inadequate.4 Therefore, the 3-layered ANN compu-

tational model needs to be revised so that the rule extraction derived from it achieves satisfactory explanation ability, while retaining its simulation

fidelity to the nonclassification mapping problems.

In this paper, we propose a new connectionist computational model based on autoencoder14 to simulate the language-learning-related mapping

problems, and a rule extraction method with satisfactory explanatory ability for the nonclassification mapping problem is derived from this compu-

tational model. For nonclassification mapping problems, the proposed rule extraction approach can effectively reveal the correlations between prior

knowledge and new knowledge by rebuilding the inherent rules in an autoencoder-based computational model. Not limited to nonclassification

problems, this approach can be further expanded to handle multi-label classification mapping problems (for instance, to construct the correlations

between humans' learning behaviors and their cognitive biases from the experience data).

The structure of the rest of this paper is as follows: Section 2 describes the available techniques for rule extraction; Section 3 introduces the

paradigmatic descriptions of the linguistic nonclassification mapping problems; the proposed autoencoder-based computational model and the rule

extraction approach derived from it are described in Section 4; Section 5 extends this computational model and the rule extraction approach to

handle a multi-label classification problem; and Section 6 refers to the related experiments, and the final section concludes this work.

2 AVAILABLE RULE EXTRACTION METHODS

Some real-life applications, such as medical diagnosis, credit risk evaluation, and commercial decision support systems, require understanding the

internal causal relations between observations and the corresponding conclusions, instead of jumping directly to the conclusions.15 Even if the

prediction accuracy of the conclusions was improved, there would be skeptical voices unless the inner rationale relations could be understood.16

From this perspective, the use of transparent and comprehensible classifiers, such as decision trees17 and rule-based systems,15 to extract rules

seems to be the best choice if the trade-off between explanatory ability and prediction accuracy is not considered. However, to understand the

inner correlations between limited observations and the conclusions, one cannot bypass this question because those two metrics are mutually

contradictory.18

To improve the explanatory ability while keeping the predicting accuracy as high as possible, black-box classifier-based rule extraction methods are

proposed to extract classification rules, such as ANN-based rule extraction approaches19-22 and SVM-based rule extraction approaches.23-26 Gen-

erally, the basic idea of the black-box classifier-based method is to try to provide an explanatory function based on a black-box classification kernel,

and its purpose is to obtain a comprehensible system that approximates the final output performances of those black-box methods. As stated before,

the rule extraction approaches that can be applied to discover the hidden knowledge from the ANN-structured computational models are limited

to those that carry out classification tasks.19-22,27-29 In addition, other available rule extraction techniques aim at classification problems,20,21,30-33

but there are no reports of their application to nonclassification mapping problems.

Understanding the processing of neural networks is a long-standing open problem due to the complicated relations between different layers. One

solution is to transform the ANNs into fuzzy systems and produce fuzzy inference rules to simulate the ANNs' mapping behaviors.19,20,22 Castro

et al19 proposed a fuzzy rule extraction method from the ANNs whose fuzzy propositions are obtained from the weight matrix. This method focuses

on building the If-Then relations between the input and the output of an ANN classifier. In Mantas's work,20 the antecedents of the fuzzy rules con-

sider not only the weight matrix but also the similarity between input data, and the fuzzy rules achieved a more comprehensible description of the

ANN's action. In addition to constructing fuzzy rules to simulate the mapping actions between the input and output of a typical ANN-structured

classifier, some other solutions are proposed to extract the rules from neural networks by changing their inner architectures, such as changing an

ANN into a fuzzy cognitive map,22 pruning the ANN connections to reduce the number of available assumptions related to the rules,28 and designing

a new error term in the backpropagation learning process to modify the representations of the ANN's hidden layer.29 In addition to the aforemen-

tioned proposals, integrating symbolic techniques to build components that are comprehensible to the ANN classifiers is a possible solution, eg,

YANG ET AL. 3 of 13

Raunal et al21 added a symbolic regression model to an ANN to imitate the ANN's behavior. Some recent studies have paid more attention to the

general rule extraction structures without considering the assumptions of the underlying models.34

3 PARADIGMATIC DESCRIPTIONS OF THE NONCLASSIFICATION LINGUISTIC PROBLEMS

Some linguistic mapping problems are of nonclassification character but can still be represented by “If-Then” rules. Take verbs and past tense, for

instance: The mapping behavior is predominantly characterized by a general rule (add -ed to a verb stem to form its past tense). For example, a rule

used to generate a past tense of a verb may look like this:

If a verb ends with a voiceless consonant phoneme and this phoneme is not “/d/,”

then add a “/t/” suffix to the end of this verb.

In addition to regular verbs and their past tenses, there exist a minority of exceptions that form their past tenses in different ways:

(1) arbitrary irregular verbs and their past tenses (go-went): there are no rules for converting verbs to their past-tense forms, and the changes are

arbitrary;

(2) vowel-change irregular verbs and their past tenses (sing-sang, ring-rang): the vowel phoneme is randomly changed to a different vowel

phoneme;

(3) identical irregular verbs and their past tenses (hit-hit): there is no change between verbs and their corresponding past tenses.

Generalization ability can be tested by determining whether the past tense rules extracted from the training data can be applied to novel verbs

or can be applied to any of the irregular patterns that are similar to irregular verbs from the training set. Past tense's learning is a commonly used

base model for computational models to provide hypotheses about the mechanistic bases of cognition and language4 because the past tense has

been taken to be a paradigmatic linguistic subsystem exhibiting fundamental properties of language.8 Learning English noun plurals shares many of

the same characteristics with learning verb past tenses.35

In this paper, past tenses and plurals were used as the representatives of the paradigmatic linguistic problems. The coding mechanism of Plunkett

& Marchman,36 with 19 binary phonological features, and that of Plunkett & Juola, with 16 binary phonological features, 35 are chosen for the

verbs/past tenses and the nouns/plurals, respectively. The patterns encoded in Plunkett & Marchmans mechanism are composed of two parts: 3

phoneme verbs and their corresponding past tenses. Each phoneme is encoded in 19 binary bits, and the corresponding meaning of those 19 binary

phonological features for each phoneme is illustrated in Figure 1, which correspond to the prior knowledge before learning verbs' past tenses. In

fact, there are only 3 basic forms of the 3 phoneme verbs: CVC, CCV, and VCC, where “C” refers to consonant pronunciation and “V” refers to

vowel pronunciation. The past-tense suffixes are each encoded in 5 bits for different kinds of past tenses. There are 4 different past tenses: regular,

identical irregular, vowel change irregular, and arbitrary irregular. The data sets used in this paper include a training set composed of 508 artificial

verbs/past tenses, 410 regular verbs/past tenses, 20 identical irregular verbs/past tenses, 10 arbitrary irregular verbs/past tenses, and 68 vowel

change irregular verbs/past tenses, and two testing data sets, respectively, composed of 572 generalized verbs/past tenses and 5000 randomly

blended artificial verbs/past tenses.

Plunkett & Marchman's verbs and past tense structures are fixed representations of the language, while Plunkett & Juola's nouns and plural

structures are unfixable representations since the lengths of the nouns are unlimited, in the form of “####KAt,” where # represents a vacant

FIGURE 1 Phonological features encoded in 19 binary bits

4 of 13 YANG ET AL.

FIGURE 2 Phoneme features encoded in 16 binary bits

phoneme. The nouns in this paper are from Moby's37 Part-of-Speech data set, and their corresponding pronunciation representations are from

Moby's Pronunciator data set. All nouns and their plurals are converted into pronunciation form, and each phoneme is encoded into a 16-bit binary

vector; the meanings of the phoneme features are illustrated in Figure 2. There are approximately 51 320 nouns, and their plurals are constructed

in a regular way by following the regular plural building rules, such as adding the /iz/ suffix to sibilant-sound (/s/,/z/,/S/,/Z/,/C/ or /J/)35 terminated

nouns to form their plurals. One thousand randomly chosen items in this data set are used as the training data set, and the rest are treated as

testing data.

4 AN AUTOENCODER-BASED COMPUTATIONAL MODEL TO SIMULATE
THE NON-CLASSIFICATION LINGUISTIC MAPPING PROBLEMS

4.1 Structure of the autoencoder-based computational model

The classical method of simulating the verb/past-tense mapping problem is to construct an ANN with 57 neurons in the input layer and 62 neurons

in the output layer. It is difficult to discover the rules embedded in the trained ANN because of the complicated activation states of the output

neurons. Our hypothesis is that both verbs and past tenses can be transformed into a simple representation, which can make rule learning easier.

The patterns in the training data set can be separated into two parts: premise patterns and conclusion patterns. Premise patterns correspond to the

encoded verbs and nouns, and conclusion patterns correspond to their past-tense and plural forms. In this paper, an autoencoder 14 is employed as a

black-box component of the computational model because of its high efficiency in reducing the dimensionality and its unsupervised learning ability.

The structure of this autoencoder-based computational modal is illustrated in Figure 3. In this computational model, two different autoencoders

are involved: the first is a k-h1-h2-k′ autoencoder, which is used to learn the conclusion patterns' features, and the second is a t-h1-h2-t′-structured

autoencoder, which is used to learn the premise patterns' features. In the verb/past-tense problem, k = 62, k′ = 8, h1 = 500, h2 = 200, and

t = 57, t′ = 4, and in the nouns/plurals problem, k = 450, h1 = 1000, h2 = 500, k′ = 32, t = 418, and t′ = 16. Rule building is implemented on the

extracted conclusion features and their corresponding premise features, as in Fig4.

4.2 Training the computational model

As stated before, two autoencoders are constructed to separately learn the features of the conclusion patterns and the features of their correspond-

ing premise patterns. The pretraining process needs to be executed |class|+1 times, where |class| is the number of the classes into which conclusion

patterns are being categorized after they are learned in an unsupervised manner in the autoencoder. The k-h1-h2-k′-structured autoencoder exe-

cutes once for learning the conclusion patterns, and the t-h1-h2-t′-structured autoencoder executes |class| iterations for learning premise patterns

in different classes. Both autoencoders use restricted Boltzmann machines14 to pretrain the patterns for a new neuron layer of the autoencoder.

After an autoencoder has been successfully trained, the network is stable and supported by the sample patterns. The output of the final hidden

encoding layer represents the features for which we are looking.

4.3 Extracting rules from the trained computational model

These language learning problems can be generally described as follows:

Already known: Necessary prior knowledge, namely, premise patterns and their corresponding conclusion patterns in a training data set.

Hidden knowledge that needs to be discovered: Specific rules can generate corresponding conclusion patterns for the premise patterns.

Result: Given new premise patterns, the system can generate corresponding conclusion patterns by using the rules (hidden knowledge).

YANG ET AL. 5 of 13

FIGURE 3 An autoencoder-based computational model to simulate the nonclassification linguistic mapping problems

FIGURE 4 Feature representations of the sample patterns

To implement knowledge discovery on this kind of nonclassification learning problem, the process of rule extraction can be implemented using

Algorithm 1.

6 of 13 YANG ET AL.

There are two parameters that need to be further explained: feature space filter{} and feature state Val{}. Both parameters appear in each rules

proposition part and its conclusion part. The feature space filter{} is the set of the names of the attributes being used to encode a pattern, and the

feature state Val{} is their activation states (0 or 1). Combined together, they work like a fuzzy set in an ANN-based fuzzy rule inference system. For

example, suppose that the feature space is [x1×4 x6×8], which refers to first, 4th, 6th, and 8th bits of a pattern; its feature state would be [1 0 0 0].

4.4 Clustering patterns without classification labels

Unlike classification problems, most verbs' past tenses and nouns' plurals share the same feature space with their original forms except for some

modifications to the specific features, which are indicated in the construction rules. Modifications in the conclusion part are usually regular and can

thus be used as symbols to cluster the patterns.

The basic idea of using an autoencoder is to try to understand whether there are differences between the patterns by using its key-level fea-

ture extraction ability and its clustering ability. After successfully learning the conclusion patterns in a semisupervised manner, the weight matrix

is stored in weightconclusion. Then, the conclusion patterns and their corresponding premise patterns are classified into classi according to the conclu-

sion patterns' neuron activation states in the final hidden layer, which is also the feature representation layer of the encoder. Conclusion patterns

are stored in con_class{i}, and their corresponding premise patterns are stored in pre_class{i}. Then, the premises patterns in different classes will be

learned in a semisupervised manner with another autoencoder in a similar process.

4.5 Finding feature spaces for premises and conclusions

At this point, the high-level features of conclusions and their corresponding premises have been obtained; however, we do not know what they

represent. To understand what those features stand for, we need to interpret them. Algorithm 2 is designed to reinterpret the meanings of the

features on the highest abstract feature layer. The basic idea of this rule extraction model is borrowed from image recognition, and the activation

states in the highest hidden layer always represent the most representative features of the original input data. In this section, those features can be

reinterpreted in the form of prior knowledge because of their structured presentations.

The pseudocode of the feature-space identification process Recog(.) is illustrated in Algorithm 2. To find the optimal mapping combinations of

the key features, we use a modified genetic algorithm to solve the optimal problem. The key feature spaces' recognition process will be repeatedly

implemented on both conclusion patterns and their premises patterns.

In Algorithm 2, Netj in Equation 1 is the sigmoid output of layer j, and Nett′ represents the output of the last layer of the autoencoder; it is a

recursive function. n in Equation 2 is the size of the class TrainData, repmat is a function to replicate n rows of matrix X, and operator× stands for the

Hadamard product. The modified GA is used to solve the minimization problem. In this GA, the goal function is defined as the “evaluating function,”

and two modifications are made to the classical GA process:

(1) Symmetrically exchanging the genes being selected out. If we exchange a gene code 0 of parent A with the gene code 1 of parent B, we have

to exchange another gene pair with the opposite values, and vice versa. For example, suppose that parent A has the gene code < 000111 >,

and parent B has the gene code < 111000 >. If we decide to exchange the third gene codes of A and B, A will change from < 000111 >

to < 001111 >, and B will change from < 111000 > to < 110000 >. According to the symmetric exchange policy, another gene pair with

the opposite values should be exchanged at the same time. In this case, if we choose to exchange the sixth genes, A will finally change from

< 001111 > to < 001110 >, and B will change from < 110000 > to < 110001 >. After completing the exchange process, both A and B should

have the same number of 1s as their original codes.

(2) Symmetrically mutating the selected gene. When mutating a parent with probability 𝛼, if we choose to mutate one of that parent's gene codes

from 0 to 1, another of that parent's gene codes should be mutated from 1 to 0, and vice versa. For example, suppose that parent A has the gene

code < 000111 >, and A has been chosen for mutation with probability 𝛼. If we choose to mutate the first 0, which means that A will change

from < 000111 > to < 100111 >, another 1 should be chosen for mutation at the same time to maintain the fixed number of 1s. In this case,

we choose to mutate the last 1 to 0. Finally, A will change from < 000111 > to < 100110 >.

YANG ET AL. 7 of 13

4.6 Pruning the rules

The rule generation strategy proposed in this paper is a black-box-based technique and the problem domain is nonclassification. Therefore, we can

borrow the modified fidelity metric (instead of calculating the correctly classified testing patterns, we calculate the RMSE values for each testing

pattern) to evaluate the effectiveness of the rules and then prune them. As mentioned by Fortuny and Martens,34 “if the fidelity metric is high enough,

one can decide that enough insight into the black-box model is obtained,” which implies that if the accuracies of the rules are approximately equal to the

RMSE values produced by the best-performing black-box technique, the rules are meaningful and practical. The pseudocode for pruning the rules

according to their accuracy and covering ratio is given in Algorithm 3.

This algorithm is used to reduce the number of available rules, which are in the form of

IF (filterpremise, ValKp) satisfied,

THEN (filterconclusion, ValKc),

based on their prediction accuracy (𝛼) and covering ratio (𝛿), where 𝛼 is the MRSE performance of the multilayer perceptron–based ANN. MSE

is computed between a generated conclusion pattern, which is predicted by a specific inference rule of a premise pattern, and its real conclusion

pattern in the testing data set. If a rule's MRSE performance is above the threshold, it will be deleted; otherwise, it will be kept and merged with

others into a single new rule.

5 EXTENDING THE COMPUTATIONAL MODEL TO ADDRESS MULTI-LABEL
CLASSIFICATION PROBLEMS

The process described in the previous section is a standard rule extraction procedure for nonclassification problems. In this section, the general-

ization of this hidden knowledge discovery method can also be extended to address classification mapping problems, especially those for which

classification can be performed from different perspectives (multi-label classification). For example, classifying a learner's cognitive style based on

his online learning behaviors may be more complicated than other classification problems. The classification labels in the training data set usu-

ally come from questionnaires, of which there can be more than 4 types, while the learning behaviors are the structured records collected from

the online learning processes. In those multi-label classification problems, even the same learning behavior records would result in different learn-

ing style (LS) labels because of the different content that learners are learning. In this section, we take the Felder-Silverman LS38 as an example,

and the patterns can be classified into 8 polarized labels from 4 different perspectives: active-reflective, sensitive-intuitive, verbal-visual, and

sequential-global.

Learning behaviors are collected from one of our learning systems, named PIJ,39 and the content of the lesson is “Syntax of Java,” which can reflect

programming characteristics of students majoring in computer science. One hundred computer science–majored learners from Sichuan Normal Uni-

versity, Chengdu University, and Chongqing University of Posts and Telecommunications participated. Before they began the learning process, they

were required to carefully complete the Index of Learning Style instrument for Felder& Silverman LS evaluation. Learning behaviors are versatile

and include the use of tools for interpersonal communication, practice quizzes/exercises/questions, users' learning sequences, and extra hyperlinks

visited by users. Then, the hidden knowledge discovery process is modified as shown in Algorithm 4.

8 of 13 YANG ET AL.

The recognition process Recog(.) mentioned in Algorithm 4 is the same as that used in Algorithm 1. The rule extraction process being described

here is similar to the one being used to address the linguistic nonclassification mapping problems; the only difference is that there are no conclusion

patterns and their feature spaces are replaced by the different classification labels.

5.1 Computing the effective distribution of the features

Different from nonclassification problems, multi-label cognitive models need to compute the effective distribution on labels with different dimen-

sions and compute the prediction accuracy on classification labels. In this section, we construct a “cause and effect” relationship between key

features and the LS preference labels with a probability. Function Effec(.) is used to compute the effective probability distribution accuracy of the

key features on different LS preference states. Given an effective probability distribution, the rule “If a learner satisfies (X_i,Class_i), then he/she is

predicted to be an ej biased learner with probability accuracy(i){ej}” can be generated. The distribution accuracy is a factorized mean 2-norm value

between ej and the learners' labels. The pseudocode of the function Effec(.) is given in Algorithm 5:

This is a procedure for computing the effective distribution of the feature space Class_i and its corresponding explanation X_i on each LS bias state

ei, where ei ∈ E. Class is a set containing the classes revealed by the autoencoder after an unsupervised learning process, and E is a set containing all

possible combinations of the LS bias values within an LS model. Suppose that there are m dimensions of an LS model and n types of values on each

dimension, |E| = ∑
0≤i≤mCi

m(C1
n)i. ei ∈ E is a kind of LS bias state. Take Felder & Silvermans LS model as an example. There are 4 (m) dimensions, and

on each dimension, a learner can be evaluated as one kind out of two (n), eg, visual or verbal; in this case, |E|=80, and ei can be “0,” “01,” or “1111.”

Target is a set of labels collected from the LS instruments.

5.2 Merging the rules

Different features have different effects on a specific LS bias state ej. We can merge those features into a specific LS bias prediction rule by specifying

an accuracy threshold parameter 𝛿, and the pruning is controlled by the threshold. The pseudocode of the function Merge()describes a procedure of

generating a single rule for predicting the same LS bias state ej if and only if the feature's prediction accuracy on ej is greater than the given threshold

𝛿; the details are given in Algorithm 6.

YANG ET AL. 9 of 13

6 EXPERIMENTS

To evaluate the efficiency of the rules discovered for nonclassification cognitive models, we examined the fidelity (RMSE) of the rules of gen-

erating past tenses and plurals. The experiment is based on three mixed data sets: 572 generalized verbs/past tenses, 5000 artificially gen-

erated verbs/past tenses, and 50 320 nouns and their plurals from Moby's Pronunciator. Four rules are found for the verbs/past tense data

sets and 14 rules are found for the nouns/plurals data set. The performance of the hidden knowledge (rules) is compared with that of the

multilayer perceptron based 3-layered ANNs because this has been proven to be the most effective technique for learning verbs and their

past tenses.13

Conversely, to prove the general advantage of the proposed method on multi-label classification cognitive models, we use 100 students' online

learning records on “Syntax of Java” along with their multidimensioned LS classification labels as the data set.

6.1 Hidden knowledge embedded in verbs and their past tenses

In this part, 4 rules of the following form are learned from a training data set composed of 508 blended patterns:

• Rule1:

If(x15 = 0 and x24 = 1 and x40 = 1)
then(y2 = 1 and y3 = 0 and y7 = 1 and y20 = 1 and y22 = 1 and y23 = 1 and y24 = 1 and y40 = 1)

• Rule2: If(x4 = 1 and x15 = 1 and x40 = 1 and x43 = 0)
or (x4 = 1 and x15 = 0 and x40 = 1 and x43 = 1)
or (x4 = 1 and x15 = 0 and x40 = 0 and x43 = 1)
or (x4 = 0 and x15 = 1 and x40 = 0 and x43 = 1)
or (x4 = 0 and x15 = 1 and x40 = 1 and x43 = 1)
then(y4 = 1 and y5 = 1 and y21 = 1 and y39 = 1 and

y42 = 1 and y43 = 1 and y58 = 1 and y59 = 1)
• Rule3:

If(x4 = 1 and x21 = 1 and x40 = 1 and x56 = 0)
it then (y1 = 1 and y5 = 1 and y6 = 0 and y21 = 1 and

y40 = 1 and y43 = 1 and y58 = 1 and y60 = 1)
• Rule4:

If(x4 = 1 and x5 = 1 and x17 = 1 and x36 = 0)
it then (y1 = 1 and y5 = 1 and y7 = 0 and y9 = 1 and

y18 = 1 and y26 = 1 and y28 = 1 and y60 = 1)

The performance results of the two testing data sets are listed in Table 1. Two indices are used to evaluate their efficiency: RMSE and covering

ratio. The two testing data sets are 5000 blended artificial verbs and their past tenses (A) and 572 generalized verbs and their past tenses (B).

The rules discovered by this computational model for verbs and their past tenses work effectively in terms of both accuracy and covering ratio.

Index “Cross covering ratio' refers to the rules” effect area among data sets, except for arbitrary irregular verbs, almost regular verbs, identical

irregular verbs, and vowel change irregular verbs, which are covered by the premise feature spaces. Since data set A shares the most characteristics

with the training data set, the fidelity performance on test data set A is approximately the same as the performance on training data set. In contrast,

data set B is composed of verbs that were randomly selected from the database; therefore, the result on B is much better than that on A.

TABLE 1 Performance of the discovered hidden knowledge in
verbs/past tenses

B(RMSE/ A(RMSE/

Rules Covering Ratio) Covering Ratio)

Rule1 2.1747/0.7622 2.0244/0.4679

Rule2 2.3547/0.2342 2.4926/0.3596

Rule3 2/0.1905 2.0976/0.3019

Rule4 2.0510/0.0506 2.0912/0.1196

Cross covering ratio 0.9775 0.9746

RMSE of the MLP-based ANN 1.5678 2.3756

Abbreviations: ANN, artificial neural network; MLP, multilayer perceptron.

10 of 13 YANG ET AL.

TABLE 2 Performance of the discovered hidden knowledge in nouns/plurals

Covering Covering

Rules RMSE ratio Rules RMSE ratio

Rule1 9.7610 0.4724 Rule8 9.9438 0.1834

Rule2 8.3694 0.0998 Rule9 8.4921 0.1667

Rule3 9.3921 0.096 Rule10 9.5886 0.1243

Rule4 9.4430 0.1244 Rule11 9.3706 0.2861

Rule5 9.7105 0.4449 Rule12 9.9025 0.2777

Rule6 9.0260 0.1912 Rule13 7.9994 0.0911

Rule7 9.9992 0.1992 Rule14 9.9124 0.1372

Cross

covering 0.7618

ratio

RMSE of the 9.985

MLP based ANN

Abbreviations: ANN, artificial neural network; MLP, multilayer perceptron.

6.2 Hidden knowledge embedded in nouns and their plurals

For the problem with nouns and plurals, only rules with the highest covering ratio (more than 0.09) and with the highest accuracy (remove the

rules whose RMSE ≥ 10) based on the training data set will be selected out to produce the plurals of the nouns. Fourteen rules emerged, and their

performances are listed in Table 2. Although the rules' fidelity is also approaching ANN's performance, the RMSE results are much higher compared

with the problem with verbs and past tenses. That is because the nouns are unfixable while the verbs are fixed. This result exposes the deficit of

general processing abilities of the ANN-based computational models, especially their ability to address heterogeneous data.

6.3 Hidden knowledge embedded in the Felder-Silverman LS cognitive model

For the Felder-Silverman LS cognitive model, the autoencoder is structured as 49-100-30-t′, where 49 is the number of input units and 100 and 30,

respectively, correspond to the numbers of units in the first and second hidden layers. To verify the number of feature units, we separately set the

value of t as 2, 3, 4, and 5, which correspond to 4, 8, 16, and 25 classes, respectively. The possible values of t imply that there may exist 4, 8, 16, or

25 kinds of different classes. By separately setting t to 2,3,4, and 5, and computing the reconstruction MSEs, t is finally set to 2, which has a smallest

MSE reconstruction error of 4.15.

Four (X_i,Class_i) pairs are found. The probability threshold 𝛿 is set to 0.6, and the effective distribution above 𝛿 of each rule is treated as the

probability of predicting LS bias state ej, which is listed in Table 3. Actually, if we set 𝛿 to 0.8, the 4 features can generate one highly effective rule.

We predict a learner to be a visually biased learner if his learning behavior feature satisfies the following premise:

(x38 = 0 and x48 = 0) or (x17 = 1 and x30 = 1) or (x28 = 1 and x33 = 0) or (x14 = 0 and x30 = 1).

This rule can be expressed in a more readable form by mapping those features into their meaningful representations:

Under topic “Syntax of Java,”

If (“a learner's maximized staying time on a uni-learning object is not in the range [3 minutes, 5 minutes]” and “do synthesized hands-on

experiments”)

or (“use the search engine with a high frequency in a late time zone of the current learning period” and “use the searching engine with a high

frequency in an early time zone of the current learning period”)

or (“use the linkage with the prior knowledge” and “not use mail tools when solving problems”)

or (“not use flow charts in the current topic” and “use the search engine with a high frequency in an early time zone of the current learning period”)

Then this learner has probability 0.875 of being a visually biased learner.

The prediction accuracy of this merged rule is 0.875, and it approximates the mean prediction result of the network on the visual/verbal dimen-

sion after supervised learning, which is listed in Table 4. In Table 4, column “A/R” stands for the “Active/Reflective” dimension, “S/G” stands for the

“Sequential/reflective” dimension, “S/I” stands for the “Sensitive/Intuitive” dimension, and “V/V” stands for “Visual/Verbal” dimension. Table 5 gives

the performance comparisons between our rule extraction approach and other rule induction techniques with comparable explanation ability, such

as DecisionTable,40 M5Rules,41 SQRex-SVM,21 and ANN rule extraction.21 To guarantee the efficiency of the rules, the accuracy threshold is set to

0.65. Two final rules are generated according to function Generate():

(1) If (x17 = 1 and x30 = 1) or (x28 = 1 and x33 = 0) or (x14 = 0 and x30 = 1)

Then this learner has probability 0.6667 of being a sensitive -biased learner.

(2) If (x38 = 0 and x48 = 0) or (x17 = 1 and x30 = 1) or (x28 = 1 and x33 = 0) or (x14 = 0 and x30 = 1)

YANG ET AL. 11 of 13

TABLE 3 Effective distribution of the features on ei

Feature1: x38 = 0 and x48 = 0

ej accuracy(ej)

Sequential 0.62

Visual 0.90
Feature2: x17 = 1 and x30 = 1

ej accuracy(ej)

Global 0.68

Sensitive 0.64

Visual 0.82

Intuitive & Visual 0.61
Feature3: x28 = 1 and x33 = 0

ej accuracy(ej)

Global 0.61

Sensitive 0.69

Visual 0.89

Sensitive & Visual 0.61
Feature4: x14 = 0 and x30 = 1

ej accuracy(ej)

Sensitive 0.67

Visual 0.89

TABLE 4 Correctly classified accuracy of the network
after a supervised learning process

Correct 4 LS dimensions

Classified A/R S/G S/I V/V

Train data 0.55 0.6833 0.7167 0.8667

Test data 0.36 0.4722 0.6667 0.8889

Abbreviations: A/R, Active/Reflective; LS, learning style;
S/G, Sequential/reflective; S/I, Sensitive/Intuitive; V/V,
Visual/Verbal.

TABLE 5 Comparing the performance with those of other rule induction techniques

A/R S/G S/I V/V

Data Correctly Correctly Correctly Correctly

Classifier Sets classified RMSE classified RMSE classified RMSE classified RMSE

DecisionTable Train 0.9214 0.1982 0.8259 0.2951 0.7921 0.3224 0.8549 0.2693

Test 0.5377 0.5321 0.539 0.5674 0.5613 0.5867 0.7619 0.3675

M5Rules Train 0.6012 0.446 0.6564 0.4023 0.7376 0.3297 0.7944 0.3206

Test 0.4493 0.6002 0.5773 0.5195 0.6075 0.4962 0.7345 0.3085

SQRex-SVM Train 0.9327 0.2158 0.8672 0.3015 0.7861 0.3177 0.9153 0.1577

Test 0.5562 0.6011 0.6013 0.4271 0.6055 0.5571 0.8127 0.2987

ANN Rule-Extraction Train 0.8652 0.2257 0.7651 0.3348 0.7621 0.3285 0.8779 0.1923

Test 0.3765 0.7153 0.5867 0.6273 0.5845 0.6113 0.7953 0.2558

Our method Train – – – – (Sensitive) (Visual)

0.7273 0.5222 0.8868 0.365

Test – – – – (Sensitive) (Visual)

0.6471 0.5941 0.9032 0.3111

Abbreviations: A/R, Active/Reflective; S/G, Sequential/reflective; S/I, Sensitive/Intuitive; V/V, Visual/Verbal.

Then this learner has probability 0.875 of being a visual -biased learner.

Two indices are used to evaluate the performance of each technique: the first is the number “Correctly classified,” and the other is “RMSE (root

mean squared error).” The rules generated based on the current topic have a significant effect on predicting a learner's visual and sensitive biases;

as a consequence, the learners' LS biases on the A/R and S/G dimensions cannot be predicted. However, it is obvious that other rule induction tech-

niques cannot work effectively on those dimensions either. This result is consistent with our prior assumptions about LS preference prediction;

12 of 13 YANG ET AL.

that is, learners' LS preferences would only be revealed if the learning contents have no influence factors on such dimensions, and our method can

effectively find the hidden knowledge embedded in the premises that is vital to a specific classification label.

In addition, our method's advantage is revealed by its high prediction accuracy on the testing data set, especially compared with SQRex-SVM.

Although the prediction accuracy of V/V LSs on the training data set is not as good as that of SQRex-SVM, its performance on the testing data set is

superior to that of SQRex-SVM. Moreover, our autoencoder-based rule extraction approach is superior to all other techniques listed in Table 5 on

the testing data set.

7 CONCLUSIONS

In this paper, we proposed an autoencoder-based computational model that can simulate the nonclassification mapping problems in the language

developmental domain and a derived rule extraction approach that can reveal the rational relations between the premise patterns and the conclusion

patterns of this connectionist computational model. To demonstrate its generalizability, this computational model and the derived rule extraction

method are extended to address a multi-label classification problem. Based on this computational model, the cognition-related mapping problems

are transformed into machine learning problems, and the experimental result shows that this computational model not only has the ability to approx-

imate the simulation performance of a classical ANN but also has satisfactory explanatory ability on the causal relations between the input and the

output by constructing “If-Then” rules. The experimental results prove this conclusion by comparing this computational model's fidelity performance

with that of the classical ANN model and by comparing its extended version's prediction accuracy on a multi-label classification problem with those

of other techniques.

The work implemented in this paper also demonstrates the view presented in Zhuge1 that the process of summarizing and capturing the mapping

rules of the intelligence is also the process of emerging the causal semantic relations between the observing and the understanding. From this point

of view, all intelligent behaviors can be simulated and understood through semantic representations and linkages between them,42 and the method

proposed in this paper can provide a new solution to generate the emerging causal relations in a semantic linked network.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Foundation of China (61402309) and the UK Economic and Social Research Council

grant RES-062-23-2721.

ORCID

Juan Yang http://orcid.org/0000-0002-4868-3168

REFERENCES

1. Zhuge H. Multi-dimensional summarization in cyber-physical society: Morgan Kaufmann; 2016.

2. Onnis L, Monaghan P, Christiansen MH, Chater N. Variability is the spice of learning, and a crucial ingredient for detecting and generalizing in nonadjacent
dependencies. In: Inproceedings of the Cognitive Science Society, Vol. 26; 2004:26.

3. Mareschal D, Thomas MS. Computational modeling in developmental psychology. IEEE Trans Evol Comput. 2007;11(2):137-150.

4. Yang J, Thomas MSC. Simulating intervention to support compensatory strategies in an artificial neural network model of atypical language develop-
ment,; 2015:123-128.

5. Christiansen MH, Chater N. Connectionist psycholinguistics: capturing the empirical data. Trends Cogn Sci. 2001;5(2):82-88.

6. Chomsky N. Aspects of the Theory of Syntax, 11: MIT press; 2014.

7. Chomsky N. Knowledge of language: Its nature, origin and use: Greenwood Publishing Group; 1986.

8. Joanisse MF, Seidenberg MS. Impairments in verb morphology after brain injury: a connectionist model. Proc Nat Acad Sci. 1999;96(13):7592-7597.

9. rumelhart DE, McClelland JL, Group PR, et al. Parallel distributed processing: explorations in the microstructure of cognition; 1986.

10. Seidenberg MS, McClelland JL. A distributed, developmental model of word recognition and naming.Psychol Rev. 1989;96(4):523.

11. Mcclelland JL, Jenkins E. Nature, nurture, and connections: implications of connectionist models for cognitive development. in Architectures for intelli-
gence: The twenty-second Carnegie Mellon symposium on cognition: Lawrence Erlbaum Associates; 1991:41-73.

12. Borovsky A, Elman J. Language input and semantic categories: a relation between cognition and early word learning. J Child Lang. 2006;33(04):759-790.

13. Plunkett K, Marchman V. U-shaped learning and frequency effects in a multi-layered perception: implications for child language acquisition. Cognition.
1991;38(1):43-102.

14. Hinton GE, Salakhutdinov R. Reducing the dimensionality of the data with neural networks. 2006;313(5786):504-507.

15. Cano A, Zafra A, Ventura S. An interpretable classification rule mining algorithm. Inf Sci. 2013;240:1-20.

16. Sutton S, Arnold V, Leech S, Collier P. The differential use and effect of knowledge-based system explanations in novice and expert judgment decisions; 2006.

17. Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B. An empirical evaluation of the comprehensibility of decision table, tree and rule based
predictive models. Decis Support Syst. 2011;51(1):141-154.

http://orcid.org/0000-0002-4868-3168
http://orcid.org/0000-0002-4868-3168

YANG ET AL. 13 of 13

18. Breiman L et al. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 2001;16(3):199-231.

19. Castro JL, Mantas CJ, benítez JM. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans Neural Networks. 2002;13(1):101-116.

20. Mantas CJ, Puche JM, Mantas J. Extraction of similarity based fuzzy rules from artificial neural networks. Int J Approximate Reasoning.
2006;43(2):202-221.

21. Rabuñal JR, Dorado J, Pazos A, Pereira J, Rivero D. A new approach to the extraction of ann rules and to their generalization capacity through gp. Neural
Compu. 2004;16(7):1483-1523.

22. Sweta S, Lal K. Personalized adaptive learner model in e-learning system using FCM and fuzzy inference system. Int J Fuzzy Syst. 2017:1-12.

23. Barakat NH, Bradley AP. Rule extraction from support vector machines: a sequential covering approach. IEEE Trans Knowl Data Eng. 2007;19(6):729-741.

24. Núñez H, Angulo C, Català A. Rule extraction from support vector machines. in ESANN. 2002:107-112.

25. Maji P, Garai P. Fuzzy–rough simultaneous attribute selection and feature extraction algorithm. IEEE Trans Cybern. 2013;43(4):1166-1177.

26. Zhu P, Hu Q. Rule extraction from support vector machines based on consistent region covering reduction. Knowledge Based Syst. 2013;42:1-8.

27. Chorowski J, Zurada JM. Extracting rules from neural networks as decision diagrams. IEEE Trans Neural Networks. 2011;22(12):2435-2446.

28. Chorowski J, Zurada JM. Learning understandable neural networks with nonnegative weight constraints. IEEE Trans Neural Netw Learn Syst.
2015;26(1):62-69.

29. Huynh TQ, Reggia JA. Guiding hidden layer representations for improved rule extraction from neural networks. IEEE Tran Neural Netw.
2011;22(2):264-275.

30. Andrews R, Diederich J, Tickle AB. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge Based Syst.
1995;8(6):373-389.

31. Craven MW., Shavlik JW. Extracting tree-structured representations of trained networks. Adv Neural Inf Process Syst. 1996:24-30.

32. Kolman E, Margaliot M. Are artificial neural networks white boxes?. IEEE Trans Neural Networks/a Publ IEEE Neural Netw Counc. 2005;16(4):844-852.

33. Kolman E, Margaliot M. Extracting symbolic knowledge from recurrent neural networks—a fuzzy logic approach. Fuzzy Sets Syst. 2009;160(2):145-161.

34. Fortuny EJ, Martens D. Active learning-based pedagogiacal rule extraction. IEEE Trans Neural Netw Learn Syst. 2015;26(11):2664-2677.

35. Plunkett K, Juola P. A connectionist model of english past tense and plural morphology. Cognitive Sci. 1999;23(4):463-490.

36. Plunkett K, Marchman V. From rote learning to system building: acquiring verb morphology in children and connectionist nets. Cognition.
1993;48(1):21-69.

37. Ward G. Moby pronunciator. 3449 martha ct. Arcata, CA, USA. (Also available at http://icon.shef.ac.uk/Moby/); 1997.

38. Felder R. M. Silverman L. K. Learning and teaching styles in engineering education. J Eng Educ. 1988;78(7):674-681.

39. Yang J, Huang Z, Gao Y, Liu HT. Dynamic learning style prediction method based on a pattern recognition technique. IEEE Tran Learn Technol.
2014;7(2):166-17.

40. Kohavi R. The power of decision tables. In: in Proc. 8th European Conference on Machine learning ML'95); 1995; Tahoe City, CA, USA:174-189.

41. Holmes G, Hall M, Frank E. Generating rule sets from model trees. In: Proc. Twelfth Australian Joint Conference on Artificial Intelligence; 1999; Tahoe
City, CA:1-12.

42. Zhuge H, Xu B. Basic operations, completeness and dynamicity of cyber physical socio semantic link network CPSocio-SLN. Concurr Comp Pract E.
2011;23(9):924-939.

How to cite this article: Yang J, Thomas MSC, Liu H. Rule extraction from autoencoder-based connectionist computational models.

Concurrency Computat: Pract Exper. 2017;e4262. https://doi.org/10.1002/cpe.4262

http://icon.shef.ac.uk/Moby/
https://doi.org/10.1002/cpe.4262

	Rule extraction from autoencoder-based connectionist computational models
	Abstract
	Introduction
	Available rule extraction methods
	Paradigmatic descriptions of the nonclassification linguistic problems
	An autoencoder-based computational model to simulate the non-classification linguistic mapping problems
	Structure of the autoencoder-based computational model
	Training the computational model
	Extracting rules from the trained computational model
	Clustering patterns without classification labels
	Finding feature spaces for premises and conclusions
	Pruning the rules

	Extending the computational model to address multi-label classification problems
	Computing the effective distribution of the features
	Merging the rules

	Experiments
	Hidden knowledge embedded in verbs and their past tenses
	Hidden knowledge embedded in nouns and their plurals
	Hidden knowledge embedded in the Felder-Silverman LS cognitive model

	Conclusions
	References

