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Part II

COGNITIVE MODELING
PARADIGMS

�

The chapters in Part II introduce the reader to broadly influential and foundational ap-
proaches to computational cognitive modeling. Each of these chapters describes in detail one
particular approach and provides examples of its use in computational cognitive modeling.
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CHAPTER 2

Connectionist Models of Cognition

Michael S. C. Thomas and James L. McClelland

1. Introduction

In this chapter, computer models of cogni-
tion that have focused on the use of neural
networks are reviewed. These architectures
were inspired by research into how com-
putation works in the brain and subsequent
work has produced models of cognition with
a distinctive flavor. Processing is character-
ized by patterns of activation across sim-
ple processing units connected together into
complex networks. Knowledge is stored in
the strength of the connections between
units. It is for this reason that this approach
to understanding cognition has gained the
name of connectionism.

2. Background

Over the last twenty years, connection-
ist modeling has formed an influential ap-
proach to the computational study of cog-
nition. It is distinguished by its appeal to
principles of neural computation to inspire
the primitives that are included in its cog-
nitive level models. Also known as artifi-

cial neural network (ANN) or parallel dis-
tributed processing (PDP) models, connec-
tionism has been applied to a diverse range
of cognitive abilities, including models of
memory, attention, perception, action, lan-
guage, concept formation, and reasoning
(see, e.g., Houghton, 2005). Although many
of these models seek to capture adult func-
tion, connectionism places an emphasis on
learning internal representations. This has
led to an increasing focus on developmental
phenomena and the origins of knowledge.
Although, at its heart, connectionism com-
prises a set of computational formalisms,
it has spurred vigorous theoretical debate
regarding the nature of cognition. Some
theorists have reacted by dismissing connec-
tionism as mere implementation of preex-
isting verbal theories of cognition, whereas
others have viewed it as a candidate to re-
place the Classical Computational Theory
of Mind and as carrying profound impli-
cations for the way human knowledge is
acquired and represented; still others have
viewed connectionism as a subclass of statis-
tical models involved in universal function
approximation and data clustering.
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This chapter begins by placing connec-
tionism in its historical context, leading up
to its formalization in Rumelhart and Mc-
Clelland’s two-volume Parallel Distributed
Processing (1986), written in combination
with members of the Parallel Distributed
Processing Research Group. Then, three im-
portant early models that illustrate some
of the key properties of connectionist sys-
tems are discussed, as well as how the novel
theoretical contributions of these models
arose from their key computational prop-
erties. These three models are the Interac-
tive Activation model of letter recognition
(McClelland & Rumelhart, 1981; Rumel-
hart and McClelland, 1982), Rumelhart and
McClelland’s (1986) model of the acquisi-
tion of the English past tense, and Elman’s
(1991) simple recurrent network for finding
structure in time. Finally, the chapter con-
siders how twenty-five years of connection-
ist modeling has influenced wider theories
of cognition.

2.1. Historical Context

Connectionist models draw inspiration from
the notion that the information-processing
properties of neural systems should influ-
ence our theories of cognition. The possible
role of neurons in generating the mind
was first considered not long after the ex-
istence of the nerve cell was accepted
in the latter half of the nineteenth cen-
tury (Aizawa, 2004). Early neural net-
work theorizing can therefore be found in
some of the associationist theories of men-
tal processes prevalent at the time (e.g.,
Freud, 1895; James, 1890; Meynert, 1884;
Spencer, 1872). However, this line of theo-
rizing was quelled when Lashley presented
data appearing to show that the perfor-
mance of the brain degraded gracefully de-
pending only on the quantity of damage.
This argued against the specific involvement
of neurons in particular cognitive processes
(see, e.g., Lashley, 1929).

In the 1930s and 1940s, there was a
resurgence of interest in using mathemati-
cal techniques to characterize the behavior
of networks of nerve cells (e.g., Rashevksy,
1935). This culminated in the work of Mc-

Culloch and Pitts (1943) who characterized
the function of simple networks of binary
threshold neurons in terms of logical op-
erations. In his 1949 book The Organiza-
tion of Behavior, Donald Hebb proposed a
cell assembly theory of cognition, including
the idea that specific synaptic changes might
underlie psychological principles of learn-
ing. A decade later, Rosenblatt (1958, 1962)
formulated a learning rule for two-layered
neural networks, demonstrating mathemat-
ically that the perceptron convergence rule
could adjust the weights connecting an in-
put layer and an output layer of simple
neurons to allow the network to associate
arbitrary binary patterns. With this rule,
learning converged on the set of connection
values necessary to acquire any two-layer-
computable function relating a set of input-
output patterns. Unfortunately, Minsky and
Papert (1969, 1988) demonstrated that the
set of two-layer computable functions was
somewhat limited – that is, these simple
artificial neural networks were not particu-
larly powerful devices. While more compu-
tationally powerful networks could be de-
scribed, there was no algorithm to learn
the connection weights of these systems.
Such networks required the postulation of
additional internal, or “hidden,” processing
units, which could adopt intermediate rep-
resentational states in the mapping between
input and output patterns. An algorithm
(backpropagation) able to learn these states
was discovered independently several times.
A key paper by Rumelhart, Hinton, and
Williams (1986) demonstrated the useful-
ness of networks trained using backpropaga-
tion for addressing key computational and
cognitive challenges facing neural networks.

In the 1970s, serial processing and the
Von Neumann computer metaphor domi-
nated cognitive psychology. Nevertheless, a
number of researchers continued to work
on the computational properties of neural
systems. Some of the key themes identi-
fied by these researchers included the role
of competition in processing and learning
(e.g., Grossberg, 1976; Kohonen, 1984),
the properties of distributed representa-
tions (e.g., Anderson, 1977; Hinton &
Anderson, 1981), and the possibility of
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Figure 2.1. A simplified schematic showing the historical evolution of neural network architectures.
Simple binary networks (McCulloch & Pitts, 1943) are followed by two-layer feedforward networks
(perceptrons; Rosenblatt, 1958). Three subtypes then emerge: three-layer feedforward networks
(Rumelhart & McClelland, 1986), competitive or self-organizing networks (e.g., Grossberg, 1976;
Kohonen, 1984), and interactive networks (Hopfield, 1982; Hinton & Sejnowksi, 1986). Adaptive
interactive networks have precursors in detector theories of perception (Logogen: Morton, 1969;
Pandemonium: Selfridge, 1959) and in handwired interactive models (interactive activation:
McClelland & Rumelhart, 1981; interactive activation and competition: McClelland, 1981;
Stereopsis: Marr & Poggio, 1976; Necker cube: Feldman, 1981, Rumelhart et al., 1986). Feedforward
pattern associators have produced multiple subtypes: for capturing temporally extended activation
states, cascade networks in which states monotonically asymptote (e.g., Cohen, Dunbar, &
McClelland, 1990), and attractor networks in which states cycle into stable configurations (e.g., Plaut
& McClelland, 1993); for processing sequential information, recurrent networks (Jordan, 1986;
Elman, 1991); and for systems that alter their structure as part of learning, constructivist networks
(e.g., cascade correlation: Fahlman & Lebiere, 1990; Shultz, 2003). SRN = simple recurrent network.

content addressable memory in networks
with attractor states, formalized using the
mathematics of statistical physics (Hopfield,
1982). A fuller characterization of the many
historical influences in the development

of connectionism can be found in Rumel-
hart and McClelland (1986, Chapter 1),
Bechtel and Abrahamsen (1991), McLeod,
Plunkett, and Rolls (1998), and O’Reilly
and Munakata (2000). Figure 2.1 depicts a
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selective schematic of this history and
demonstrates the multiple types of neural
network systems that have latterly come
to be used in building models of cogni-
tion. Although diverse, they are unified on
the one hand by the proposal that cogni-
tion comprises processes of constraint sat-
isfaction, energy minimization, and pattern
recognition, and on the other hand that
adaptive processes construct the microstruc-
ture of these systems, primarily by adjust-
ing the strengths of connections among the
neuron-like processing units involved in a
computation.

2.2. Key Properties of
Connectionist Models

Connectionism starts with the following in-
spiration from neural systems: Computa-
tions will be carried out by a set of simple
processing units operating in parallel and af-
fecting each others’ activation states via a
network of weighted connections. Rumel-
hart, Hinton, and McClelland (1986) iden-
tified seven key features that would de-
fine a general framework for connectionist
processing.

The first feature is the set of processing
units ui . In a cognitive model, these may
be intended to represent individual concepts
(such as letters or words), or they may sim-
ply be abstract elements over which mean-
ingful patterns can be defined. Processing
units are often distinguished into input, out-
put, and hidden units. In associative net-
works, input and output units have states
that are defined by the task being modeled
(at least during training), whereas hidden
units are free parameters whose states may
be determined as necessary by the learning
algorithm.

The second feature is a state of activation
(a) at a given time (t). The state of a set
of units is usually represented by a vector
of real numbers a(t). These may be binary
or continuous numbers, bounded or un-
bounded. A frequent assumption is that the
activation level of simple processing units
will vary continuously between the values 0
and 1.

The third feature is a pattern of connec-
tivity. The strength of the connection be-
tween any two units will determine the ex-
tent to which the activation state of one unit
can affect the activation state of another unit
at a subsequent time point. The strength of
the connections between unit i and unit j
can be represented by a matrix W of weight
values wi j . Multiple matrices may be speci-
fied for a given network if there are connec-
tions of different types. For example, one
matrix may specify excitatory connections
between units and a second may specify in-
hibitory connections. Potentially, the weight
matrix allows every unit to be connected to
every other unit in the network. Typically,
units are arranged into layers (e.g., input,
hidden, output), and layers of units are fully
connected to each other. For example, in a
three-layer feedforward architecture where
activation passes in a single direction from
input to output, the input layer would be
fully connected to the hidden layer and the
hidden layer would be fully connected to the
output layer.

The fourth feature is a rule for propa-
gating activation states throughout the net-
work. This rule takes the vector a(t) of out-
put values for the processing units sending
activation and combines it with the connec-
tivity matrix W to produce a summed or net
input into each receiving unit. The net input
to a receiving unit is produced by multiply-
ing the vector and matrix together, so that

neti = W × a(t) =
∑

j

wi j aj . (2.1)

The fifth feature is an activation rule to
specify how the net inputs to a given unit
are combined to produce its new activation
state. The function F derives the new acti-
vation state

ai (t + 1) = F (neti (t)). (2.2)

For example, F might be a threshold so that
the unit becomes active only if the net in-
put exceeds a given value. Other possibil-
ities include linear, Gaussian, and sigmoid
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functions, depending on the network type.
Sigmoid is perhaps the most common, oper-
ating as a smoothed threshold function that
is also differentiable. It is often important
that the activation function be differentiable
because learning seeks to improve a perfor-
mance metric that is assessed via the acti-
vation state whereas learning itself can only
operate on the connection weights. The ef-
fect of weight changes on the performance
metric therefore depends to some extent on
the activation function, and the learning al-
gorithm encodes this fact by including the
derivative of that function (see the follow-
ing discussion).

The sixth key feature of connectionist
models is the algorithm for modifying the
patterns of connectivity as a function of ex-
perience. Virtually all learning rules for PDP
models can be considered a variant of the
Hebbian learning rule (Hebb, 1949). The
essential idea is that a weight between two
units should be altered in proportion to the
units’ correlated activity. For example, if a
unit ui receives input from another unit uj ,
then if both are highly active, the weight wi j
from uj to ui should be strengthened. In its
simplest version, the rule is

�wi j = η aiaj (2.3)

where η is the constant of proportionality
known as the learning rate. Where an ex-
ternal target activation ti (t) is available for
a unit i at time t, this algorithm is modified
by replacing ai with a term depicting the
disparity of unit ui ’s current activation state
ai (t) from its desired activation state ti (t) at
time t, so forming the delta rule:

�wi j = η (ti (t) − ai (t)) aj . (2.4)

However, when hidden units are included
in networks, no target activation is available
for these internal parameters. The weights
to such units may be modified by variants of
the Hebbian learning algorithm (e.g., Con-
trastive Hebbian; Hinton, 1989; see Xie &
Seung, 2003) or by the backpropagation of
error signals from the output layer.

Backpropagation makes it possible to de-
termine, for each connection weight in the
network, what effect a change in its value
would have on the overall network error.
The policy for changing the strengths of con-
nections is simply to adjust each weight in
the direction (up or down) that would tend
to reduce the error, and change it by an
amount proportional to the size of the effect
the adjustment will have. If there are mul-
tiple layers of hidden units remote from the
output layer, this process can be followed
iteratively: First, error derivatives are com-
puted for the hidden layer nearest the out-
put layer; from these, derivatives are com-
puted for the next deepest layer into the
network, and so forth. On this basis, the
backpropagation algorithm serves to modify
the pattern of weights in powerful multi-
layer networks. It alters the weights to each
deeper layer of units in such a way as to
reduce the error on the output units (see
Rumelhart, Hinton, et al., 1986, for the
derivation). We can formulate the weight
change algorithm by analogy to the delta
rule shown in equation 2.4. For each deeper
layer in the network, we modify the central
term that represents the disparity between
the actual and target activation of the units.
Assuming ui , uh, and uo are input, hidden,
and output units in a three-layer feedfor-
ward network, the algorithm for changing
the weight from hidden to output unit is:

�woh = η (to − ao) F ′(neto) ah (2.5)

where F ′(net) is the derivative of the ac-
tivation function of the units (e.g., for
the sigmoid activation function,F ′(neto) =
ao(1 − ao)). The term (to − ao) is propor-
tional to the negative of the partial deriva-
tive of the network’s overall error with
respect to the activation of the output
unit, where the error E is given by E =∑

o (to − ao)2.
The derived error term for a unit at

the hidden layer is a product of three
components: the derivative of the hidden
unit’s activation function times the sum
across all the connections from that hid-
den unit to the output later of the error
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term on each output unit weighted by the
derivative of the output unit’s activation
function (to − ao) F ′ (neto) times the weight
connecting the hidden unit to the output
unit:

F ′(neth)
∑

o
(to − ao)F ′(neto)woh. (2.6)

The algorithm for changing the weights
from the input to the hidden layer is there-
fore:

�whi = η F ′(neth)
∑

o

(to − ao)

× F ′(neto)woh ai . (2.7)

It is interesting that the previous omputa-
tion can be construed as a backward pass
through the network, similar in spirit to the
forward pass that computes activations in
that it involves propagation of signals across
weighted connections, this time from the
output layer back toward the input. The
backward pass, however, involves the prop-
agation of error derivatives rather than acti-
vations.

It should be emphasized that a very wide
range of variants and extensions of Hebbian
and error-correcting algorithms have been
introduced in the connectionist learning lit-
erature. Most importantly, several variants
of backpropagation have been developed
for training recurrent networks (Williams &
Zipser, 1995); and several algorithms (in-
cluding the Contrastive Hebbian Learning
algorithm and O’Reilly’s 1998 LEABRA
algorithm) have addressed some of the con-
cerns that have been raised regarding the bi-
ological plausibility of backpropagation con-
strued in its most literal form (O’Reilly &
Munakata, 2000).

The last general feature of connection-
ist networks is a representation of the en-
vironment with respect to the system. This
is assumed to consist of a set of externally
provided events or a function for generat-
ing such events. An event may be a single
pattern, such as a visual input; an ensem-
ble of related patterns, such as the spelling
of a word and its corresponding sound or

meaning; or a sequence of inputs, such as the
words in a sentence. A range of policies have
been used for specifying the order of pre-
sentation of the patterns, including sweep-
ing through the full set to random sampling
with replacement. The selection of patterns
to present may vary over the course of train-
ing but is often fixed. Where a target output
is linked to each input, this is usually as-
sumed to be simultaneously available. Two
points are of note in the translation between
PDP network and cognitive model. First, a
representational scheme must be defined to
map between the cognitive domain of in-
terest and a set of vectors depicting the rel-
evant informational states or mappings for
that domain. Second, in many cases, con-
nectionist models are addressed to aspects of
higher-level cognition, where it is assumed
that the information of relevance is more ab-
stract than sensory or motor codes. This has
meant that the models often leave out de-
tails of the transduction of sensory and mo-
tor signals, using input and output represen-
tations that are already somewhat abstract.
We hold the view that the same principles
at work in higher-level cognition are also at
work in perceptual and motor systems, and
indeed there is also considerable connection-
ist work addressing issues of perception and
action, although these will not be the focus
of the present chapter.

2.3. Neural Plausibility

It is a historical fact that most connectionist
modelers have drawn their inspiration from
the computational properties of neural sys-
tems. However, it has become a point of
controversy whether these “brain-like” sys-
tems are indeed neurally plausible. If they
are not, should they instead be viewed as
a class of statistical function approximators?
And if so, shouldn’t the ability of these mod-
els to simulate patterns of human behavior
be assessed in the context of the large num-
ber of free parameters they contain (e.g., in
the weight matrix; Green, 1998)?

Neural plausibility should not be the pri-
mary focus for a consideration of connec-
tionism. The advantage of connectionism,
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according to its proponents, is that it pro-
vides better theories of cognition. Neverthe-
less, we will deal briefly with this issue
because it pertains to the origins of con-
nectionist cognitive theory. In this area, two
sorts of criticism have been leveled at con-
nectionist models. The first is to maintain
that many connectionist models either in-
clude properties that are not neurally plau-
sible or omit other properties that neural
systems appear to have. Some connection-
ist researchers have responded to this first
criticism by endeavoring to show how fea-
tures of connectionist systems might in fact
be realized in the neural machinery of the
brain. For example, the backward prop-
agation of error across the same connec-
tions that carry activation signals is gen-
erally viewed as biologically implausible.
However, a number of authors have shown
that the difference between activations com-
puted using standard feedforward connec-
tions and those computed using standard re-
turn connections can be used to derive the
crucial error derivatives required by back-
propagation (Hinton & McClelland, 1988;
O’Reilly, 1996). It is widely held that con-
nections run bidirectionally in the brain, as
required for this scheme to work. Under this
view, backpropagation may be shorthand
for a Hebbian-based algorithm that uses
bidirectional connections to spread error sig-
nals throughout a network (Xie & Seung,
2003).

Other connectionist researchers have re-
sponded to the first criticism by stressing
the cognitive nature of current connection-
ist models. Most of the work in develop-
mental neuroscience addresses behavior at
levels no higher than cellular and local net-
works, whereas cognitive models must make
contact with the human behavior studied in
psychology. Some simplification is therefore
warranted, with neural plausibility compro-
mised under the working assumption that
the simplified models share the same fla-
vor of computation as actual neural sys-
tems. Connectionist models have succeeded
in stimulating a great deal of progress in cog-
nitive theory – and have sometimes gen-
erated radically different proposals to the

previously prevailing symbolic theory – just
given the set of basic computational features
outlined in the preceding section.

The second type of criticism leveled at
connectionism questions why, as Davies
(2005) puts it, connectionist models should
be reckoned any more plausible as putative
descriptions of cognitive processes just be-
cause they are “brain-like.” Under this view,
there is independence between levels of de-
scription because a given cognitive level the-
ory might be implemented in multiple ways
in different hardware. Therefore, the de-
tails of the hardware (in this case, the brain)
need not concern the cognitive theory. This
functionalist approach, most clearly stated
in Marr’s three levels of description (compu-
tational, algorithmic, and implementational;
see Marr, 1982) has been repeatedly chal-
lenged (see, e.g., Rumelhart & McClelland,
1985; Mareschal et al., 2007). The challenge
to Marr goes as follows. Although, accord-
ing to computational theory, there may be
a principled independence between a com-
puter program and the particular substrate
on which it is implemented, in practical
terms, different sorts of computation are
easier or harder to implement on a given
substrate. Because computations have to be
delivered in real time as the individual re-
acts with his or her environment, in the first
instance, cognitive level theories should be
constrained by the computational primitives
that are most easily implemented on the
available hardware; human cognition should
be shaped by the processes that work best in
the brain.

The relation of connectionist models to
symbolic models has also proved contro-
versial. A full consideration of this issue
is beyond the scope of the current chap-
ter. Suffice to say that because the con-
nectionist approach now includes a diverse
family of models, there is no single an-
swer to this question. Smolensky (1988)
argued that connectionist models exist at
a lower (but still cognitive) level of de-
scription than symbolic cognitive theories,
a level that he called the subsymbolic. Con-
nectionist models have sometimes been put
forward as a way to implement symbolic
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production systems on neural architectures
(e.g., Touretzky & Hinton, 1988). At other
times, connectionist researchers have argued
that their models represent a qualitatively
different form of computation: Whereas
under certain circumstances, connectionist
models might produce behavior approxi-
mating symbolic processes, it is held that
human behavior, too, only approximates the
characteristics of symbolic systems rather
than directly implementing them. Further-
more, connectionist systems incorporate
additional properties characteristic of hu-
man cognition, such as content-addressable
memory, context-sensitive processing, and
graceful degradation under damage or noise.
Under this view, symbolic theories are ap-
proximate descriptions rather than actual
characterizations of human cognition. Con-
nectionist theories should replace them both
because they capture subtle differences be-
tween human behavior and symbolic char-
acterizations, and because they provide a
specification of the underlying causal mech-
anisms (van Gelder, 1991).

This strong position has prompted crit-
icisms that in their current form, connec-
tionist models are insufficiently powerful to
account for certain aspects of human cog-
nition – in particular, those areas best char-
acterized by symbolic, syntactically driven
computations (Fodor & Pylyshyn, 1988;
Marcus, 2001). Again, however, the charac-
terization of human cognition in such terms
is highly controversial; close scrutiny of rel-
evant aspects of language – the ground on
which the dispute has largely been focused –
lends support to the view that the system-
aticity assumed by proponents of symbolic
approaches is overstated and that the actual
characteristics of language are well matched
to the characteristics of connectionist sys-
tems (Bybee & McClelland, 2005; McClel-
land et al., 2003). In the end, it may be diffi-
cult to make principled distinctions between
symbolic and connectionist models. At a fine
scale, one might argue that two units in a
network represent variables, and the con-
nection between them specifies a symbolic
rule linking these variables. One might also
argue that a production system in which

rules are allowed to fire probabilistically and
in parallel begins to approximate a connec-
tionist system.

2.4. The Relationship between
Connectionist Models and
Bayesian Inference

Since the early 1980s, it has been apparent
that there are strong links between the cal-
culations carried out in connectionist mod-
els and key elements of Bayesian calcu-
lations (see chapter 3 in this volume on
Bayesian models of cognition). The state of
the early literature on this point was re-
viewed in McClelland (1998). There it was
noted, first of all, that units can be viewed
as playing the role of probabilistic hypothe-
ses; that weights and biases play the role
of conditional probability relations between
hypotheses and prior probabilities, respec-
tively; and that if connection weights and
biases have the correct values, the logistic
activation function sets the activation of a
unit to its posterior probability given the ev-
idence represented on its inputs.

A second and more important observa-
tion is that, in stochastic neural networks
(Boltzmann machines and Continuous Dif-
fusion Networks; Hinton & Sejnowski,
1986; Movellan & McClelland, 1993), a net-
work’s state over all of its units can rep-
resent a constellation of hypotheses about
an input, and (if the weights and the bi-
ases are set correctly) that the probability
of finding the network in a particular state
is monotonically related to the probability
that the state is the correct interpretation
of the input. The exact nature of the re-
lation depends on a parameter called tem-
perature; if set to one, the probability that
the network will be found in a particular
state exactly matches its posterior probabil-
ity. When temperature is gradually reduced
to zero, the network will end up in the most
probable state, thus performing optimal
perceptual inference (Hinton & Sejnowski,
1983). It is also known that backpropaga-
tion can learn weights that allow Bayes-
optimal estimation of outputs given inputs
(MacKay, 1992) and that the Boltzmann
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machine learning algorithm (Ackley, Hin-
ton, & Sejnowski, 1985; Movellan & Mc-
Clelland, 1993) can learn to produce correct
conditional distributions of outputs given
inputs. The algorithm is slow but there has
been recent progress producing substantial
speedups that achieve outstanding perfor-
mance on benchmark data sets (Hinton &
Salakhutdinov, 2006).

3. Three Illustrative Models

In this section, we outline three of the land-
mark models in the emergence of connec-
tionist theories of cognition. The models
serve to illustrate the key principles of con-
nectionism and demonstrate how these prin-
ciples are relevant to explaining behavior in
ways that were different from other prior
approaches. The contribution of these mod-
els was twofold: they were better suited than
alternative approaches to capturing the ac-
tual characteristics of human cognition, usu-
ally on the basis of their context sensitive
processing properties; and compared to ex-
isting accounts, they offered a sharper set
of tools to drive theoretical progress and
to stimulate empirical data collection. Each
of these models significantly advanced its
field.

3.1. An Interactive Activation Model
of Context Effects in Letter Perception
(McClelland & Rumelhart, 1981,
Rumelhart & McClelland, 1982)

The interactive activation model of letter
perception illustrates two interrelated ideas.
The first is that connectionist models natu-
rally capture a graded constraint satisfaction
process in which the influences of many dif-
ferent types of information are simultane-
ously integrated in determining, for exam-
ple, the identity of a letter in a word. The
second idea is that the computation of a per-
ceptual representation of the current input
(in this case, a word) involves the simultane-
ous and mutual influence of representations
at multiple levels of abstraction – this is a core
idea of parallel distributed processing.

The interactive activation model ad-
dressed a puzzle in word recognition. By
the late 1970s, it had long been known
that people were better at recognizing let-
ters presented in words than letters pre-
sented in random letter sequences. Reicher
(1969) demonstrated that this was not the
result of tending to guess letters that would
make letter strings into words. He presented
target letters in words, in unpronounceable
nonwords, or on their own. The stimuli
were then followed by a pattern mask, af-
ter which participants were presented with
a forced choice between two letters in a
given position. Importantly, both alterna-
tives were equally plausible. Thus, the par-
ticipant might be presented with WOOD
and asked whether the third letter was O or
R. As expected, forced-choice performance
was more accurate for letters in words than
for letters in nonwords or presented on their
own. Moreover, the benefit of surrounding
context was also conferred by pronounce-
able pseudowords (e.g., recognizing the P in
SPET) compared with random letter strings,
suggesting that subjects were able to bring to
bear rules regarding the orthographic legal-
ity of letter strings during recognition.

Rumelhart and McClelland (Rumelhart
& McClelland, 1981; Rumelhart & McClel-
land, 1982) took the contextual advantage
of words and pseudowords on letter recog-
nition to indicate the operation of top-down
processing. Previous theories had put for-
ward the idea that letter and word recogni-
tion might be construed in terms of detec-
tors that collect evidence consistent with the
presence of their assigned letter or word in
the input (Morton, 1969; Selfridge, 1959).
Influenced by these theories, Rumelhart and
McClelland built a computational simula-
tion in which the perception of letters re-
sulted from excitatory and inhibitory inter-
actions of detectors for visual features. Im-
portantly, the detectors were organized into
different layers for letter features, letters and
words, and detectors could influence each
other both in a bottom-up and a top-down
manner.

Figure 2.2 illustrates the structure of the
Interactive Activation (IA) model, both at



P1: JZP

CUFX212-02 CUFX212-Sun 978 0 521 85741 3 November 15, 2007 13:46

32 thomas and mcclelland
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LETTER LEVEL 
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Figure 2.2. Interactive Activation model of context effects in letter
recognition (McClelland & Rumelhart, 1981, 1982). Pointed arrows
are excitatory connections, circular headed arrows are inhibitory
connections. Left: macro view (connections in gray were set to zero in
implemented model). Right: micro view for the connections from the
feature level to the first letter position for the letters S, W, and F (only
excitatory connections shown) and from the first letter position to the
word units SEED, WEED, and FEED (all connections shown).

the macro level (left) and for a small sec-
tion of the model at a finer level (right).
The explicit motivation for the structure
of the IA was neural: “[We] have adopted
the approach of formulating the model in
terms similar to the way in which such a
process might actually be carried out in a
neural or neural-like system” (McClelland &
Rumelhart, 1981, p. 387). There were three
main assumptions of the IA model: (1) Per-
ceptual processing takes place in a system
in which there are several levels of process-
ing, each of which forms a representation
of the input at a different level of abstrac-
tion; (2) visual perception involves parallel
processing, both of the four letters in each
word and of all levels of abstraction simul-
taneously; and (3) perception is an interac-
tive process in which conceptually driven
and data driven processing provide multi-
ple, simultaneously acting constraints that
combine to determine what is perceived.

The activation states of the system were
simulated by a sequence of discrete time
steps. Each unit combined its activation on
the previous time step, its excitatory influ-
ences, its inhibitory influences, and a decay

factor to determine its activation on the next
time step. Connectivity was set at unitary
values and along the following principles. In
each layer, mutually exclusive alternatives
should inhibit each other. Each unit in a
layer excited all units with which it was con-
sistent and inhibited all those with which
it was inconsistent in the layer immediately
above. Thus, in Figure 2.2, the first-position
W letter unit has an excitatory connection to
the WEED word unit but an inhibitory con-
nection to the SEED and FEED word units.
Similarly, a unit excited all units with which
it was consistent and inhibited all those with
which it was inconsistent in the layer im-
mediately below. However, in the final im-
plementation, top-down word-to-letter in-
hibition and within-layer letter-to-letter in-
hibition were set to zero (gray arrows,
Figure 2.2).

The model was constructed to recognize
letters in four-letter strings. The full set of
possible letters was duplicated for each let-
ter position, and a set of 1,179 word units
was created to represent the corpus of four-
letter words. Word units were given base
rate activation states at the beginning of
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processing to reflect their different frequen-
cies. A trial began by clamping the feature
units to the appropriate states to represent
a letter string and then observing the dy-
namic change in activation through the net-
work. Conditions were included to allow
the simulation of stimulus masking and de-
graded stimulus quality. Finally, a proba-
bilistic response mechanism was added to
generate responses from the letter level,
based on the relative activation states of the
letter pool in each position.

The model successfully captured the
greater accuracy of letter detection for let-
ters appearing in words and pseudowords
compared with random strings or in isola-
tion. Moreover, it simulated a variety of em-
pirical findings on the effect of masking and
stimulus quality, and of changing the timing
of the availability of context. The results on
the contextual effects of pseudowords are
particularly interesting, because the model
only contains word units and letter units
and has no explicit representation of ortho-
graphic rules. Let us say on a given trial, the
subject is required to recognize the second
letter in the string SPET. In this case, the
string will produce bottom-up excitation of
the word units for SPAT, SPIT, and SPOT,
which each share three letters. In turn, the
word units will propagate top-down activa-
tion, reinforcing activation of the letter P
and so facilitating its recognition. Were this
letter to be presented in the string XPQJ, no
word units could offer similar top-down ac-
tivation, hence the relative facilitation of the
pseudoword. Interestingly, although these
top-down “gang” effects produced facilita-
tion of letters contained in orthographically
legal nonword strings, the model demon-
strated that they also produced facilitation
in orthographically illegal, unpronounceable
letter strings, such as SPCT. Here, the same
gang of SPAT, SPIT, and SPOT produce
top-down support. Rumelhart and McClel-
land (1982) reported empirical support for
this novel prediction. Therefore, although
the model behaved as if it contained ortho-
graphic rules influencing recognition, it did
not in fact do so because continued contex-
tual facilitation could be demonstrated for

strings that had gang support but violated
the orthographic rules.

There are two specific points to note re-
garding the IA model. First, this early con-
nectionist model was not adaptive – connec-
tivity was set by hand. Although the model’s
behavior was shaped by the statistical prop-
erties of the language it processed, these
properties were built into the structure of
the system in terms of the frequency of oc-
currence of letters and letter combinations
in the words. Second, the idea of bottom-up
excitation followed by competition among
mutually exclusive possibilities is a strategy
familiar in Bayesian approaches to cognition.
In that sense, the IA bears similarity to more
recent probability theory based approaches
to perception (see chapter 3 in this volume).

3.1.1. what happened next?

Subsequent work saw the principles of the
IA model extended to the recognition of
spoken words (the TRACE model: McClel-
land & Elman, 1986) and more recently
to bilingual speakers, where two languages
must be incorporated in a single representa-
tional system (see Thomas & van Heuven,
2005, for review). The architecture was ap-
plied to other domains where multiple con-
straints were thought to operate during per-
ception, for example, in face recognition
(Burton, Bruce, & Johnston, 1990). Within
language, more complex architectures have
tried to recast the principles of the IA model
in developmental settings, such as Plaut
and Kello’s (1999) model of the emergence
of phonology from the interplay of speech
comprehension and production.

The more general lesson to draw from the
interactive activation model is the demon-
stration of multiple influences (feature, let-
ter, and word-level knowledge) working si-
multaneously and in parallel to shape the
response of the system, as well as the some-
what surprising finding that a massively par-
allel constraint satisfaction process of this
form can appear to behave as if it contains
rules (in this case, orthographic) when no
such rules are included in the processing
structure. At the time, the model brought
into question whether it was necessary to
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postulate rules as processing structures to
explain regularities in human behavior. This
skepticism was brought into sharper focus
by our next example.

3.2. On Learning the Past Tense
of English Verbs (Rumelhart &
McClelland, 1986)

Rumelhart and McClelland’s (1986) model
of English past tense formation marked
the real emergence of the PDP framework.
Where the IA model used localist coding,
the past tense model employed distributed
coding. Where the IA model had handwired
connection weights, the past tense model
learned its weights via repeated exposure
to a problem domain. However, the mod-
els share two common themes. Once more,
the behavior of the past tense model will
be driven by the statistics of the problem
domain, albeit these will be carved into the
model by training rather than sculpted by
the modelers. Perhaps more importantly, we
see a return to the idea that a connectionist
system can exhibit rule-following behavior
without containing rules as causal process-
ing structures; but in this case, the rule-
following behavior will be the product of
learning and will accommodate a propor-
tion of exception patterns that do not follow
the general rule. The key point that the past
tense model illustrates is how (approximate)
conformity to the regularities of language –
and even a tendency to produce new regular
forms (e.g., regularizations like “thinked” or
past tenses for novel verbs like “wugged”) –
can arise in a connectionist network without
an explicit representation of a linguistic rule.

The English past tense is characterized
by a predominant regularity in which the
majority of verbs form their past tenses by
the addition of one of three allomorphs of
the “-ed” suffix to the base stem (walk/
walked, end/ended, chase/chased). How-
ever, there is a small but significant group
of verbs that form their past tense in dif-
ferent ways, including changing internal
vowels (swim/swam), changing word final
consonants (build/built), changing both in-
ternal vowels and final consonants (think/

thought), and an arbitrary relation of stem
to past tense (go/went), as well as verbs that
have a past tense form identical to the stem
(hit/hit). These so-called irregular verbs of-
ten come in small groups sharing a fam-
ily resemblance (sleep/slept, creep/crept,
leap/leapt) and usually have high token
frequencies (see Pinker, 1999, for further
details).

During the acquisition of the English
past tense, children show a characteristic
U-shaped developmental profile at differ-
ent times for individual irregular verbs. Ini-
tially, they use the correct past tense of a
small number of high-frequency regular and
irregular verbs. Later, they sometimes pro-
duce “overregularized” past tense forms for
a small fraction of their irregular verbs (e.g.,
thinked; Marcus et al., 1992), along with
other, less frequent errors (Xu & Pinker,
1995). They are also able to extend the
past tense “rule” to novel verbs (e.g., wug-
wugged). Finally, in older children, perfor-
mance approaches ceiling on both regu-
lar and irregular verbs (Berko, 1958; Ervin,
1964; Kuczaj, 1977).

In the early 1980s, it was held that this
pattern of behavior represented the oper-
ation of two developmental mechanisms
(Pinker, 1984). One of these was symbolic
and served to learn the regular past tense
rule, whereas the other was associative and
served to learn the exceptions to the rule.
The extended phase of overregularization
errors corresponded to difficulties in inte-
grating the two mechanisms, specifically, a
failure of the associative mechanism to block
the function of the symbolic mechanism.
That the child comes to the language acqui-
sition situation armed with these two mech-
anisms (one of them full of blank rules) was
an a priori commitment of the developmen-
tal theory.

By contrast, Rumelhart and McClelland
(1986) proposed that a single network that
does not distinguish between regular and ir-
regular past tenses is sufficient to learn past
tense formation. The architecture of their
model is shown in Figure 2.3. A phoneme-
based representation of the verb root was
recoded into a more distributed, coarser
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Phonological representation of past tense 

Phonological representation of verb root

Recoding 

Decoding 

2-layer network 
trained with the

delta rule

Coarse coded, distributed
Wickelfeature

representation of root

Coarse coded, distributed
Wickelfeature representation

of past tense 

Figure 2.3. Two-layer network for learning the mapping between
the verb roots and past tense forms of English verbs (Rumelhart &
McClelland, 1986). Phonological representations of verbs are
initially encoded into a coarse, distributed “Wickelfeature”
representation. Past tenses are decoded from the Wickelfeature
representation back to the phonological form. Later connectionist
models replaced the dotted area with a three-layer feedforward
backpropagation network (e.g., Plunkett & Marchman, 1991,
1993).

(more blurred) format, which they called
“Wickelfeatures.” The stated aim of this re-
coding was to produce a representation that
(a) permitted differentiation of all of the
root forms of English and their past tenses,
and (b) provided a natural basis for gener-
alizations to emerge about what aspects of
a present tense correspond to what aspects
of a past tense. This format involved repre-
senting verbs over 460 processing units. A
two-layer network was used to associate the
Wickelfeature representations of the verb
root and past tense form. A final decoding
network was then used to derive the closest
phoneme-based rendition of the past tense
form and reveal the model’s response (the
decoding part of the model was somewhat
restricted by computer processing limita-
tions of the machines available at the time).

The connection weights in the two-layer
network were initially randomized. The
model was then trained in three phases,
in each case using the delta rule to up-
date the connection weights after each verb
root/past tense pair was presented (see Sec-

tion 2.2, and Equation 4). In Phase 1, the
network was trained on ten high-frequency
verbs, two regular and eight irregular, in
line with the greater proportion of irreg-
ular verbs among the most frequent verbs
in English. Phase 1 lasted for ten presenta-
tions of the full training set (or “epochs”).
In Phase 2, the network was trained on 410
medium frequency verbs, 334 regular and
76 irregular, for a further 190 epochs. In
Phase 3, no further training took place, but
86 lower-frequency verbs were presented to
the network to test its ability to generalize
its knowledge of the past tense domain to
novel verbs.

There were four key results for this
model. First, it succeeded in learning both
regular and irregular past tense mappings in
a single network that made no reference to
the distinction between regular and irregular
verbs. Second, it captured the overall pat-
tern of faster acquisition for regular verbs
than irregular verbs, a predominant feature
of children’s past tense acquisition. Third,
the model captured the U-shaped profile
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of development: an early phase of accurate
performance on a small set of regular and
irregular verbs, followed by a phase of over-
regularization of the irregular forms, and fi-
nally recovery for the irregular verbs and
performance approaching ceiling on both
verb types. Fourth, when the model was
presented with the low-frequency verbs on
which it had not been trained, it was able
to generalize the past tense rule to a sub-
stantial proportion of them, as if it had in-
deed learned a rule. Additionally, the model
captured more fine-grained developmental
patterns for subsets of regular and irregular
verbs, and generated several novel predic-
tions.

Rumelhart and McClelland explained the
generalization abilities of the network in
terms of the superpositional memory of the
two-layer network. All the associations be-
tween the distributed encodings of verb root
and past tense forms must be stored across
the single matrix of connection weights. As
a result, similar patterns blend into one an-
other and reinforce each other. Generaliza-
tion is contingent on the similarity of verbs
at input. Were the verbs to be presented us-
ing an orthogonal, localist scheme (e.g., 420
units, 1 per verb), then there would be no
similarity between the verbs, no blending
of mappings, no generalization, and there-
fore no regularization of novel verbs. As
the authors state, “It is the statistical rela-
tionships among the base forms themselves
that determine the pattern of responding.
The network merely reflects the statistics
of the featural representations of the verb
forms” (Rumelhart & McClelland, 1986,
p. 267). Based on the model’s successful
simulation of the profile of language devel-
opment in this domain, and compared with
the dual mechanism model, its more parsi-
monious a priori commitments, Rumelhart
and McClelland viewed their work on past
tense morphology as a step toward a revised
understanding of language knowledge, lan-
guage acquisition, and linguistic information
processing in general.

The past tense model stimulated a great
deal of subsequent debate, not least be-
cause of its profound implications for the-

ories of language development (no rules!).
The model was initially subjected to con-
centrated criticism. Some of this was
overstated – for instance, the use of domain-
general learning principles (such as dis-
tributed representation, parallel processing,
and the delta rule) to acquire the past tense
in a single network was interpreted as a claim
that all of language acquisition could be cap-
tured by the operation of a single domain-
general learning mechanism. Such an ab-
surd claim could be summarily dismissed.
As it stood, the model made no such claim:
Its generality was in the processing princi-
ples. The model itself represented a domain-
specific system dedicated to learning a small
part of language. Nevertheless, a number of
the criticisms were more telling: The Wick-
elfeature representational format was not
psycholinguistically realistic; the generaliza-
tion performance of the model was relatively
poor; the U-shaped developmental profile
appeared to be a result of abrupt changes
in the composition of the training set; and
the actual response of the model was hard to
discern because of problems in decoding the
Wickelfeature output into a phoneme string
(Pinker & Prince, 1988).

The criticisms and following rejoinders
were interesting in a number of ways. First,
there was a stark contrast between the pre-
cise, computationally implemented connec-
tionist model of past tense formation and
the verbally specified dual-mechanism the-
ory (e.g., Marcus et al., 1992). The im-
plementation made simplifications but was
readily evaluated against quantitative be-
havioral evidence; it made predictions and
it could be falsified. The verbal theory by
contrast was vague – it was hard to know
how or whether it would work or exactly
what behaviors it predicted (see Thomas,
Forrester, & Richardson, 2006, for discus-
sion). Therefore, it could only be evalu-
ated on loose qualitative grounds. Second,
the model stimulated a great deal of new
multidisciplinary research in the area. To-
day, inflectional morphology (of which past
tense is a part) is one of the most studied as-
pects of language processing in children, in
adults, in second language learners, in adults
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with acquired brain damage, in children and
adults with neurogenetic disorders, and in
children with language impairments, using
psycholinguistic methods, event-related po-
tential measures of brain activity, functional
magnetic resonance imaging, and behavioral
genetics. This rush of science illustrates the
essential role of computational modeling in
driving forward theories of human cogni-
tion. Third, further modifications and im-
provements to the past tense model have
highlighted how researchers go about the
difficult task of understanding which parts
of their model represent the key theoreti-
cal claims and which are implementational
details. Simplification is inherent in model-
ing, but successful modeling relies on mak-
ing the right simplifications to focus on the
process of interest. For example, in sub-
sequent models, the Wickelfeature repre-
sentation was replaced by more plausible
phonemic representations based on articu-
latory features; the recoding/two-layer net-
work/decoding component of the network
(the dotted rectangle in Figure 2.3) that
was trained with the delta rule was re-
placed by a three-layer feedforward net-
work trained with the backpropagation al-
gorithm; and the U-shaped developmental
profile was demonstrated in connectionist
networks trained with a smoothly growing
training set of verbs or even with a fixed set
of verbs (see, e.g., Plunkett & Marchman,
1991, 1993, 1996).

3.2.1. what happened next?

The English past tense model prompted
further work within inflectional morphol-
ogy in other languages (e.g., pluralization in
German: Goebel & Indefrey, 2000; plural-
ization in Arabic: Plunkett & Nakisa, 1997),
as well as models that explored the possible
causes of deficits in acquired and develop-
mental disorders, such as aphasia, Specific
Language Impairment and Williams syn-
drome (e.g., Hoeffner & McClelland, 1993;
Joanisse & Seidenberg, 1999; Thomas &
Karmiloff-Smith, 2003b; Thomas, 2005).
The idea that rule-following behavior could
emerge in a developing system that also had
to accommodate exceptions to the rules was

also successfully pursued via connectionist
modeling in the domain of reading (e.g.,
Plaut, et al., 1996). This led to work that
also considered various forms of acquired
and developmental dyslexia.

For the past tense itself, there re-
mains much interest in the topic as a
crucible to test theories of language de-
velopment. However, in some senses the
debate between connectionist and dual-
mechanism accounts has ground to a halt.
There is much evidence from child devel-
opment, adult cognitive neuropsychology,
developmental neuropsychology, and func-
tional brain imaging to suggest partial dis-
sociations between performance on regu-
lar and irregular inflection under various
conditions. Both connectionist and dual-
mechanism models have been modified: the
connectionist model to include the influ-
ence of lexical-semantics as well as verb
root phonology in driving the production
of the past tense form (Joanisse & Sei-
denberg, 1999; Thomas & Karmiloff-Smith,
2003b); the dual-mechanism model to sup-
pose that regular verbs might also be stored
in the associative mechanism, thereby in-
troducing partial redundancy of function
(Pinker, 1999). Both approaches now ac-
cept that performance on regular and ir-
regular past tenses partly indexes different
things – in the connectionist account, dif-
ferent underlying knowledge, in the dual-
mechanism account, different underlying
processes. In the connectionist theory, per-
formance on regular verbs indexes reliance
on knowledge about phonological regu-
larities, whereas performance on irregular
verbs indexes reliance on lexical-semantic
knowledge. In the dual-mechanism theory,
performance on regular verbs indexes a
dedicated symbolic processing mechanism
implementing the regular rule, whereas per-
formance on irregular verbs indexes an as-
sociative memory device storing informa-
tion about the past tense forms of specific
verbs. Both approaches claim to account
for the available empirical evidence. How-
ever, to date, the dual-mechanism account
remains unimplemented, so its claim is
weaker.
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How does one distinguish between two
theories that (a) both claim to explain the
data but (b) contain different representa-
tional assumptions? Putting aside the differ-
ent level of detail of the two theories, the an-
swer is that it depends on one’s preference
for consistency with other disciplines. The
dual-mechanism theory declares consistency
with linguistics – if rules are required to
characterize other aspects of language per-
formance (such as syntax), then one might
as well include them in a model of past
tense formation. The connectionist theory
declares consistency with neuroscience – if
the language system is going to be imple-
mented in the brain, then one might as well
employ a computational formulism based on
how neural networks function.

Finally, we return to the more general
connectionist principle illustrated by the
past tense model. So long as there are regu-
larities in the statistical structure of a prob-
lem domain, a massively parallel constraint
satisfaction system can learn these regular-
ities and extend them to novel situations.
Moreover, as with humans, the behavior of
the system is flexible and context sensitive –
it can accommodate regularities and excep-
tions within a single processing structure.

3.3. Finding Structure in Time
(Elman, 1990)

In this section, the notion of the simple re-
current network and its application to lan-
guage are introduced. As with past tense,
the key point of the model will be to show
how conformity to regularities of language
can arise without an explicit representation
of a linguistic rule. Moreover, the following
simulations will demonstrate how learning
can lead to the discovery of useful internal
representations that capture conceptual and
linguistic structure on the basis of the co-
occurrences of words in sentences.

The IA model exemplified connection-
ism’s commitment to parallelism: All of the
letters of the word presented to the net-
work were recognized in parallel, and pro-
cessing occurred simultaneously at different
levels of abstraction. But not all processing
can be carried out in this way. Some hu-

man behaviors intrinsically revolve around
temporal sequences. Language, action plan-
ning, goal-directed behavior, and reasoning
about causality are examples of domains
that rely on events occurring in sequences.
How has connectionism addressed the pro-
cessing of temporally unfolding events? One
solution was offered in the TRACE model
of spoken word recognition (McClelland &
Elman, 1986), where a word was specified
as a sequence of phonemes. In that case,
the architecture of the system was dupli-
cated for each time-slice and the duplicates
wired together. This allowed constraints to
operate over items in the sequence to influ-
ence recognition. In other models, a related
approach was used to convert a temporally
extended representation into a spatially ex-
tended one. For example, in the past tense
model, all the phonemes of a verb were pre-
sented across the input layer. This could be
viewed as a sequence if one assumed that
the representation of the first phoneme rep-
resents time slice t, the representation of the
second phoneme represents time slice t + 1,
and so on. As part of a comprehension sys-
tem, this approach assumes a buffer that can
take sequences and convert them to a spa-
tial vector. However, this solution is fairly
limited, as it necessarily pre-commits to the
size of the sequences that can be processed
at once (i.e., the size of the input layer).

Elman (1990, 1991) offered an al-
ternative and more flexible approach to
processing sequences, proposing an archi-
tecture that has been extremely influential
and much used since. Elman drew on the
work of Jordan (1986) who had proposed a
model that could learn to associate a “plan”
(i.e., a single input vector) with a series of
“actions” (i.e., a sequence of output vectors).
Jordan’s model contained recurrent connec-
tions permitting the hidden units to “see”
the network’s previous output (via a set of
“state” input units that are given a copy of
the previous output). The facility for the
network to shape its next output according
to its previous response constitutes a kind of
memory. Elman’s innovation was to build
a recurrent facility into the internal units of
the network, allowing it to compute statisti-
cal relationships across sequences of inputs
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Figure 2.4. Elman’s simple recurrent network architecture for finding
structure in time (Elman, 1991, 1993). Connections between input
and hidden, context and hidden, and hidden and output layers are
trainable. Sequences are applied to the network element by element
in discrete time steps; the context layer contains a copy of the hidden
unit (HU) activations on the previous time step transmitted by fixed,
1-to-1 connections.

and outputs. To achieve this, first time is
discretized into a number of slices. On time
step t, an input is presented to the network
and causes a pattern of activation on hidden
and output layers. On time step t + 1, the
next input in the sequence of events is pre-
sented to the network. However, crucially, a
copy of the activation of the hidden units on
time step t is transmitted to a set of internal
“context” units. This activation vector is also
fed to the hidden units on time step t + 1.
Figure 2.4 shows the architecture, known
as the simple recurrent network (SRN). It is
usually trained with the backpropagation
algorithm (see Section 2.3) as a multi-
layer feedforward network, ignoring the
origin of the information on the context
layer.

Each input to the SRN is therefore pro-
cessed in the context of what came before,
but in a way subtly more powerful than the
Jordan network. The input at t + 1 is pro-
cessed in the context of the activity pro-
duced on the hidden units by the input at
time t. Now consider the next time step.
The input at time t + 2 will be processed
along with activity from the context layer
that is shaped by two influences:

(the input at t + 1 (shaped by the
input at t)).

The input at time t + 3 will be processed
along with activity from the context layer
that is shaped by three influences:

(the input at t + 2 (shaped by the input
at t + 1 (shaped by the input at t))).

The recursive flavor of the information con-
tained in the context layer means that each
new input is processed in the context of
the full history of previous inputs. This per-
mits the network to learn statistical relation-
ships across sequences of inputs or, in other
words, to find structure in time.

In his original 1990 article, Elman
demonstrated the powerful properties of the
SRN with two examples. In the first, the
network was presented with a sequence of
letters made up of concatenated words, for
example:

MANYYEARSAGOABOYANDGIRLLIV-
EDBYTHESEATHEYPLAYEDHAPPIL

Each letter was represented by a distributed
binary code over five input units. The net-
work was trained to predict the next letter in
the sentence for 200 sentences constructed
from a lexicon of fifteen words. There were
1,270 words and 4,963 letters. Because
each word appeared in many sentences,
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the network was not particularly successful
at predicting the next letter when it got to
the end of each word, but within a word
it was able to predict the sequences of let-
ters. Using the accuracy of prediction as a
measure, one could therefore identify which
sequences in the letter string were words:
They were the sequences of good prediction
bounded by high prediction errors. The abil-
ity to extract words was of course subject
to the ambiguities inherent in the training
set (e.g., for the and they, there is ambigu-
ity after the third letter). Elman suggested
that if the letter strings are taken to be
analogous to the speech sounds available to
the infant, the SRN demonstrates a possi-
ble mechanism to extract words from the
continuous stream of sound that is present
in infant-directed speech. Elman’s work has
contributed to the increasing interest in the
statistical learning abilities of young chil-
dren in language and cognitive develop-
ment (see, e.g., Saffran, Newport, & Aslin,
1996).

In the second example, Elman (1990)
created a set of 10,000 sentences by com-
bining a lexicon of 29 words and a set of
short sentence frames (noun + [transitive]
verb + noun; noun + [intransitive] verb).
There was a separate input and output unit
for each word, and the SRN was trained
to predict the next word in the sentence.
During training, the network’s output came
to approximate the transitional probabilities
between the words in the sentences, that is,
it could predict the next word in the sen-
tences as much as this was possible. Follow-
ing the first noun, the verb units would be
more active as the possible next word, and
verbs that tended to be associated with this
particular noun would be more active than
those that did not. At this point, Elman ex-
amined the similarity structure of the in-
ternal representations to discover how the
network was achieving its prediction abil-
ity. He found that the internal representa-
tions were sensitive to the difference be-
tween nouns and verbs, and within verbs, to
the difference between transitive and intran-
sitive verbs. Moreover, the network was also
sensitive to a range of semantic distinctions:

Not only were the internal states induced by
nouns split into animate and inanimate, but
the pattern for “woman” was most similar to
“girl,” and that for “man” was most similar
to “boy.” The network had learned to struc-
ture its internal representations according to
a mix of syntactic and semantic information
because these information states were the
best way to predict how sentences would
unfold. Elman concluded that the represen-
tations induced by connectionist networks
need not be flat but could include hierarchi-
cal encodings of category structure.

Based on his finding, Elman also argued
that the SRN was able to induce representa-
tions of entities that varied according to their
context of use. This contrasts with classi-
cal symbolic representations that retain their
identity regardless of the combinations into
which they are put, a property called “com-
positionality.” This claim is perhaps better
illustrated by a second article Elman (1993)
published two years later, called “Learning
and Development in Neural Networks: The
importance of Starting Small.” In this later
article, Elman explored whether rule-based
mechanisms are required to explain certain
aspects of language performance, such as
syntax. He focused on “long-range depen-
dencies,” which are links between words
that depend only on their syntactic relation-
ship in the sentence and, importantly, not on
their separation in a sequence of words. For
example, in English, the subject and main
verb of a sentence must agree in number. If
the noun is singular, so must be the verb;
if the noun is plural, so must be the verb.
Thus, in the sentence “The boy chases the
cat,” boy and chases must both be singular.
But this is also true in the sentence “The boy
whom the boys chase chases the cat.” In the
second sentence, the subject and verb are
further apart in the sequence of words but
their relationship is the same; moreover, the
words are now separated by plural tokens of
the same lexical items. Rule-based represen-
tations of syntax were thought to be neces-
sary to encode these long-distance relation-
ships because, through the recursive nature
of syntax, the words that have to agree in a
sentence can be arbitrarily far apart.
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Figure 2.5. Trajectory of internal activation states as the simple recurrent network (SRN)
processes sentences (Elman, 1993). The data show positions according to the dimensions of a
principal components analysis (PCA) carried out on hidden unit activations for the whole
training set. Words are indexed by their position in the sequence but represent activation of
the same input unit for each word. (a) PCA values for the second principal component as the
SRN processes two sentences, “Boy who boys chase chases boy” or “Boys who boys chase chase
boy;” (b) PCA values for the first and eleventh principal components as the SRN processes
“Boy chases boy who chases boy who chases boy.”

Using an SRN trained on the same pre-
diction task as that previously outlined but
now with more complex sentences, Elman
(1993) demonstrated that the network was
able to learn these long-range dependen-
cies even across the separation of multiple
phrases. If boy was the subject of the sen-
tence, when the network came to predict
the main verb chase as the next word, it
predicted that it should be in the singular.
The method by which the network achieved
this ability is of particular interest. Once
more, Elman explored the similarity struc-
ture in the hidden unit representations, us-
ing principal component analyses to identify
the salient dimensions of similarity across
which activation states were varying. This
enabled him to reduce the high dimension-
ality of the internal states (150 hidden units
were used) to a manageable number to visu-
alize processing. Elman was then able to plot
the trajectories of activation as the network
altered its internal state in response to each
subsequent input. Figure 2.5 depicts these
trajectories as the network processes differ-

ent multi-phrase sentences, plotted with ref-
erence to particular dimensions of princi-
pal component space. This figure demon-
strates that the network adopted similar
states in response to particular lexical items
(e.g., tokens of boy, who, chases), but that
it modified the pattern slightly according to
the grammatical status of the word. In Fig-
ure 2.5a, the second principal component
appears to encode singularity/plurality. Fig-
ure 2.5b traces the network’s state as it pro-
cesses two embedded relative clauses con-
taining iterations of the same words. Each
clause exhibits a related but slightly shifted
triangular trajectory to encode its role in the
syntactic structure.

The importance of this model is that
it prompts a different way to understand
the processing of sentences. Previously, one
would view symbols as possessing fixed iden-
tities and as being bound into particular
grammatical roles via a syntactic construc-
tion. In the connectionist system, sentences
are represented by trajectories through
activation space in which the activation
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pattern for each word is subtly shifted ac-
cording to the context of its usage. The im-
plication is that the property of composi-
tionality at the heart of the classical sym-
bolic computational approach may not be
necessary to process language.

Elman (1993) also used this model to
investigate a possible advantage to learning
that could be gained by initially restricting
the complexity of the training set. At the
start of training, the network had its mem-
ory reset (its context layer wiped) after ev-
ery third or fourth word. This window was
then increased in stages up to six to seven
words across training. The manipulation was
intended to capture maturational changes in
working memory in children. Elman (1993)
reported that starting small enhanced learn-
ing by allowing the network to build simpler
internal representations that were later use-
ful for unpacking the structure of more com-
plex sentences (see Rohde & Plaut, 1999,
for discussion and further simulations). This
idea resonated with developmental psychol-
ogists in its demonstration of the way in
which learning and maturation might inter-
act in constructing cognition. It is an idea
that could turn out to be a key principle in
the organization of cognitive development
(Elman et al., 1996).

3.3.1. what happened next?

Elman’s simulations with the SRN and the
prediction task produced striking results.
The ability of the network to induce struc-
tured representations containing grammati-
cal and semantic information from word se-
quences prompted the view that associative
statistical learning mechanisms might play a
much more central role in language acqui-
sition. This innovation was especially wel-
come given that symbolic theories of sen-
tence processing do not offer a ready account
of language development. Indeed, they are
largely identified with the nativist view that
little in syntax develops. However, one lim-
itation of the prior simulations is that the
prediction task does not learn any catego-
rizations over the input set. Although the
simulations demonstrate that information
important for language comprehension and

production can be induced from word se-
quences, neither task is actually performed.
The learned distinction between nouns and
verbs apparent in the hidden unit represen-
tations is tied up with carrying out the pre-
diction task. But to perform comprehension,
for example, the SRN would need to learn
categorizations from the word sequences,
such as deciding which noun was the agent
and which noun was the patient in a sen-
tence, regardless of whether the sentence
was presented in the active (“the dog chases
the cat”) or passive voice (“the cat is chased
by the dog”). These types of computations
are more complex and the network’s solu-
tions typically more impenetrable. Although
SRNs have borne the promise of an inher-
ently developmental connectionist theory of
parsing, progress on a full model has been
slow (see Christiansen & Chater, 2001; and
chapter 17 of this volume). Parsing is a com-
plex problem – it is not even clear what the
output should be for a model of sentence
comprehension. Should it be some inter-
mediate depiction of agent–patient role as-
signments, some compound representation
of roles and semantics, or a constantly up-
dating mental model that processes each
sentence in the context of the emerging
discourse? Connectionist models of pars-
ing await greater constraints from psycholin-
guistic evidence.

Nevertheless, some interesting prelimi-
nary findings have emerged. For example,
some of the grammatical sentences that the
SRN finds the hardest to predict are also
the sentences that humans find the hard-
est to understand (e.g., center embedded
structures like “the mouse the cat the dog
bit chased ate the cheese”) (Weckerly &
Elman, 1992). These are sequences that
place maximal load on encoding information
in the network’s internal recurrent loop, sug-
gesting that recurrence may be a key com-
putational primitive in language processing.
Moreover, when the prediction task is re-
placed by a comprehension task (such as
predicting the agent/patient status of the
nouns in the sentence), the results are again
suggestive. Rather than building a syntac-
tic structure for the whole sentence as a
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symbolic parser might, the network focuses
on the predictability of lexical cues for iden-
tifying various syntactic structures (consis-
tent with Bates and MacWhinney’s [1989]
Competition model of language develop-
ment. The salience of lexical cues that each
syntactic structure exploits and the pro-
cessing load that each structure places on
the recurrent loop makes them differentially
vulnerable under damage. Here, neuropsy-
chological findings from language break-
down and developmental language disor-
ders have tended to follow the predictions
of the connectionist account in the relative
impairments that each syntactic construc-
tion should show (Dick et al., 2001; 2004;
Thomas & Redington, 2004).

For more recent work and discussion of
the use of SRNs in syntax processing, see
Mayberry, Crocker, and Knoeferle (2005),
Miikkulainen and Mayberry (1999), Morris,
Cottrell, and Elman (2000), Rohde (2002),
and Sharkey, Sharkey, and Jackson (2000).
Lastly, the impact of SRNs has not been
restricted to language. These models have
been usefully applied to other areas of cog-
nition where sequential information is im-
portant. For example, Botvinick and Plaut
(2004) have shown how this architecture
can capture the control of routine sequences
of actions without the need for schema hier-
archies, and Cleeremans and Dienes (chap-
ter 14 in this volume) show how SRNs have
been applied to implicit learning.

In sum, then, Elman’s work demonstrates
how simple connectionist architectures can
learn statistical regularities over temporal
sequences. These systems may indeed be
sufficient to produce many of the behav-
iors that linguists have described with gram-
matical rules. However, in the connection-
ist system, the underlying primitives are
context-sensitive representations of words
and trajectories of activation through recur-
rent circuits.

4. Related Models

Before considering the wider impact of con-
nectionism on theories of cognition, we

should note a number of other related ap-
proaches.

4.1. Cascade-Correlation and
Incremental Neural Network Algorithms

Backpropagation networks specify input and
output representations, whereas in self-
organizing networks, only the inputs are
specified. These networks therefore include
some number of internal processing units
whose activation states are determined by
the learning algorithm. The number of in-
ternal units and their organization (e.g., into
layers) plays an important role in determin-
ing the complexity of the problems or cate-
gories that the network can learn. In pattern
associator networks, too few units and the
network will fail to learn; in self-organizing
networks, too few output units and the net-
work will fail to provide good discrimina-
tion between the categories in the training
set. How does the modeler select in advance
the appropriate number of internal units?
Indeed, for a cognitive model, should this
be a decision that the modeler gets to make?

For pattern associator networks, the cas-
cade correlation algorithm (Fahlman &
Lebiere, 1990) addresses this problem by
starting with a network that has no hidden
units and then adding in these resources dur-
ing learning as it becomes necessary to carry
on improving on the task. New hidden units
are added with weights from the input layer
tailored so that the unit’s activation corre-
lates with network error, that is, the new
unit responds to parts of the problem on
which the network is currently doing poorly.
New hidden units can also take input from
existing hidden units, thereby creating de-
tectors for higher order features in the prob-
lem space.

The cascade correlation algorithm has
been widely used for studying cognitive
development (Mareschal & Shultz, 1996;
Shultz, 2003; Westermann, 1998), for
example, in simulating children’s perfor-
mance in Piagetian reasoning tasks (see Sec-
tion 5.2). The algorithm makes links with
the constructivist approach to development
(Quartz, 1993; Quartz & Sejnowski, 1997),
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which argues that increases in the complex-
ity of children’s cognitive abilities are best
explained by the recruitment of additional
neurocomputational resources with age and
experience. Related models that also use this
“incremental” approach to building network
architectures can be found in the work of
Carpenter and Grossberg (Adaptive Reso-
nance Theory; e.g., Carpenter & Grossberg,
1987a, 1987b) and in the work of Love and
colleagues (e.g., Love, Medin, & Gureckis,
2004).

4.2. Mixture-of-Experts-Models

The preceding sections assume that only a
single architecture is available to learn each
problem. However, it may be that multiple
architectures are available to learn a given
problem, each with different computational
properties. Which architecture will end up
learning the problem? Moreover, what if a
cognitive domain can be broken down into
different parts, for example, in the way that
the English past tense problem comprises
regular and irregular verbs – could different
computational components end up learn-
ing the different parts of the problem? The
mixture-of-experts approach considers ways
in which learning could take place in just
such a system with multiple components
available (Jacobs et al., 1991). In these mod-
els, functionally specialized structures can
emerge as a result of learning, in the circum-
stance where the computational properties
of the different components happen to line
up with the demands presented by differ-
ent parts of the problem domain (so-called
structure-function correspondences).

During learning, mixture-of-experts algo-
rithms typically permit the multiple com-
ponents to compete with each other to de-
liver the correct output for each input pat-
tern. The best performer is then assigned
the pattern and allowed to learn it. The in-
volvement of each component during func-
tioning is controlled by a gating mechanism.
Mixture-of-experts models are one of sev-
eral approaches that seek to explain the
origin of functionally specialized process-
ing components in the cognitive system (see
Elman et al., 1996; Jacobs, 1999; Thomas &

Richardson, 2006, for discussion). An exam-
ple of the application of mixture of experts
can be found in a developmental model of
face and object recognition, where differ-
ent “expert” mechanisms come to special-
ize in processing visual inputs that corre-
spond to faces and those that correspond
to objects (Dailey & Cottrell, 1999). The
emergence of this functional specialization
can be demonstrated by damaging each ex-
pert in turn and showing a double dissocia-
tion between face and object recognition in
the two components of the model (see Sec-
tion 5.3). Similarly, Thomas and Karmiloff-
Smith 2002a showed how a mixture-of-
experts model of English past tense could
produce emergent specialization of separate
mechanisms to regular and irregular verbs,
respectively (see also Westermann, 1998,
for related work with a constructivist net-
work).

4.3. Hybrid Models

The success of mixture-of-experts models
suggests that when two or more compo-
nents are combined within a model, it can be
advantageous for the computational proper-
ties of the components to differ. Where the
properties of the components are radically
different, for example, involving the combi-
nation of symbolic (rule-based) and connec-
tionist (associative, similarity-based) archi-
tectures, the models are sometimes referred
to as “hybrid.” The use of hybrid models is
inspired by the observation that some as-
pects of human cognition seem better de-
scribed by rules (e.g., syntax, reasoning),
whereas some seem better described by sim-
ilarity (e.g., perception, memory). We have
previously encountered the debate between
symbolic and connectionist approaches (see
Section 2.3) and the proposal that connec-
tionist architectures may serve to imple-
ment symbolic processes (e.g., Touretzky
& Hinton, 1988). The hybrid systems ap-
proach takes the alternative view that con-
nectionist and symbolic processing princi-
ples should be combined within the same
model, taking advantage of the strengths
of each computational formalism. A dis-
cussion of this approach can be found in
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Sun (2002a, 2002b). Example models in-
clude CONSYDERR (Sun, 1995), CLAR-
ION (Sun & Peterson, 1998), and ACT-R
(Anderson & Lebiere, 1998).

An alternative to a truly hybrid approach
is to develop a multi-part connectionist ar-
chitecture that has components that employ
different representational formats. Such a
system may be described as having “hetero-
geneous” computational components. For
example, in a purely connectionist system,
one component might employ distributed
representations that permit different de-
grees of similarity between activation pat-
terns, whereas a second component employs
localist representations in which there is
no similarity between different representa-
tions. Behavior is then driven by the inter-
play between two associative components
that employ different similarity structures.
One example of a heterogeneous, multiple-
component architecture is the complemen-
tary learning systems model of McClel-
land, McNaughton, and O’Reilly (1995),
which employs localist representations to
encode individual episodic memories but
distributed representations to encode gen-
eral semantic memories. Heterogeneous de-
velopmental models may offer new ways
to conceive of the acquisition of concepts.
For example, the cognitive domain of num-
ber may be viewed as heterogeneous in the
sense that it combines three systems: the
similarity-based representations of quantity,
the localist representations of number facts
(such as the order of number labels in count-
ing), and a system for object individuation.
Carey and Sarnecka (2006) argue that a het-
erogeneous multiple component system of
this nature could acquire the concept of pos-
itive integers even though such a concept
could not be acquired by any single compo-
nent of the system on its own.

4.4. Bayesian Graphical Models

The use of Bayesian methods of inference
in graphical models, including causal graph-
ical models, has recently been embraced by
a number of cognitive scientists (Chater,
Tenenbaum, & Yuille, 2006; Gopnik et al.,
2004; see chapter 3 in this volume). This

approach stresses how it may be possible
to combine prior knowledge in the form
of a set of explicit alternative graph struc-
tures and constraints on the complexity of
such structures with Bayesian methods of
inference to select the best type of repre-
sentation of a particular data set (e.g., lists
of facts about many different animals); and
within that, to select the best specific in-
stantiation of a representation of that type
(Tenenbaum, Griffiths, & Kemp, 2006).
These models are useful contributions to our
understanding, particularly because they al-
low explicit exploration of the role of prior
knowledge in the selection of a representa-
tion of the structure present in each data
set. It should be recognized, however, that
such models are offered as characterizations
of learning at Marr’s (1982) “Computational
Level” and as such they do not specify the
representations and processes that are ac-
tually employed when people learn. These
models do raise questions for connectionist
research that does address such questions,
however. Specifically, the work provides a
benchmark against which connectionist ap-
proaches might be tested for their success
in learning to represent the structure from
a data set and in using such a structure
to make inferences consistent with opti-
mal performance according to a Bayesian
approach within a graphical model frame-
work. More substantively, the work raises
questions about whether or not optimiza-
tion depends on the explicit representation
of alternative structured representations or
whether an approximation to such struc-
tured representations can arise without their
prespecification. For an initial examination
of these issues as they arise in the con-
text of causal inference, see McClelland and
Thompson (2007).

5. Connectionist Influences
on Cognitive Theory

Connectionism offers an explanation of hu-
man cognition because instances of behavior
in particular cognitive domains can be ex-
plained with respect to set of general prin-
ciples (parallel distributed processing) and
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the conditions of the specific domains. How-
ever, from the accumulation of successful
models, it is also possible to discern a wider
influence of connectionism on the nature of
theorizing about cognition, and this is per-
haps a truer reflection of its impact. How
has connectionism made us think differently
about cognition?

5.1. Knowledge Versus Processing

One area where connectionism has changed
the basic nature of theorizing is mem-
ory. According to the old model of mem-
ory based on the classical computational
metaphor, the information in long-term
memory (e.g., on the hard disk) has to be
moved into working memory (the central
processing unit, or CPU) for it to be oper-
ated on, and the long-term memories are
laid down via a domain-general buffer of
short-term memory (random access mem-
ory, or RAM). In this type of system, it is
relatively easy to shift informational con-
tent between different systems, back and
forth between central processing and short
and long-term stores. Computation is pred-
icated on variables: the same binary string
can readily be instantiated in different mem-
ory registers or encoded onto a permanent
medium.

By contrast, knowledge is hard to move
about in connectionist networks because it
is encoded in the weights. For example, in
the past-tense model, knowledge of the past
tense rule “add -ed” is distributed across
the weight matrix of the connections be-
tween input and output layers. The diffi-
culty in portability of knowledge is inher-
ent in the principles of connectionism –
Hebbian learning alters connection strengths
to reinforce desirable activation states in
connected units, tying knowledge to struc-
ture. If we start from the premise that
knowledge will be very difficult to move
about in our information processing system,
what kind of cognitive architecture do we
end up with? There are four main themes.

First, we need to distinguish between
two different ways in which knowledge can
be encoded: active and latent representa-

tions (Munakata & McClelland, 2003). La-
tent knowledge corresponds to the infor-
mation stored in the connection weights
from accumulated experience. By contrast,
active knowledge is information contained
in the current activation states of the sys-
tem. Clearly, the two are related because
the activation states are constrained by the
connection weights. But, particularly in re-
current networks, there can be subtle dif-
ferences. Active states contain a trace of re-
cent events (how things are at the moment),
whereas latent knowledge represents a his-
tory of experience (how things tend to be).
Differences in the ability to maintain the
active states (e.g., in the strength of recur-
rent circuits) can produce errors in behavior
where the system lapses into more typical
ways of behaving (Munakata, 1998; Morton
& Munakata, 2002).

Second, if information does need to be
moved around the system, for example,
from a more instance-based (episodic) sys-
tem to a more general (semantic) sys-
tem, this will require special structures and
special (potentially time-consuming) pro-
cesses. Thus McClelland, McNaughton, and
O’Reilly (1995) proposed a dialogue be-
tween separate stores in the hippocampus
and neocortex to gradually transfer knowl-
edge from episodic to semantic memory.
French, Ans, and Rousset (2001) proposed
a special method to transfer knowledge
between two memory systems: internally
generated noise produces “pseudopatterns”
from one system that contain the central
tendencies of its knowledge; the second
memory system is then trained with this
extracted knowledge to effect the transfer.
Chapters 7 and 8 in the current volume offer
a wider consideration of models of episodic
and semantic memory, respectively.

Third, information will be processed in
the same substrate where it is stored. There-
fore, long-term memories will be active
structures and will perform computations
on content. An external strategic control sys-
tem plays the role of differentially activat-
ing the knowledge in this long-term system
that is relevant to the current context. In
anatomical terms, this distinction broadly
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corresponds to frontal/anterior (strategic
control) and posterior (long-term) cortex.
The design means, somewhat counterintu-
itively, that the control system has no con-
tent. Rather, the control system contains
placeholders that serve to activate different
regions of the long-term system. The con-
trol system may contain plans (sequences
of placeholders) and it may be involved in
learning abstract concepts (using a place-
holder to temporarily coactivate previously
unrelated portions of long-term knowledge
while Hebbian learning builds an association
between them) but it does not contain con-
tent in the sense of a domain-general work-
ing memory. The study of frontal systems
then becomes an exploration of the acti-
vation dynamics of these placeholders and
their involvement in learning (see, e.g., work
by Davelaar & Usher, 2002; Haarmann &
Usher, 2001; O’Reilly, Braver, & Cohen,
1999; Usher & McClelland, 2001).

Similarly, connectionist research has ex-
plored how activity in the control system can
be used to modulate the efficiency of pro-
cessing elsewhere in the system, for instance,
to implemented selective attention. For ex-
ample, Cohen et al., (1990) demonstrated
how task units could be used to differ-
entially modulate word-naming and color-
naming processing channels in a model of
the color-word Stroop task. In this model,
latent knowledge interacted with the oper-
ation of task control, so that it was harder
to selectively attend to color-naming and
ignore information from the more practiced
word-naming channel than vice versa. This
work was later extended to demonstrate
how deficits in the strategic control system
(prefrontal cortex) could lead to problems
in selective attention in disorders such as
schizophrenia (Cohen & Servan-Schreiber,
1992). Chapter 15 in this volume contains a
wider consideration of computational mod-
els of attention and cognitive control.

Lastly, the connectionist perspective on
memory alters how we conceive of domain
generality in processing systems. It is un-
likely that there are any domain-general
processing systems that serve as a “Jack-of-
all-trades,” that is, that can move between

representing the content of multiple do-
mains. However, there may be domain-
general systems that are involved in mod-
ulating many disparate processes without
taking on the content of those systems, what
we might call a system with “a finger in ev-
ery pie.” Meanwhile, short-term or work-
ing memory (as exemplified by the active
representations contained in the recurrent
loop of a network) is likely to exist as a
devolved panoply of discrete systems, each
with its own content-specific loop. For ex-
ample, research in the neuropsychology of
language now tends to support the existence
of separate working memories for phono-
logical, semantic, and syntactic information
(see MacDonald & Christiansen, 2002, for a
discussion of these arguments).

5.2. Cognitive Development

A key feature of PDP models is the use of
a learning algorithm for modifying the pat-
terns of connectivity as a function of experi-
ence. Compared with symbolic, rule-based
computational models, this has made them
a more sympathetic formalism for study-
ing cognitive development (Elman et al.,
1996). The combination of domain-general
processing principles, domain-specific archi-
tectural constraints, and structured train-
ing environments has enabled connectionist
models to give accounts of a range of devel-
opmental phenomena. These include infant
category development, language acquisition
and reasoning in children (see Mareschal &
Thomas, 2007, for a recent review and chap-
ter 16 in this volume).

Connectionism has become aligned with
a resurgence of interest in statistical learn-
ing and a more careful consideration of the
information available in the child’s environ-
ment that may feed his or her cognitive
development. One central debate revolves
around how children can become “cleverer”
as they get older, appearing to progress
through qualitatively different stages of rea-
soning. Connectionist modeling of the de-
velopment of children’s reasoning was able
to demonstrate that continuous incremen-
tal changes in the weight matrix driven by
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algorithms such as backpropagation can re-
sult in nonlinear changes in surface behav-
ior, suggesting that the stages apparent in
behavior may not necessarily be reflected
in changes in the underlying mechanism
(e.g., McClelland, 1989). Other connection-
ists have argued that algorithms able to sup-
plement the computational resources of the
network as part of learning may also provide
an explanation for the emergence of more
complex forms of behavior with age (e.g.,
cascade correlation; see Shultz, 2003).

The key contribution of connectionist
models in the area of developmental psy-
chology has been to specify detailed, im-
plemented models of transition mechanisms
that demonstrate how the child can move
between producing different patterns of be-
havior. This was a crucial addition to a
field that has accumulated vast amounts of
empirical data cataloging what children are
able to do at different ages. The specifi-
cation of mechanism is also important to
counter some strongly empiricist views that
simply identifying statistical information in
the environment suffices as an explanation
of development; instead, it is necessary to
show how a mechanism could use this sta-
tistical information to acquire some cogni-
tive capacity. Moreover, when connection-
ist models are applied to development, it
often becomes apparent that passive statis-
tical structure is not the key factor; rather,
the relevant statistics are in the transforma-
tion of the statistical structure of the envi-
ronment to the output or the behavior that
is relevant to the child, thereby appealing to
notions like the regularity, consistency, and
frequency of input-output mappings.

Recent connectionist approaches to de-
velopment have begun to explore how the
computational formalisms may change our
understanding of the nature of the knowl-
edge that children acquire. For example,
Mareschal et al. (2007) argue that many
mental representations of knowledge are
partial (i.e., capture only some task-relevant
dimensions); the existence of explicit lan-
guage may blind us to the fact that there
could be a limited role for truly abstract
knowledge in the normal operation of the

cognitive system (see Westermann et al.,
2007). Current work also explores the com-
putational basis of critical or sensitive peri-
ods in development, uncovering the mecha-
nisms by which the ability to learn appears
to reduce with age (e.g., McClelland et al.,
1999; Thomas & Johnson, 2006).

5.3. The Study of Acquired Disorders
in Cognitive Neuropsychology

Traditional cognitive neuropsychology of
the 1980s was predicated on the assumption
of underlying modular structure, that is, that
the cognitive system comprises a set of in-
dependently functioning components. Pat-
terns of selective cognitive impairment after
acquired brain damage could then be used to
construct models of normal cognitive func-
tion. The traditional models comprised box-
and-arrow diagrams that sketched out rough
versions of cognitive architecture, informed
both by the patterns of possible selective
deficit (which bits can fail independently)
and by a task analysis of what the cognitive
system probably has to do.

In the initial formulation of cognitive
neuropsychology, caution was advised in
attempting to infer cognitive architecture
from behavioral deficits, since a given
pattern of deficits might be consistent
with a number of underlying architectures
(Shallice, 1988). It is in this capacity that
connectionist models have been extremely
useful. They have both forced more detailed
specification of proposed cognitive models
via implementation and also permitted as-
sessment of the range of deficits that can be
generated by damaging these models in var-
ious ways. For example, models of reading
have demonstrated that the ability to de-
code written words into spoken words and
recover their meanings can be learned in a
connectionist network; and when this net-
work is damaged by, say, lesioning connec-
tion weights or removing hidden units, var-
ious patterns of acquired dyslexia can be
simulated (e.g., Plaut et al., 1996; Plaut &
Shallice, 1993). Connectionist models of ac-
quired deficits have grown to be an influen-
tial aspect of cognitive neuropsychology and
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have been applied to domains such as lan-
guage, memory, semantics, and vision (see
Cohen, Johnstone, & Plunkett, 2000, for
examples).

Several ideas have gained their first or
clearest grounding via connectionist mod-
eling. One of these ideas is that patterns
of breakdown can arise from the statis-
tics of the problem space (i.e., the map-
ping between input and output) rather than
from structural distinctions in the process-
ing system. In particular, connectionist mod-
els have shed light on a principal inferential
tool of cognitive neuropsychology, the dou-
ble dissociation. The line of reasoning argues
that if in one patient, ability A can be lost
while ability B is intact, and in a second pa-
tient, ability B can be lost while ability A is
intact, then the two abilities might be gen-
erated by independent underlying mecha-
nisms. In a connectionist model of category-
specific impairments of semantic memory,
Devlin et al. (1997) demonstrated that a
single undifferentiated network trained to
produce two behaviors could show a dou-
ble dissociation between them simply as a
consequence of different levels of damage.
This can arise because the mappings associ-
ated with the two behaviors lead them to
have different sensitivity to damage. For a
small level of damage, performance on A
may fall off quickly, whereas performance
on B declines more slowly; for a high level
of damage, A may be more robust than B.
The reverse pattern of relative deficits im-
plies nothing about structure.

Connectionist researchers have often set
out to demonstrate that, more generally,
double dissociation methodology is a flawed
form of inference, on the grounds that such
dissociations arise relatively easily from par-
allel distributed architectures where func-
tion is spread across the whole mechanism
(e.g., Plunkett & Bandelow, 2006; Juola &
Plunkett, 2000). However, on the whole,
when connectionist models show robust
double dissociations between two behaviors
(for equivalent levels of damage applied to
various parts of the network and over many
replications), it does tend to be because dif-
ferent internal processing structures (units

or layers or weights) or different parts of the
input layer or different parts of the output
layer are differentially important for driv-
ing the two behaviors – that is, there is spe-
cialization of function. Connectionism mod-
els of breakdown have, therefore, tended
to support the traditional inferences. Cru-
cially, however, connectionist models have
greatly improved our understanding of what
modularity might look like in a neurocom-
putational system: a partial rather than an
absolute property; a property that is the
consequence of a developmental process
where emergent specialization is driven by
structure-function correspondences (the ability
of certain parts of a computational structure
to learn certain kinds of computation bet-
ter than other kinds; see Section 4.2); and a
property that must now be complemented
by concepts such as division of labor, de-
generacy, interactivity, and redundancy (see
Thomas & Karmiloff-Smith, 2002a; Thomas
et al., 2006, for discussion).

5.4. The Origins of Individual Variability
and Developmental Disorders

In addition to their role in studying acquired
disorders, the fact that many connectio-
nist models learn their cognitive abilities
makes them an ideal framework within
which to study developmental disorders, such
as autism, dyslexia, and specific language
impairment (Joanisse & Seidenberg, 2003;
Mareschal et al., 2007; Thomas & Karmiloff-
Smith, 2002b, 2003a, 2005). Where mod-
els of normal cognitive development seek
to study the “average” child, models of
atypical development explore how devel-
opmental profiles may be disrupted. Con-
nectionist models contain a number of con-
straints (architecture, activation dynamics,
input and output representations, learn-
ing algorithm, training regimen) that de-
termine the efficiency and outcome of
learning. Manipulations to these constraints
produce candidate explanations for impair-
ments found in developmental disorders or
for the impairments caused by exposure to
atypical environments, such as in cases of
deprivation.
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In the 1980s and 1990s, many theories of
developmental deficits employed the same
explanatory framework as adult cognitive
neuropsychology. There was a search for
specific developmental deficits or dissocia-
tions, which were then explained in terms of
the failure of individual modules to develop-
ment. However, as Karmiloff-Smith (1998)
and Bishop (1997) pointed out, most of
the developmental deficits were actually be-
ing explained with reference to nondevelop-
mental, static, and sometimes adult models
of normal cognitive structure. Karmiloff-
Smith (1998) argued that the causes of de-
velopmental deficits of a genetic origin will
lie in changes to low-level neurocomputa-
tional properties that only exert their in-
fluence on cognition via an extended atyp-
ical developmental process (see also Elman
et al., 1996). Connectionist models provide
the ideal forum to explore the thesis that
an understanding of the constraints on the
developmental process is essential for gen-
erating accounts of developmental deficits.

The study of atypical variability also
prompts a consideration of what causes vari-
ability within the normal range, otherwise
known as individual differences or intelli-
gence. Are differences in intelligence caused
by variation in the same computational pa-
rameters that can cause disorders? Are some
developmental disorders just the extreme
lower end of the normal distribution or
are they qualitatively different conditions?
What computational parameter settings are
able to produce above-average performance
or giftedness? Connectionism has begun to
take advantage of the accumulated body
of models of normal development to con-
sider the wider question of cognitive varia-
tion in parameterized computational models
(Thomas & Karmiloff-Smith, 2003a).

5.5. Future Directions

The preceding sections indicate the range
and depth of influence of connectionism on
contemporary theories of cognition. Where
will connectionism go next? Necessarily,
connectionism began with simple models of
individual cognitive processes, focusing on
those domains of particular theoretical in-

terest. This piecemeal approach generated
explanations of individual cognitive abilities
using bespoke networks, each containing its
own predetermined representations and ar-
chitecture. In the future, one avenue to pur-
sue is how these models fit together in the
larger cognitive system – for example, to ex-
plain how the past tense network described
in Section 3.2 might link up with the sen-
tence processing model described in Section
3.3 to process past tenses as they arise in sen-
tences. A further issue is to address the de-
velopmental origin of the architectures that
are postulated. What processes specify the
parts of the cognitive system to perform the
various functions and how do these subsys-
tems talk to each other, both across devel-
opment and in the adult state? Improve-
ments in computational power will aid more
complex modeling endeavors. Nevertheless,
it is worth bearing in mind that increas-
ing complexity creates a tension with the
primary goals of modeling – simplification
and understanding. It is essential that we
understand why more complicated models
function as they do or they will merely be-
come interesting artifacts (see Elman, 2005;
Thomas, 2004, for further discussion).

In terms of its relation with other dis-
ciplines, a number of future influences on
connectionism are discernible. Connection-
ism will be affected by the increasing ap-
peal to Bayesian probability theory in hu-
man reasoning. In Bayesian theory, new data
are used to update existing estimates of the
most likely model of the world. Work has
already begun to relate connectionist and
Bayesian accounts, for example, in the do-
main of causal reasoning in children (Mc-
Clelland & Thompson, 2007). In some cases,
connectionism may offer alternative expla-
nations of the same behavior; in others it
may be viewed as an implementation of a
Bayesian account (see Section 3.1). Connec-
tionism will continue to have a close rela-
tion to neuroscience, perhaps seeking to build
more neural constraints into its computa-
tional assumptions (O’Reilly & Munakata,
2000). Many of the new findings in cog-
nitive neuroscience are influenced by func-
tional brain imaging techniques. It will be
important, therefore, for connectionism to
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make contact with these data, either via
systems-level modeling of the interaction
between subnetworks in task performance
or in exploring the implications of the sub-
traction methodology as a tool for assess-
ing the behavior of distributed interactive
systems. The increasing influence of brain
imaging foregrounds the relation of cogni-
tion to the neural substrate; it depends on
how seriously one takes the neural plausi-
bility of connectionist models as to whether
an increased focus on the substrate will
have particular implications for connection-
ism over and above any other theory of cog-
nition.

Connectionist approaches to individual
differences and developmental disorders
suggest that this modeling approach has
more to offer in considering the computa-
tional causes of variability. Research in be-
havioral genetics argues that a significant pro-
portion of behavioral variability is genetic
in origin (Bishop, 2006; Plomin, Owen &
McGuffin, 1994). However, the neurode-
velopmental mechanisms by which genes
produce such variation are largely unknown.
Although connectionist cognitive models
are not neural, the fact that they incorporate
neurally inspired properties may allow them
to build links between behavior (where vari-
ability is measured) and the substrate on
which genetic effects act. In the future, con-
nectionism may therefore help to rectify a
major shortcoming in our attempts to un-
derstand the relation of the human genome
to human behavior – the omission of cogni-
tion from current explanations.

6. Conclusions

In this chapter, we have considered the
contribution of connectionist modeling to
our understanding of cognition. Connec-
tionism was placed in the historical context
of nineteenth-century associative theories of
mental processes and twentieth-century at-
tempts to understand the computations car-
ried out by networks of neurons. The key
properties of connectionist networks were
then reviewed, and particular emphasis was
placed on the use of learning to build the

microstructure of these models. The core
connectionist themes include the following:
(1) that processing is simultaneously influ-
enced by multiple sources of information at
different levels of abstraction, operating via
soft constraint satisfaction; (2) that repre-
sentations are spread across multiple sim-
ple processing units operating in parallel;
(3) that representations are graded, context-
sensitive, and the emergent product of adap-
tive processes; and (4) that computation
is similarity-based and driven by the sta-
tistical structure of problem domains, but
it can nevertheless produce rule-following
behavior. We illustrated the connectionist
approach via three landmarks models, the
Interactive Activation model of letter per-
ception (McClelland & Rumelhart, 1981),
the past tense model (Rumelhart & McClel-
land, 1986), and simple recurrent networks
for finding structure in time (Elman, 1990).
Apart from its body of successful individ-
ual models, connectionist theory has had
a widespread influence on cognitive the-
orizing, and this influence was illustrated
by considering connectionist contributions
to our understanding of memory, cogni-
tive development, acquired cognitive im-
pairments, and developmental deficits. Fi-
nally, we peeked into the future of con-
nectionism, arguing that its relationships
with other fields in the cognitive sciences
are likely to guide its future contribution
to understanding the mechanistic basis of
thought.
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